初中七年级下册练习题专题11 期中考试冲刺卷一基础难度简单数学之七年级下册同步讲练解析版

合集下载

七年级数学第二学期期中试卷题

七年级数学第二学期期中试卷题

七年级数学第二学期期中试卷题独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程,今天小编就给大家看看七年级数学,需要的就收藏一下哦初二年级数学下期中试卷一.选择题:相信你一定能选对!(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.49的平方根是A.7B.﹣7C.±7D.2.在平面直角坐标系中,点P(﹣3,4)位于A.第一象限B.第二象限C.第三象限D.第四象限3.若式子在实数范围内有意义,则x的取值范围是A.x>5B.x≥5C.x≠5D.x≥04.在下列各数:3.1415926、、0.2、、、、中无理数的个数是A.2B.3C.4D.55.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是A. B. C. D.6.已知点A(-2 ,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A′,则点A′的坐标是A.(-5, 6)B.(1, 2)C.(1, 6)D.(-5, 2)7.下列语句中,假命题的是( )A.对顶角相等B.若直线a、b、c满足b∥a,c∥a,那么b∥cC.两直线平行,同旁内角互补D.互补的角是邻补角8.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=36°,那么∠2的度数为A. 44°B. 54°C. 60°D.36°9.如图,∠1=∠2,则下列结论一定成立的是A.AB∥CDB.AD∥BCC.∠B=∠DD.∠3=∠410.如图,已知直线相交于点,,,则∠BOD的度数为A.28°B.52°C.62°D.118°11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是)A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)12.若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)二.填空题:你能填得又对又快吗?(每小题3分,共18分)13.若,则.14.在平面直角坐标系中,点P( , +1)在轴上,那么点的值是_________.15.在数轴上离原点距离是的点表示的数是_________.16用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=.17.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'= .18.观察下列各式:(1) ,(2) ,(3) ,…,请用你发现的规律写出第8个式子是 .三.解答题:一定要细心,你能行!(本大题共7小题,共66分)19.(10分)计算:(1) (2)解方程:20.(本小题满分7分)请把下面证明过程补充完整:已知:如图,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.求证:∠A=∠C.证明:∵BE、DF分别平分∠ABC、∠ADC(已知),∴∠1= ∠ABC,∠3= ∠ADC(角平分线定义).∵∠ABC=∠ADC(已知),∴∠1=∠3(等量代换),∵∠1=∠2(已知),∴∠2=∠3(等量代换).∴_____∥_____ (___ __).∴∠A+∠_____=180°,∠C+∠_____=180°(___ __).∴∠A=∠C(___ __).21.(本小题满分8分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵ < < ,即2< <3,∴ 的整数部分为2,小数部分为( ﹣2).请解答:(1) 的整数部分是______,小数部分是______(2)如果的小数部分为,的整数部分为,求的值.22.(本小题满分9分)已知 , 满足 =0,解关于的方程 .23.(本小题满分10分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.24.(本小题满分10分)已知如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.25. (本小题满分12分)(1)问题发现如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC∴∠C= .∵EF∥AB,∴∠B= ,∴∠B+∠C= .即∠B+∠C=∠BEC.(2)拓展探究如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.(3)解决问题如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A=.(直接写出结论,不用写计算过程)温馨提示:请仔细认真检查,特别是计算题,不要因为自己的粗心大意造成失误而后悔哟!参考答案一.选择:CBBAB ADBBD CC二.填空:13. ±8 ; 14. -1 15. ± 16. 8 17. 5 18.三.解答题19.(1) 解:……………………………………………………3分………………………………………………5分(2)解:……………………………………………………1分或………………………………………3分解得或………………………………………5分20.(每空1分,共7分)证明:∵BE、DF分别平分∠ABC、∠ADC(已知),∴∠1= ∠ABC,∠3= ∠ADC(角平分线定义).∵∠ABC=∠ADC(已知),<∴∠1=∠3(等量代换),∵∠1=∠2(已知),∴∠2=∠3(等量代换).∴AB ∥DC (内错角相等,两直线平行).∴∠A+∠ADC =180°,∠C+∠ABC =180°(_两直线平行,同旁内角互补).∴∠A=∠C(等角的补角相等).21.解:(1) 的整数部分是3,……………………………………………2分小数部分是:; ……………………………………………………4分(2)∵ < < ,∴ 的小数部分为: = ,…………………………………………5分∵ < < ,∴ 的整数部分为:,…………………………………………6分∴ = . ………………………………………8分22.由题意得: -4=0, -7=0∴ =4, =7 (6)分将 =4, =7代入( -3) -1=5 ,得(4-3) -1=5×7∴ =36 ……………………………………………………8分=±6 ……………………………………………………9分23.解:(1)A(﹣2,﹣2),B (3,1),C(0,2);…3分(2)△A′B′C′如图所示,………4分A′(﹣3,0)、B′(2,3),C′(﹣1,4);………7分(3)△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣7.5﹣1.5,=20﹣13,=7.………………………………………………………………………………………10分24. BF与AC的位置关系是:BF⊥AC.……………………………2分理由:∵∠AGF=∠ABC,∴BC∥GF(同位角相等,两直线平行),∴∠1=∠3;………………………………………………………5分又∵∠1+∠2=180°,∴∠2+∠3=180°,∴BF∥DE;……………………………………………8分∵DE⊥AC,∴BF⊥AC (1)0分25.解:(1)∠CEF;∠BEF;∠BEF+∠CEF. …………………………………3分(2)证明:如图②,过点E作EF∥AB,…………………………………………4分∵AB∥DC,EF∥AB,∴EF∥DC,…………………………………5分∴∠C+∠CEF=180°,∠B+∠BEF=180°,………………………………………7分∴∠B+∠C+∠BEC=360°,∴∠B+∠C=360°﹣∠BEC; ……………………9分(3)∠A=20°. …………………12分七年级数学下学期期中试题一、选择题:(每小题只有一个正确答案,每小题3分,共30分)1.下列计算正确的是( )A.x2+x3=2x5B.x2 x3=x6C.(﹣x3)2=﹣x6D.x6÷x3=x32.将0.00000573用科学记数法表示为( )A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣63.下列各式中不能用平方差公式计算的是( )A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)4.计算(a﹣b)2的结果是( )A.a2﹣b2B.a2﹣2ab+b2C.a2+2ab﹣b2D.a2+2ab+b25.如果一个角的补角是150°,那么这个角的余角的度数是( )A.30°B.60°C.90°D.120°6.两直线被第三条直线所截,则( )A.内错角相等B.同位角相等C.同旁内角互补D.以上结论都不对7.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的函数图象,根据图象信息,下列说法正确的是( )A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路8.如图,AB∥CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是( )A.46°B.23°C.26°D.24°9.设(5a+3b)2=(5a﹣3b)2+A,则A=( )A.30abB.60abC.15abD.12ab10.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°二、填空题(每小题4分,共16分)11.若,b=(﹣1)﹣1,,则a、b、c从小到大的排列是< < .12.若多项式a2+2ka+1是一个完全平方式,则k的值是.13.已知3m=4,3n=5,3m﹣n的值为.14.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升______元.三、计算题(共20分)15.(20分)计算下列各题(1)(x3)2.(﹣x4)3 (2)( x5y4﹣ x4y3) x3y3(3)2mn.[(2mn)2﹣3n(mn+m2n)] (4)(2a+1)2﹣(2a+1)(2a﹣1)(5)102+ ×(π﹣3.14)0﹣|﹣302|四、解答题(每小题6分,共18分)16.(6分)化简求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中 .17.(6分)已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3、x2项.求m+n的值.18.(6分)如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.解:∠A=∠3,理由如下:∵DE⊥BC,AB⊥BC(已知)∴∠DEB=∠ABC=90° ()∴∠DEB+()=180°∴DE∥AB ()∴∠1=∠A()∠2=∠3()∵∠l=∠2(已知)∴∠A=∠3()19.(6分)已知x+y=6,xy=5,求下列各式的值:(1) (2)(x﹣y)2 (3)x2+y220.(10分)如图,AB∥DE,∠1=∠ACB,∠CAB= ∠BAD,试说明AD∥BC.B卷满分50分一、填空题:(每小题4分,共20分)21.若2m=3,4n=8,则23m﹣2n+3的值是.22.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=.23.已知x2+3x﹣1=0,求:x3+5x2+5x+18的值.24.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为.25.如图,已知AB∥CD,则∠A、∠C、∠P的关系为.二.解答题(共10分)26.(10分)已知:如图,AB∥CD,求:(1)在图(1)中∠B+∠D=?(2)在图(2)中∠B+∠E1+∠D=?(3)在图(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?27.(10分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中? (不包括起点和终点)28.(10分)如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).七年级(下)期中数学试卷参考答案A卷一、选择题:(每小题只有一个正确答案,把答案填入下面表格中,每小题3分,共30分)DCABB DBCBB二.填空题(每小题4分,共16分)11.(4分)若,b=(﹣1)﹣1,,则a 、b、c从小到大的排列是 b < c < a .12.(4分)若多项式a2+2ka+1是一个完全平方式,则k的值是±1.13.(4分)已知3m=4,3n=5,3m﹣n的值为.14.(4分)某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升_7.09_____元.三.计算题(共20分)15.(20分)计算下列各题(1)(x3)2•(﹣x4 )3(2)( x5y4﹣ x4y3) x3y3(3)2mn•[(2mn)2﹣3n(mn+m2n)](4)(2a+1)2﹣(2a+1)(2a﹣1)(5)102+ ×(π﹣3.14)0﹣|﹣302|解:(1)(x3)2•(﹣x4)3=x6•(﹣x12)=﹣x18;(2)( x5y4﹣ x4y3) x3y3= ;(3)2mn•[(2mn)2﹣3n(mn+m2n)]=2mn•[4m2n2﹣3mn2﹣3m2n2]=2mn•(m2n2﹣3mn2)=2m3n3﹣6m 2n3;(4)(2a+1)2﹣(2a+1)(2a﹣1)=4a2+4a+1﹣4a2+1=4a+2;(5)102+ ×(π﹣3.14)0﹣|﹣302|=100+900×1﹣900=100+900﹣900=100.四.解答题(每小题6分,共18分)16.(6分)化简求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中 .解:(x+2y )2﹣(x+y)(3x﹣y)﹣5y2=x2+4xy+4y2﹣(3x2+2xy﹣y2)﹣5y2=﹣2x2+2xy,当x=﹣2,y= 时,原式=﹣2×(﹣2)2+2×(﹣2)×=﹣8﹣2=﹣10.17.(6分)已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3、x2项.求m+n的值.解:(x3+mx+n)(x2﹣3x+1)=x5﹣3x4+x3+mx3﹣3mx2+mx+nx2﹣3nx+n=x5﹣3x4+(1+m)x3+(﹣3m+n)x2+(m﹣3n)x+n因为展开后的结果中不含x3、x2项所以1+m=0﹣3m+n=0所以m=﹣1 n=﹣3 m+n=﹣1+(﹣3 )=﹣4.18.(6分)如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.解:∠A=∠3,理由如下:∵DE⊥BC,AB⊥B C(已知)∴∠DEB=∠ABC=90° (垂直的定义)∴∠DEB+(∠ABC)=180°∴DE∥AB (同旁内角互补,两直线平行)∴∠1=∠A(两直线平行,同位角相等)∠2=∠3(两直线平行,内错角相等)∵∠l=∠2(已知)∴∠A=∠3(等量代换)解:理由如下:∵DE⊥BC,AB ⊥BC(已知)∴∠DEC=∠ABC=90°(垂直的定义),∴∠DEB+(∠ABC)=180O∴DE∥AB(同旁内角互补相等,两直线平行),∴∠1=∠A (两直线平行,同位角相等),由DE∥BC还可得到:∠2=∠3 (两直线平行,内错角相等),又∵∠l=∠2(已知)∴∠A=∠3 (等量代换).故答案为垂直的定义;∠ABC;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;等量代换.五.(第19题6分,第20题10分,共16分)19.(6分)已知x+y=6,xy=5,求下列各式的值:(1)(2)(x﹣y)2(3)x2+y2.解:∵x+y=6,xy=5,(1) ;(2)(x﹣y)2=(x+y)2﹣4xy=62﹣4×5=16.(3)x2+y2=(x+y)2﹣2xy=62﹣2×5=26.20.(10分)如图,AB∥DE,∠1=∠ACB,∠CAB= ∠BAD,试说明AD∥BC.证明:∵AB∥DE,∴∠BAC=∠1,∵∠1=∠ACB,∴∠ACB=∠BAC,∵∠CAB= ∠BAD,∴∠ACB=∠DAC,∴AD∥BC.B卷一.填空题:(每小题4分,共20分)21.(4分)若2m=3,4n=8,则23m﹣2n+3的值是27 .解:∵2m=3,4n=8,∴23m﹣2n+3=(2m)3÷(2n)2×23,=(2m)3÷4n×23,=33÷8×8,=27.22.(4分)∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=60°或120°.解:如图:当α=∠2时,∠2=∠1=6 0°,当β=∠2时,∠β=180°﹣60°=120°,23.(4分)已知x2+3x﹣1=0,求:x3+5x2+5x+18的值.解:∵x2+3x﹣1=0,∴x2+3x=1,x3+5x2+5x+18=x(x2+3x)+2x2+5x+18=x+2x2+5x+18=2(x2+3x)+18=2+18=20.24.(4分)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为 3 .解:∵a=2009x+2007,b=2009x+2008,c=2009x+2009,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣bc﹣ca= (2a2+2b2+2c2﹣2ab﹣2b c﹣2ca)= [(a﹣b)2+(b﹣c)2+(c﹣a)2]= (1+1+4)=3.25.(4分)如图,已知AB∥CD,则∠A、∠C、∠P的关系为∠A+∠C﹣∠P=180°.解:如右图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APD,∴∠A+∠C﹣∠P=180°,26.(10分)已知:如图,AB∥CD,求:(1) 在图(1)中∠B+∠D=?(2)在图(2)中∠B+∠E1+∠D=?(3)在图(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?解:(1)∵AB∥CD,∴∠B+∠D=180°.(2)在图(2)中,过点E1作E1F1∥CD,则E1F1∥AB,∴∠B+∠BE1F1=180°,∠D+∠DE1F1=180°,∴∠B+∠BE1F1+∠DE1F1+ ∠D=∠B+∠BE1D+∠D=360°.(3)在图(3)中,过点E1作E1F1∥CD,过点E2作E2F2∥CD,…,过点En作EnFn∥CD,∴∠B+∠BE1F1=180°,∠F1E1E2+∠E1E2F2=180°,…,∠FnEnD+∠D=180°,∴∠B+∠BE1E2+∠E1E2E3+…+∠En﹣2En﹣1En+∠En﹣1EnD+∠D=∠B+∠BE1F1+∠F1E1E2+∠E1E2F2+…+∠FnEnD+∠D=1 80°•(n+1).27.(10分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中? (不包括起点和终点)解:(1)由图可得:甲先出发,先出发时间为:10分钟乙先到达终点:先到5分钟(2)甲速为:6÷30=0.2(km/分),乙速为:6÷(25-10)=0.4(km/分)(3)10四.解答题(共10分)28.(10分)如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).解:(1)如图,过点P做AC的平行线PO,∵AC∥PO,∴∠β=∠CPO,又∵AC∥BD,∴PO∥BD,∴∠α=∠DPO,∴∠α+∠β=∠γ.(2)①P在A点左边时,∠α﹣∠β=∠γ;②P在B点右边时,∠β﹣∠α=∠γ.(提示:两小题都过P作AC的平行线).下学期七年级数学期中考试卷一、选择题.(每空3分,共18分)1. 如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于( )A.130°B.140°C.150°D.160°2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A.30°B.25°C.20°D.15°3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)4.下列现象属于平移的是( )A.冷水加热过程中小气泡上升成为大气泡B急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动5.下列各数中,是无理数的为( )A. B. 3.14 C. D.6.若a2=9, =-2,则a+b=( )A. -5B. -11C. -5 或 -11D. 5或 11得分评卷人二、填空.(每小题3分,共27分)7.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式:_____________________________________________________________8.一大门的栏杆如右图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=____度.9.如右图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。

人教版七年级下册数学《期中考试试卷》附答案解析

人教版七年级下册数学《期中考试试卷》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列运算正确的是 ( )A. -a 4·a 3=a 7B. a 4·a 3=a 12C. (a 4)3=a 12D. a 4+a 3=a 72.计算32()()x x -÷-的结果是( )A. x -B. xC. 5x -D. 5x 3.在同一平面内,两条直线的位置关系是( )A. 平行和垂直B. 平行和相交C. 垂直和相交D. 平行、垂直和相交 4.如图,已知a ∥b ,165∠=︒,则2∠的度数为( )A . 65︒B. 125︒C. 115︒D. 25︒ 5.如图,下列说法不正确的是 ( )A. ∠DAB 与∠B 是内错角B. ∠EAB 与∠B 是同旁内角C. ∠CAB 与∠B 是同旁内角D. ∠C 与∠B 是同位角 6.在圆的周长公式C=2πr 中,下列说法正确的是( )A. C ,π,r 是变量,2是常量B. C ,π是变量,2,r 是常量C. C ,r 是变量,2,π是常量D. 以上都不对 7.一个长方形的周长为30,则长方形的面积y 与长方形一边长x 的关系式为( )A. y=x(15-x)B. y=x(30-x)C. y=x(30-2x)D. y=x(15+x)8.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,则∠BEC= ()A.78°B. 95°C. 155°D. 85°9.已知x2+16x+k是完全平方式,则常数k等于【】A. 64 B. 48 C. 32 D. 1610.我国古代数字的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2019B. 2018C. 191D. 190二、填空题11.用科学记数法表示,0.00000079=_____________12.若2x=1,则x=___________13.已知∠α补角是130°,则∠α=__________度.14.如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是________.15.已知a m=4,a n=3,则a m+2n=__________.16.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是_____.17.如图,在△CDE 中,∠CED =90°,点E 在AB 边上,AB ∥CD ,若∠AEC =30°,则∠D 的度数为_________________ .18.已知x +y =5 ,xy =6 ,则x 2 + y 2=_______.三、解答题19.计算(1)2123122124-⨯(用整式乘法公式计算)(2)()021262π--++- (3)()()222232232x y yx ---. (4)()22963x y xy xy -÷ (5)()()2132m m --- (6)()33222ab abc a c - 20.先化简,再求值: (a +2b)(a -2b)+(a +2b)2-4ab ,其中a =1,b =110. 21.已知∠α,∠β,求作一个角∠AOB ,使它等于∠α与∠β的和.(要求:不在原图上作图,不写作法,保留作图痕迹)22.推理填空.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD ,理由如下:解:因为∠1=∠2(已知),且∠1=∠4( )所以∠2=∠4(等量代换)所以CE ∥BF ( ) 所以∠ =∠3( )又因为∠B =∠C (已知),所以∠3=∠B ( )所以AB ∥CD ( )23.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.24.先化简,再求值:已知代数式2(3)(24)ax x x b -+--化简后,不含有x 2项和常数项. (1)求a 、b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值.25.如图,小彬和爸爸一起去车站接从外地学习回来的妈妈,在去的过程中,小彬坐在汽车上看着时速表,用所学知识绘制了一张反映小车速度与时间的关系图,请你根据图象回答以下问题:(1)在上述过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是多少?(3)汽车在哪段时间保持匀速运动?速度是多少?(4)汽车在哪段时间内速度在增加?哪段时间内速度在减少?答案与解析一、选择题1.下列运算正确的是 ( )A. -a 4·a 3=a 7 B. a 4·a 3=a 12 C. (a 4)3=a 12 D. a 4+a 3=a 7 【答案】C【解析】【分析】由同底数幂相乘,幂的乘方,合并同类项,分别进行判断,即可得到答案.【详解】解:A 、437a a a -•=-,故A 错误;B 、437a a a •=,故B 错误;C 、4312()a a =,故C 正确;D 、43a a +不是同类项,不能合并,故D 错误;故选:C .【点睛】本题考查了幂的乘方,同底数幂相乘,合并同类项,解题的关键是熟练掌握运算法则进行判断. 2.计算32()()x x -÷-的结果是( )A. x -B. xC. 5x -D. 5x【答案】A【解析】【分析】先计算乘方,然后计算同底数幂的除法,即可得到答案.【详解】解:3232()()x x x x x -÷-=-÷=-;故选:A .【点睛】本题考查了同底数幂的除法,以及乘方的运算,解题的关键是掌握运算法则进行解题. 3.在同一平面内,两条直线的位置关系是( )A. 平行和垂直B. 平行和相交C. 垂直和相交D. 平行、垂直和相交 【答案】B【解析】【分析】在同一平面内,两条直线的位置关系只有两种情况,平行或相交.【详解】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交,故选:B.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.4.如图,已知a∥b,165∠=︒,则2∠的度数为()A. 65︒B. 125︒C. 115︒D. 25︒【答案】C【解析】【分析】由平行线的性质和对顶角相等,即可求出2∠的度数.【详解】解:如图:a b,∵//∠+∠=︒,∴23180∠=∠=︒,∵3165∠=︒-︒=︒;∴218065115故选:C.【点睛】本题考查了平行线的性质,以及对顶角相等,解题的关键是熟练掌握两直线平行,同旁内角互补.5.如图,下列说法不正确的是()A. ∠DAB与∠B是内错角B. ∠EAB与∠B是同旁内角C. ∠CAB与∠B是同旁内角D. ∠C与∠B是同位角【答案】D【解析】【分析】根据同位角、内错角、同旁内角的定义对各个选项判断即可.【详解】解:A:∠DAB与∠B是内错角,正确;B:∠EAB与∠B是同旁内角,正确;C:∠CAB与∠B是同旁内角,正确;D:∠C与∠B是同旁内角,错误.故选D.【点睛】本题考查了同位角、内错角、同旁内角的知识,属于基础题,解答本题的关键是熟练掌握同位角、内错角、同旁内角的定义.6.在圆的周长公式C=2πr中,下列说法正确的是()A. C,π,r是变量,2是常量B. C,π是变量,2,r是常量C. C,r是变量,2,π是常量D. 以上都不对【答案】C【解析】【分析】常量就是在变化过程中不变的量,变量是指在变化过程中变化的量.【详解】解:C,r是变量,2、π是常量.故选:C.【点睛】本题主要考查了常量,变量的定义,是需要识记的内容.7.一个长方形的周长为30,则长方形的面积y与长方形一边长x的关系式为( )A. y=x(15-x)B. y=x(30-x)C. y=x(30-2x)D. y=x(15+x)【答案】A【解析】【详解】∵长方形的周长为30,其中一边长为x,,∴该长方形的另一边长为:15x∴该长方形的面积:(15)y x x=-. 故选A. 8.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,则∠BEC= ()A. 78°B. 95°C. 155°D. 85°【答案】B【解析】【分析】先过点E作EF∥AB,由平行线的传递性可得EF∥CD,再根据平行线的性质即可解答.【详解】解:如图,过点E作EF∥AB,由平行线的传递性可得EF∥CD∵EF∥AB,∵∠FEB=180°-∠ABE=60°,∵EF∥CD,∠DCE=35°,∴∠FEC=∠DCE=35°,∴∠BEC=∠FEB+∠FEC=60°+35°=95°.故答案为:B.【点睛】本题考查的是平行线的性质,即两直线平行,同旁内角互补及内错角相等.9.已知x2+16x+k是完全平方式,则常数k等于【】A. 64B. 48C. 32D. 16【答案】A【解析】【详解】∵x2+16x+k是完全平方式,∴对应的一元二次方程x2+16x+k=0根的判别式△=0.∴△=162-4×1×k=0,解得k=64.故选A.也可配方求解:x2+16x+k=(x2+16x+64)-64+k= (x+8)2-64+k,要使x2+16x+k为完全平方式,即要-64+k=0,即k=64.10.我国古代数字的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2019B. 2018C. 191D. 190【答案】D【解析】【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选:D.【点睛】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.二、填空题11.用科学记数法表示,0.00000079=_____________【答案】7.9 ×10-7【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:0.00000079=7.9 ×10-7.【点睛】用科学记数法表示一个数的方法是:(1)确定a :a 是只有一位整数的数;(2)确定n :当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.若2x =1,则x=___________【答案】0【解析】【分析】直接利用零指数幂的性质得出答案.【详解】解:因为2x =1,所以x=0.【点睛】此题主要考查了零指数幂的性质,正确把握相关定义是解题关键.13.已知∠α的补角是130°,则∠α=__________度. 【答案】50【解析】【分析】根据互补两角之和为180︒求解即可.【详解】解:130A ∠=︒,A ∴∠的补角180********A =︒-∠=︒-︒=︒.故答案为:50.【点评】本题考查了补角知识,属于基础题,掌握互补两角之和为180︒是解题的关键.14.如图,计划在河边建一水厂,可过C 点作CD⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是________.【答案】垂线段最短【解析】根据垂线段最短解释即可.【详解】由作法可知,CD 是点C 到AB 的垂线段,所以这样设计的依据是:垂线段最短.故答案为垂线段最短.【点睛】本题考查了垂线段最短的实际应用,熟记垂线段最短是解答此题的关键.15.已知a m =4,a n =3,则a m +2n =__________.【答案】36【解析】【分析】根据同底数幂的乘法与幂的乘方运算法则逆变形,把已知等式代入计算即可求出值.【详解】解:4m a =,3n a =,∴2m n a +()224336m na a =⋅=⨯=,故答案为:36.【点睛】本题考查了同底数幂的乘法与幂的乘方运算法,解决本题的关键是熟练掌握两者的变形/ 16.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是_____.【答案】(a+b )(a-b )=a 2-b 2【解析】【分析】【详解】由图可知,两个图象面积相等,(a+b )(a-b )=a 2-b 2.17.如图,在△CDE 中,∠CED =90°,点E 在AB 边上,AB ∥CD ,若∠AEC =30°,则∠D 的度数为_________________ .【答案】60︒【解析】根据平角等于180︒求出BED ∠,再根据两直线平行, 内错角相等解答 .【详解】解:90CED ∠=︒,30AEC ∠=︒,180180903060BED CED AEC ∴∠=︒-∠-∠=︒-︒-︒=︒,//AB CD ,60D BED ∴∠=∠=︒.故答案为:60︒.【点评】本题考查了平行线的性质, 平角的定义, 是基础题, 熟记平行线的性质是解题的关键 . 18.已知x +y =5 ,xy =6 ,则x 2 + y 2=_______.【答案】13【解析】【分析】先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.【详解】解:由题可知:22x y +2222x y xy xy=++-2()2x y xy =+-,∵x +y =5 ,xy =6 ,∴原式2512=-13=.故答案为:13. 【点睛】本题考查了完全平方公式,熟记公式的几个变形公式对解题大有帮助.三、解答题19.计算(1)2123122124-⨯(用整式乘法公式计算)(2)()021262π--++- (3)()()222232232x y yx ---. (4)()22963x y xy xy -÷(5)()()2132m m ---(6)()33222ab abc a c -【答案】(1)1;(2)74;(3)10x 2-9y 2;(4)3x -2y ;(5)-6m 2+m +2;(6)-2a 8b 4c 5. 【解析】【分析】 (1)原式变形为, 利用平方差公式计算即可得到结果;(2)原式利用绝对值、负整数指数幂、零指数幂法则分别化简再计算即可得到结果;(3)原式先去括号再合并同类项即可;(4)根据多项式除以单项式法则计算即可;(5)根据多项式乘以多项式法则计算即可得到结果;(6)先计算积的乘方,再根据同底数幂乘法计算即可.【详解】解:(1)2123122124-⨯()()212312311231=--⨯+()221231231=--1=;(2)()021262π--++- 11124=++ 74=; (3)()()222232232x y y x ---. ()()22226364x y y x =---22226364x y y x =--+()()22226436x x y y =+-+22109x y =-(4)()22963x y xy xy -÷229363x y xy xy xy =÷-÷32x y =-;(5)()()2132m m ---26432m m m =-+-+262m m =-++;(6)()33222ab abc a c - 23632ab abc a c =-11631232a b c ++++=-8542a b c =-.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值: (a +2b)(a -2b)+(a +2b)2-4ab ,其中a =1,b =110. 【答案】2a 2,2【解析】【分析】先利用平方差公式和完全平方公式计算,进一步合并化简,再代入求值即可.【详解】解:原式=a 2-4b 2+a 2+4ab +4b 2-4ab=2a 2当a =1时,原式=2×12=2 【点睛】此题考查整式的混合运算,注意正确利用乘法公式先计算化简,再代入求得数值即可. 21.已知∠α,∠β,求作一个角∠AOB ,使它等于∠α与∠β的和.(要求:不在原图上作图,不写作法,保留作图痕迹)【答案】图见解析.【解析】【分析】先作AOB α∠=∠,然后在AOB ∠的外部作BOC β∠=∠,则AOC αβ∠=∠+∠.【详解】解:解:如图:①作AOB α∠=,②作BOC β=,即:AOC αβ∠=∠+∠.∴AOC ∠即为所求.【点睛】本题考查了复杂作图,主要利用了作一个角等于已知角,是基本作图,需熟练掌握.22.推理填空.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD ,理由如下:解:因为∠1=∠2(已知),且∠1=∠4( )所以∠2=∠4(等量代换)所以CE ∥BF ( )所以∠ =∠3( )又因为∠B =∠C (已知),所以∠3=∠B ( )所以AB ∥CD ( )【答案】对顶角相等、同位角相等,两直线平行、C 、两直线平行,同位角相等、等量代换、内错角相等,两直线平行【解析】【分析】首先确定14∠=∠是对顶角,利用等量代换,求得24∠∠=,则可根据:同位角相等,两直线平行,证得://CE BF ,又由两直线平行,同位角相等,证得角相等,易得:BFD B ∠=∠,则利用内错角相等,两直线平行,即可证得://AB CD .【详解】解:12∠=∠(已知),且14∠=∠(对顶角相等)24∴∠=∠ (等量代换)//CE BF ∴(同位角相等,两直线平行)3C ∴∠=∠(两直线平行,同位角相等)又B C ∠=∠(已知),3B ∴∠=∠(等量代换)//AB CD ∴ (内错角相等,两直线平行); 故答案为:对顶角相等、同位角相等,两直线平行、C 、两直线平行,同位角相等、等量代换、内错角相等,两直线平行【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.23.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.【答案】72°【解析】【分析】由平行线的性质可求得∠ABC=54°,再根据角平分线的定义可求得∠ABD=108°,再由平行线的性质可求得 ∠CDB=72°,根据对顶角相等即可求得∠2=72°. 【详解】∵ AB//CD,∠1=54°, ∴ ∠ABC=∠1=54°, ∵ BC 平分∠ABD,∴ ∠ABD=2∠ABC =2×54°=108°, ∵ AB//CD,∴ ∠ABD+∠CDB=180°, ∴ ∠CDB=180°-∠ABD=72°, ∵ ∠2=∠CDB,∴ ∠2=72°. 【点评】本题考查了平行线的性质,角平分线的定义,对顶角的性质,熟练掌握相关性质是解题的关键.24.先化简,再求值:已知代数式2(3)(24)ax x x b -+--化简后,不含有x 2项和常数项.(1)求a 、b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值.【答案】(1)1;122a b ==-;(2)-6 【解析】【分析】(1)先算多项式乘多项式,再合并同类项,即可得出关于a 、b 的方程,求出即可;(2)先化简原式,然后将a 与b 的值代入求出即可.【详解】解:原式=2ax 2+4ax-6x-12-x 2-b=()()22a 1x 4a 6x 12b -+-+--, ∵代数式(ax-3)(2x+4)-x 2-b 化简后,不含有x 2项和常数项.,∴2a-1=0,-12-b=0,∴ 1a 2= , b 12=-; (2) 解:∵a=12 ,b=-12, ∴(b-a )(-a-b )+(-a-b )2-a (2a+b )=a 2-b 2+a 2+2ab+b 2-2a 2-ab=ab=12×(-12) =-6. 【点睛】本题考查整式的混合运算和求值,解题的关键是正确运用整式的运算法则进行化简. 25.如图,小彬和爸爸一起去车站接从外地学习回来的妈妈,在去的过程中,小彬坐在汽车上看着时速表,用所学知识绘制了一张反映小车速度与时间的关系图,请你根据图象回答以下问题:(1)在上述过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是多少?(3)汽车在哪段时间保持匀速运动?速度是多少?(4)汽车在哪段时间内速度在增加?哪段时间内速度在减少?【答案】(1)时间、速度;(2)21分,80千米/时;(3)3分—9分,80千米/时;(4)0分—3分和18分—21分在加速,9分—15分和21分---24分在减速【解析】【分析】(1)根据自变量与因变量的定义求解;(2)(3)(4)根据速度与时间的图象来求解.【详解】解:(1)自变量是时间,因变量是速度.(2)根据速度与时间图象的横坐标可知:小车共行驶了24-3=21分钟,最高时速是80千米/时;(3)由图像可知:3分钟到9分钟保持匀速,达到80千米每小时;(4)由图像可知:0分—3分和18分—21分在加速,9分—15分和21分---24分在减速.【点睛】本题主要考查动点问题的函数的图象,结合图形进行求解.。

(完整word版)人教版七年级下册数学期中考试卷(含答案)

(完整word版)人教版七年级下册数学期中考试卷(含答案)
解由题意得:BAE=45 , CAE 15.
4 180 108 72
DBC 80
2。解:在△ABC 中
A B ACB 180 B 67, ACB 74 A 180 67 74 39
BAC 45 15 60
4.
DB//AE DBA=BAE=45
BDF 是ADE的一个外角 BDF A AED 39 48 87
图五(1) 2、如图五(2),直线 DE 交△ABC 的边 AB、AC 于 D、E,交 BC 延长线于 F,若∠B=67°,∠ACB=74 °,∠AED=48°,求∠BDF 的度数

3.一个多边形的内角和是它外角和的 2 倍,求这个多边形的边数。
4.如图 B 点在 A 处的南偏西 45°方向,C 处在 A 处的南偏东 15°方向,C 处在 B 北偏东 80° 方向,求∠ACB。
6

A
D
E

C
B
六.简单推理。(1.2.每小题 5 分,第 3 题 6 分,共 16 分) 1.如图,一个零件 ABCD 需要 AB 边与 CD 边平行,现只有一个量角器,测得拐角∠ABC=120°,∠ BCD=60°,这个零件合格吗?为什么?
2.如图,如果 AB//CD,∠B=37°,∠D=37°,那么 BC 与 DE 平行吗?
象限 。
10。一个多边形的每一个外角等于 30 ,则这个多边形是
边形,其内角和是

11.直角三角形两个锐角的平分线所构成的钝角等于
度。
12.如图 3,四边形 ABCD 中, 1与2 满足
关系时 AB//CD,当
时 AD//BC
(只要写出一个你认为成立的条件)。
二、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的

七年级数学下册期中试题

七年级数学下册期中试题

七年级数学下册期中试题七年级数学下册期中试题无论是身处学校还是步入社会,我们会经常接触并使用试题,试题可以帮助参考者清楚地认识自己的知识掌握程度。

你知道什么样的试题才是规范的吗?下面是店铺精心整理的七年级数学下册期中试题,欢迎大家分享。

七年级数学下册期中试题篇1第1卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中,∠1与∠2互为余角的是()2.下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x25x3=15x5D.5x2y3+2x2y3=10x4y93.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有()A.1个B.2个C.3个D.4个4.已知是二元一次方程组的解,则的值是()A.B.C.D.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°第5题图6.如图,AB∥CD,下列结论中错误的是()A.B.C.D.7.下列计算中,运算正确的是()A.(a﹣b)(a﹣b)=a2﹣b2B.(x+2)(x﹣2)=x2﹣2C.(2x+1)(2x﹣1)=2x2﹣1D.(﹣3x+2)(﹣3x﹣2)=9x2﹣48.下列运算中,运算错误的有()①(2x+y)2=4x2+y2,②(a-3b)2= a2-9b2 ,③(-x-y)2=x2-2xy+y2 ,④(x- )2=x2-2x+ ,A.1个B.2个C.3个D.4个9.小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A .B.C.D.10.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y 匹,那么可列方程组为()A.B.C.D.11.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°12.观察下列各式及其展开式……请你猜想的展开式第三项的系数是()A.35B.45C.55D.66第2卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.)13.甲型H1N1流感球形病毒细胞的直径约为0.00000156 m,这个数用科学记数法表示是_____ ___.14.如果是二元一次方程,那么a = .b = .15.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;•而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y•千米/时,列出的二元一次方程组为 .16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是 .(填序号)能够得到AB∥CD的条件是 .(填序号)第16 题图17.若a>0且 , ,则的值为___ .的值为___ .18.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 .三、解答题(本大题共10个小题.共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算(每小题3分,共12分)(1)(2)20.解方程组(每小题3分,共6分)(1)解方程组:(2)解方程组:21.化简求值(每小题4分,共8分)(1) .其中(2) .其中22.尺规作图(本小题满分4分)如图,过点A作BC的平行线EF(说明:只允许尺规作图,不写作法,保留作图痕迹,要写结论.)23.填空,将本题补充完整.(本小题满分7分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=(等量代换)∴AB∥GD()∴∠BAC+=180°()∵∠BAC=70°(已知)∴∠AGD=° 第23题图24.列二元一次方程组解应用题(本小题满分7分)某工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.25.列二元一次方程组解应用题(本小题满分8分)已知一个两位数,它的十位上的.数字与个位上的数字的和为12,•若对调个位与十位上的数字,得到的新数比原数小18,求原来的两位数。

部编数学七年级下册专题11平面直角坐标系中利用点的坐标变化规律探究问题(解析版)含答案

部编数学七年级下册专题11平面直角坐标系中利用点的坐标变化规律探究问题(解析版)含答案

专题11 平面直角坐标系中利用点的坐标变化规律探究问题(解析版)第一部分典例精析类型一点的运动规律探究(1)沿坐标轴运动的点的坐标规律探究1.(2022•丛台区开学)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…,根据这个规律探索可得,第10个点的坐标为 ,第55个点的坐标为 .思路引领:从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.解:在横坐标上,第一列有一个点,第二列有2个点…第n列有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为(n,n−12)(n,n−12−1)…(n,1−n2);偶数列的坐标为(n,n2)(n,n2−1)…(n,1−n2),由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为(4,2),第55个点的坐标为(10,5),故答案为:(4,2),(10,5).总结提升:本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.2.(2022•麻城市校级模拟)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2022秒时,点P的坐标是 .思路引领:计算P点运动过程中走一个半圆所用的时间,根据规律即可求得第2022秒P点位置.解:由题意可知,点P运动一个半圆所用的时间为:π÷π2=2(秒),∵2022=1011×2,∴2022秒时,P在第1011个半圆的最末尾处,∴点P的坐标为(2022,0).故答案为:(2022,0).总结提升:本题主要考查的是坐标系中的规律探究问题,找出运动规律的同时也要考虑坐标系位置是解题的关键.3.(2021春•洛龙区期中)在平面直角坐标系中,一只蚂蚁从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2021的坐标是( )A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)思路引领:观察图形可知,A4,A8,…都在x轴上,求出OA4,OA8,…OA4n的长度,然后写出坐标即可;根据以上规律写出点A4n的坐标即可求出点A2020的坐标,则A2021点的坐标即可求出.解:由图可知,A4,A8,…都在x轴上,蚂蚁每次移动1个单位,∴OA4=2,OA8=4,…OA4n=2n,∴点A4n的坐标为(2n,0),∴点A2020的坐标为(1010,0),∴A2021(1010,1),故选:B.总结提升:本题主要考查了点的变化规律,仔细观察图形,确定出点A 4n 都在x 轴上是解题的关键.(2)绕定点呈“回”字形运动的点的坐标变化规律4.如图是一回形图,其回形通道的宽和OB 的长均为1, 回形线与射线OA 交于A 1,A 2,A 3,….若从O点到A 1点的回形线为第1圈(长为7),从A 1点到A 2点的回形线为第2圈,…,依此类推.则第10圈的长为 .思路引领:如图,以点O 为原心,建立平面直角坐标系,则A 1,A 2,A 3,…的坐标分别为(-1,0),(-2,0),(-3,0),…,A 10的坐标为(-10,0),然后大致描出第10圈的形状,很轻松求出第10圈的长.解:观察图形发现:第一圈的长是2(1+2)+1=7;第二圈的长是2(3+4)+1=15;第三圈的长是2(5+6)+1=23;则第n 圈的长是2(2n-1+2n )+1=8n-1.当n=10时,原式=80-1=79.故答案为79.题眼直击:坐标表示图形,规律探究.总结提升:依次计算第一圈长,第二圈长,……,探究这几个数的一般规律性,然后应用规律求出第10圈.5.(2022•金凤区校级二模)如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2022的坐标为 .思路引领:根据题意可得到规律,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),再根据规律求解即可.解:根据题意可得到规律,P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),P7(2,﹣2),P8(2,2),P12(3,3),P16(4,4),...,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),∵2022=4×505+2,∴P2022(﹣506,﹣506),故答案为:(﹣506,﹣506).总结提升:本题主要考查规律型:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.类型二图形变换的点的坐标规律探究6.(2018春•兴城市期末)如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1换成三角形OA2B2,第三次将三角形OA2B2换成三角形OA3B3,……,若A(﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8),点B(0,2),B1(0,4),B2(0,6),B3(0,8),按这样的规律,将三角形OAB进行2018次变换,得到三角形OA2018B2018,则A2018的坐标是 .思路引领:探究规律后利用规律即可解决问题;解:∵A 1(﹣3,2),A 2 (﹣3,4),A 3(﹣3,8);∴A 点横坐标为﹣3,纵坐标依次为:2,22,23,…得出:A n (﹣3,2n ),∴n =2018时,A 2018(﹣3,22018),故答案为(﹣3,22018)总结提升:此题主要考查了规律型:点的坐标,根据题意得出A ,B 点横纵坐标变化规律是解题关键.7.12.如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1第二次将OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)求三角形OAB 的面积;(2)写出三角形OA 4B 4的各个顶点的坐标;(3)按此图形变化规律,你能写出三角形OA n B n 的面积与三角形OAB 的面积的大小关系吗?解:(1)S 三角形OAB =12×2×3=3;(2)根据图示知O 的坐标是(0,0);已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),对于A 1,A 2…A n 坐标找规律比较从而发现A n 的横坐标为2n ,而纵坐标都是3;同理B 1,B 2…B n 也一样找规律,规律为B n 的横坐标为2n +1,纵坐标为0.由上规律可知:A 4的坐标是(16,3),B 4的坐标是(32,0);综上所述,O(0,0),A 4(16,3),B 4(32,0);(3)根据规律,后一个三角形的底边是前一个三角形底边的2倍,高相等都是4,所以OB n =2n +1,S 三角形OA n B n =12×2n +1×3=3×2n =2n S 三角形OAB ,即S 三角形A n B n =2n S 三角形OAB 。

人教版数学七年级下学期《期中考试卷》(带答案解析)

人教版数学七年级下学期《期中考试卷》(带答案解析)

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题1.下列方程中:①246x +=,②11x x-=,③232x x -,④57x <,⑤322x y -=,⑥3x =其中是一元一次方程的有( )A. 5个B. 4个C. 3个D. 2个 2.在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( )A. 2个B. 3个C. 4个D. 5个 3.下列说法不正确的是( )A. 若x y =,则+=+x a y aB. 若x y =,则--x b y b =C. 若x y =,则55x y =D. 若x y =,则x y a a = 4.已知231x y -=,用含x的代数式表示y 正确的是( ) A. 23y x =B. 312y x +=C. 213x y -=D. 1233y x =-- 5.方程1126x x --=,去分母正确的是( ) A. 6(1)6x x --=B. 3(1)1x x --=C. 3(1)6x x --=D. 316x x --= 6.解方程组327413x y x y +=⎧⎨-=⎩①②比较简单的解法是( ) A. ①×2-②,消去xB. ①-②×2,消去yC. ①×2+②,消去xD. ①+②×2,消去y7.方程12110.30.7x x +--=中小数化为整数,可变形为( ) A. 101021130.7x x +--= B. 101201137x x +--= C. 1012011037x x +--= D. 10102010137x x +--=8.已知方程组221x y k x y +=⎧⎨+=⎩的解满足3x y -=,则k 的值为( ) A. 2 B. 2- C. 1 D. 1-9.“x 的2倍与x 的相反数的差不小于1”,用不等式表示为( )A. 21x x -≥B. 2-(-)1x x ≥C. 21x x ->D. 2()1x x --> 10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26﹣x )=800x B. 1000(13﹣x )=800xC. 1000(26﹣x )=2×800xD. 1000(26﹣x )=800x二、填空题11.方程1--22x =的解是________ 12.已知3x =是方程3-25x a =的解,则a =_________ 13.若7x 3a y 4b 与﹣2x 3y 3b +a 是同类项,则a =_____,b =_____. 14.已知21x y =⎧⎨=-⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a ﹣b 的值为_____. 15.在公式1()2s a b h =+中,120,12,8S b h ===,则a =_______ 16.二元一次方程组2223x y x y x +-==+的解是____. 17.解方程3121226x x +-=-,有下列步骤:①3(31)12(21)x x +=--,②9312-21x x +=+,③921213x x -=++,④716x =,⑤167x =,其中首先发生错误的一步是_________. 18.a b c d ,,,为有理数,现规定一种运算:a c b d =ad bc -, 那么当2(1)x - 4518=时x 的值为__________. 19.中国古代的数学专著《九章算术》有方程组问题“五只雀六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两、y 两,则根据题意,可列方程组为_________. 20.某商店连续两次降价10%后商品的价格是81元,则该商品原来的价格是_______元 三、解答题21.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-= (4)8423x y x y +=⎧⎪⎨+=⎪⎩ (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩22.当x 为何值时,整式31x +的值是整式74x +的5倍?23.已知关于x 、y 的二元一次方程组26322x y m x y m +=⎧⎨-=⎩的解满足二元一次方程5360x y -=,求m 的值? 24. 某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.四、填空或选择题25.若437ax y x +=-是关于,x y 的二元一次方程,则a 的取值范围是A. 2a ≠-B. 0a ≠C. 3a ≠D. -1a ≠26.已知215x +=,则x =_________27.若0x <,则下列不等式成立的是:①0x >,②20x >,③10x +>,④-0x >_________A .①②③B .①②④C .③④D .①③28.若14,2a b a c +=+=,则23()2()4b c b c ---+=________ 29.不论x 取何值时,等式34ax b x --=恒成立,则a b +=________30.对有理数x ,y 定义一种新运算“*”:x *y =ax +by ,其中a ,b 为常数.等式右边是通常加法和乘法运算.已知3*5=15,4*7=28,那么a +b =________.31.已知::1:2:3x y z =,且234x y z -+=,则-x y z +=________五、解答下列各题32.小明在解方程21152x x a -++=时,方程左边的“+1”没有乘以10,因此求得方程的解为4x =,试求a 的值及方程的正确解?33.已知关于x 、y 的方程22(4)(2)(6)8k x k x k y k -+++-=+,试问:①当k 为何值时此方程为一元一次方程? ②当k 为何值时此方程为二元一次方程?34.随着“低碳生活、绿色出行”理念的普及,新能源汽车在逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车,3辆B 型汽车的进价共计80万元;3两A 型汽车,2两B 型汽车的进价共计95万元.(1)问A 、B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利800元,销售1辆B 型汽车可获利500元;在②的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润多少元?答案与解析一、选择题1.下列方程中:①246x +=,②11x x-=,③232x x -,④57x <,⑤322x y -=,⑥3x =其中是一元一次方程的有( )A. 5个B. 4个C. 3个D. 2个 【答案】D【解析】【分析】根据一元一次方程的定义对每一项进行判断即可.【详解】①式中含有一个未知数且次数是1,故①是;②式中含有一个未知数但最高次数不是1,故②不是;③式不是方程,故③不是;④式是不等式,故④不是;⑤式含有两个未知数,故⑤不是;⑥式中含有一个未知数且次数是1,故⑥是;综上,①⑥是一元一次方程,故选:D .【点睛】本题考查了一元一次方程的定义,掌握知识点是解题关键.2.在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( )A. 2个B. 3个C. 4个D. 5个 【答案】C【解析】【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得.【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式,共4个,故选:C .【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.3.下列说法不正确的是( )A. 若x y =,则+=+x a y aB. 若x y =,则--x b y b =C. 若x y =,则55x y =D. 若x y =,则x y a a = 【答案】D【解析】【分析】根据等式的基本性质对四个选项进行逐一分析即可.【详解】解:A 、由等式的基本性质1可知,若x y =,则+=+x a y a ,故本项正确;B 、由等式的基本性质1可知,若x y =,则--x b y b =,故本项正确;C 、由等式的基本性质2可知,若x y =,则55x y =,故本项正确;D 、当a=0时,x y a a =无意义,故本项错误; 故选:D .【点睛】本题主要考查了等式的基本性质,解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.4.已知231x y -=,用含x 的代数式表示y 正确的是( ) A. 23y x = B. 312y x += C. 213x y -= D. 1233y x =-- 【答案】C【解析】【分析】把x 看做已知数求解即可.【详解】∵2x ﹣3y =1,∴2x ﹣1=3y ,∴21=3x y -, 故选:C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .5.方程1126x x --=,去分母正确的是( ) A. 6(1)6x x --=B. 3(1)1x x --=C. 3(1)6x x --=D. 316x x --= 【答案】C【解析】【分析】先找出分母的最小公倍数,然后给等式两边同时乘以分母的最小公倍数,即可求解; 【详解】 1126x x --= ∴ 给等式两边同时乘以6可得:()316x x --=故选:C.【点睛】本题主要考查一元一次方程中的去分母问题,熟练掌握去分母的方法是求解本题的关键.6.解方程组327413x y x y +=⎧⎨-=⎩①②比较简单的解法是( ) A. ①×2-②,消去xB. ①-②×2,消去yC. ①×2+②,消去xD. ①+②×2,消去y【答案】D【解析】【分析】应用加减消元法,判断出解法不正确的是哪一个即可. 【详解】解:327413x y x y +=⎧⎨-=⎩①② ①×2-②,不能消去x ,A 不符合题意; ①-②×2,不能消去y ,B 不符合题意; ①×2+②,不可以消去x ,C 不符合题意;①+②×2,可以消去y,D符合题意;故选:D【点睛】本题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.7.方程12110.30.7x x+--=中小数化为整数,可变形为()A. 101021130.7x x+--= B.101201137x x+--=C. 1012011037x x+--= D.10102010137x x+--=【答案】D【解析】【分析】根据分数的基本性质,给分子、分母同乘以10化简即可.【详解】∵1211 0.30.7x x+--=,∴(1)10(21)101 0.3100.710x x+⨯-⨯-=⨯⨯,即101020101 37x x+--=,故选D【点睛】本题考查了解一元一次方程,根据分数的基本性质给分子、分母同乘以10将方程化简是解答本题的关键.8.已知方程组221x y kx y+=⎧⎨+=⎩的解满足3x y-=,则k的值为()A. 2B. 2-C. 1D. 1-【答案】B【解析】【分析】将方程组中两方程相减可得x-y=1-k,根据x-y=3可得关于k的方程,解之可得.【详解】解:2? 21? x y kx y+=⎧⎨+=⎩①②②-①,得:x-y=1-k,∵x-y=3,∴1-k=3,解得:k=-2,故选:B .【点睛】本题考查了二元一次方程组的解及解法:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.本题用整体代入的方法达到了简便计算的目的.9.“x 的2倍与x 的相反数的差不小于1”,用不等式表示为( )A. 21x x -≥B. 2-(-)1x x ≥C. 21x x ->D. 2()1x x -->【答案】B【解析】【分析】 x 的2倍与x 的相反数的差表示为2-(-)x x ,不小于表示的意思是大于或等于,从而可得出不等式.【详解】解:“x 的2倍与x 的相反数的差不小于1”,用不等式表示为2-(-)1x x ≥.故选:B .【点睛】本题主要考查了列不等式,解决本题的关键是理解“不小于1”用数学符号表示为:“≥1”. 10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26﹣x )=800x B. 1000(13﹣x )=800x C. 1000(26﹣x )=2×800x D. 1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程. 二、填空题11.方程1--22x =的解是________ 【答案】1【解析】【分析】直接系数化1,将方程化为x=a 的形式,即可得解.【详解】解:系数化1得:x=1 ,方程的解为:x=1,故答案为:x=1【点睛】本题考查解一元一次方程,解一元一次方程,就是利用等式的性质将方程化为x=a 的形式. 12.已知3x =是方程3-25x a =的解,则a =_________【答案】2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:9-2a=5,解得:a=2.故答案为:2.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.若7x 3a y 4b 与﹣2x 3y 3b +a 是同类项,则a =_____,b =_____.【答案】 (1). 1, (2). 1.【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【详解】由题意,得3a =3,3b +a =4b ,解得a =1,b =1,故答案为1,1.【点睛】考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.14.已知21x y =⎧⎨=-⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a ﹣b 的值为_____. 【答案】5【解析】【分析】把方程组的解代入方程组,得出关于a 、b 的方程组,求出方程组的解,再代入求出即可.【详解】解:根据题意得,2-72+1a b a b =⎧⎨=⎩①② , ①+②,得:4a =8,解得:a =2,②﹣①,得:2b =﹣6,解得:b =﹣3,∴a ﹣b =2﹣(﹣3)=5,故答案为5.【点睛】此题考查二元一次方程组的解,解题关键在于掌握解二元一次方程组的方法.15.在公式1()2s a b h =+中,120,12,8S b h ===,则a =_______ 【答案】18【解析】【分析】把s=120,b=12,h=8代入公式,即可得出关于a 的方程,求出方程的解即可.【详解】解:把s=120,b=12,h=8代入公式1()2s a b h =+ 得:120=12×(a+12)×8, 解得:a=18,故答案为:18.【点睛】本题考查了解一元一次方程,能得出关于a 的一元一次方程是解此题的关键.16.二元一次方程组2223x y x y x +-==+的解是____. 【答案】51x y =-⎧⎨=-⎩; 【解析】 解:原方程可化为:22223x y x x y x +⎧=+⎪⎪⎨-⎪=+⎪⎩,化简为:46x y x y -=-⎧⎨+=-⎩,解得:51x y =-⎧⎨=-⎩.故答案为51x y =-⎧⎨=-⎩. 点睛:本题考查二元一次方程的解法,解题的关键是将原方程化为方程组,本题属于基础题型.17.解方程3121226x x +-=-,有下列步骤:①3(31)12(21)x x +=--,②9312-21x x +=+,③921213x x -=++,④716x =,⑤167x =,其中首先发生错误的一步是_________. 【答案】③【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,得到结果,即可做出判断.【详解】解:去分母得:3(3x+1)=12-(2x-1),去括号得:9x+3=12-2x+1,移项得:9x+2x=12+1-3,合并得:11x=10,解得:x=1011, 其中首先发生错误的是③.故答案为:③.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.a b c d ,,,为有理数,现规定一种运算:a c b d=ad bc -, 那么当2(1)x - 4518=时x 的值为__________.【答案】3【解析】【分析】根据新定义的运算即可求出答案.【详解】∵()254118x ⨯--=,∴解得:3x =,故答案为:3. 【点睛】本题考查了一元一次方程的应用,解题的关键是能将已知中规定的运算法则运用于所求的等式中.19.中国古代的数学专著《九章算术》有方程组问题“五只雀六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两、y 两,则根据题意,可列方程组为_________.【答案】561645x y x y y x +=⎧⎨+=+⎩【解析】【分析】设雀重x 两,燕重y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设雀重x 两,燕重y 两,由题意得,561645x y x y y x+=⎧⎨+=+⎩, 故答案为:561645x y x y y x +=⎧⎨+=+⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.20.某商店连续两次降价10%后商品的价格是81元,则该商品原来的价格是_______元【答案】100【解析】【分析】可设该商品原来的价格是x 元,根据等量关系式:原价×(1-降低率)2=81,列出方程即可求解.【详解】解:设原价为x .x(1-10%)2=81,解得x=100.故答案为:100【点睛】考查一元一次方程的应用;解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题21.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-= (4)8423x y x y +=⎧⎪⎨+=⎪⎩ (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩【答案】(1) 1x =; (2) 7x =; (3) 17x =-; (4) 80x y =⎧⎨=⎩; (5) 822x y z =⎧⎪=⎨⎪=⎩【解析】【分析】(1)先移项,再系数化为1即可得到答案;(2)先去括号再移项合并,最后系数化为1即可得到答案;(3)先通分,再去括号移项合并即可得到答案;(4)②式×2-①式可以求出y 的值,再计算x 的值即可得到答案;(5)先消x ,得到关于z 、y 的二元一次方程组,求解得到z 、y 的值,再求解x 的值即可得到答案;【详解】解:(1)213x +=即:2312x =-=,解得:1x =;(2) 5234x x -=+()去括号得:52312x x -=+,移项得:214x =,解得:7x =;(3)321123x x -+-= 等式两边同时×6得:3(3)2(21)6x x --+= , 去括号移项得:34629x x -=++,即:17x =-;(4)8423x y x y +=⎧⎪⎨+=⎪⎩①②, ②式×2得:2283x y +=③, ③式-①式得:103y -=, 解得:0y = ,把0y =代回①式得:8x =,所以解为:80x y =⎧⎨=⎩; (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩①②③,把③式3分别代到①②式消去x 得到:41242522y y z y y z ++=⎧⎨++=⎩, 化简得:5126522y z y z +=⎧⎨+=⎩ 即:255606522y z y z +=⎧⎨+=⎩, 解得:22y z =⎧⎨=⎩, 把y=2代到③式得到:8x =,故三元一次方程组的解集为:822x y z =⎧⎪=⎨⎪=⎩【点睛】本题主要考查了解一元一次方程、二元一次方程组、三元一次方程组,掌握用消元法求解二元一次方程组以及三元一次方程组是解题的关键;22.当x 为何值时,整式31x +的值是整式74x +的5倍?【答案】-2【解析】【分析】根据题意,列出关于x 的一元一次方程,即可求解.【详解】由题意得:31x +=5(74x +),31x +=3520x +,∴x=-2.答:当x =-2时,整式31x +的值是整式74x +的5倍.【点睛】本题主要考查解一元一次方程,根据题意,列出一元一次方程,是解题的关键.23.已知关于x 、y 的二元一次方程组26322x y m x y m+=⎧⎨-=⎩的解满足二元一次方程5360x y -=,求m 的值? 【答案】15【解析】【分析】通过加减消元法,用含m 的代数式表示x ,y ,再结合5360x y -=,即可求解.【详解】26322x y m x y m +=⎧⎨-=⎩①②, ①×2+②,得:42+3212+2x y x y m m +-=,解得:2x m =,把2x m =代入①,得:46m y m +=,解得:2y m =.把2x m =,2y m =代入5360x y -=,得:10660m m -=,解得:m=15.【点睛】本题主要考查解二元一次方程以及解的定义,熟练掌握加减消元法,是解题的关键.24. 某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.【答案】甲、乙两个工程队分别整治了120m ,240m【解析】【分析】设甲队整治了x 天,则乙队整治了20-x 天,由两队一共整治了360m 为等量关系建立方程求出其解即可.【详解】设甲队整治了x 天,则乙队整治了天,由题意,得24x+16(20-x)=360,解得:x=5,∴乙队整治了20-5=15天,∴甲队整治的河道长为:24×5=120m ;乙队整治的河道长为:16×15=240m . 【点睛】:本题考查一元一次方程的应用.能正确理解题中的等量关系是解题关键四、填空或选择题25.若437ax y x +=-是关于,x y 的二元一次方程,则a 的取值范围是A. 2a ≠-B. 0a ≠C. 3a ≠D. -1a ≠【答案】C【解析】【分析】根据二元一次方程的定义,即可得到答案.【详解】∵437ax y x +=-是关于,x y 的二元一次方程,∴(3)47a x y -+=-是关于,x y 的二元一次方程,∴3a ≠.故选C .【点睛】本题主要考查二元一次方程的定义,熟练掌握“含两个未知数,未知数的次数为1,且等号两边都是整式的方程,式二元一次方程”是解题的关键.26.已知215x +=,则x =_________【答案】2或-3【解析】【分析】根据绝对值的意义,可知215x +=±,进而即可求解. 【详解】∵215x +=,∴215x +=±, ∴2x =或3x =-.故答案是:2或-3.【点睛】本题主要考查绝对值定义,熟练掌握绝对值的定义,是解题的关键.27.若0x <,则下列不等式成立的是:①0x >,②20x >,③10x +>,④-0x >_________ A .①②③ B .①②④ C .③④ D .①③【答案】B【解析】【分析】根据求绝对值的法则,即可判断①;根据平方的意义,即可判断②;根据不等式的性质,即可判断③;根据不等式的性质,即可判断④.【详解】①∵0x <, ∴0=->x x ,故①正确;②∵0x <,∴20x >,故②正确;③∵0x <,10x +>不一定成立,故③错误;④∵0x <,∴-0x >,故④正确.综上所述:不等式成立的是:①②④.故选B .【点睛】本题主要考查不等式的基本性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 28.若14,2a b a c +=+=,则23()2()4b c b c ---+=________ 【答案】6【解析】【分析】由条件可得b c -的值,然后代入求值,即可. 【详解】∵14,2a b a c +=+=, ∴7()()2b c a b a c -=+-+=, ∴23()2()4b c b c ---+=2773()2224-⨯+=6. 故答案是:6.【点睛】本题主要考查代数式的值,掌握整体代入的思想方法,是解题的关键.29.不论x 取何值时,等式34ax b x --=恒成立,则a b +=________【答案】1【解析】【分析】根据等式恒成立的条件可知,当x 取特殊值0或1时都成立,可将条件代入,即可求出a 与b 的值.【详解】∵不论x 取何值等式3=4ax b x --恒成立,∴x=0时,b=-3,x=1时,a=4,即a=4,b=-3,∴a+b=4+(-3)=1,故答案为:1.【点睛】本题主要考查等式的性质,解题的关键是需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.30.对有理数x ,y 定义一种新运算“*”:x *y =ax +by ,其中a ,b 为常数.等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么a +b =________.【答案】-11【解析】【分析】根据新定义运算规律可列出关于a ,b 的一元二次方程组,然后求解方程组即可.【详解】根据题意,得35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, 则a +b =-35+24=-11.故答案为﹣11.【点睛】本题主要考查解一元二次方程组.31.已知::1:2:3x y z =,且234x y z -+=,则-x y z +=________ 【答案】43【解析】【分析】设x=k ,y=2k ,z=3k (k ≠0),结合234x y z -+=,求出k 的值,进而即可求解.【详解】∵::1:2:3x y z =,∴设x=k ,y=2k ,z=3k (k ≠0),∵234x y z -+=,∴2(2)3(3)4k k k -⨯+⨯=,解得:k=23, ∴-x y z +=-232k k k k +==43. 故答案是:43. 【点睛】本题主要考查代数式求值,掌握设k 值法,是解题的关键.五、解答下列各题32.小明在解方程21152x x a -++=时,方程左边的“+1”没有乘以10,因此求得方程的解为4x =,试求a 的值及方程的正确解?【答案】a=-1,方程的正确解为:x=13.【解析】【分析】根据题意求出a 的值,再把a 的值代入原方程,即可求解.【详解】由题意得:2(21)15()x x a -+=+的解是:4x =,把4x =代入2(21)15()x x a -+=+得:2(241)15(4)a ⨯⨯-+=⨯+,解得:a=-1, ∴原方程为:211152x x --+=, ∴2(21)105(1)x x -+=-,解得:x=13.综上所述:a=-1,方程的正确解为:x=13.【点睛】本题主要考查解一元一次方程,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.33.已知关于x 、y 的方程22(4)(2)(6)8k x k x k y k -+++-=+,试问:①当k 为何值时此方程为一元一次方程? ②当k 为何值时此方程为二元一次方程?【答案】①当k=-2时,此方程为一元一次方程;②当k=2时,此方程为二元一次方程.【解析】【分析】①根据一元一次方程的定义,即可求解;②根据二元一次方程的定义,即可求解.【详解】①∵当240k -=且20k +=时,即:k=-2时,方程22(4)(2)(6)8k x k x k y k -+++-=+变为:86y -=,∴当k=-2时,此方程为一元一次方程;②∵当240k -=且20k +≠且60k -≠时,即:k=2时,方程22(4)(2)(6)8k x k x k y k -+++-=+变为:4410x y -=,∴当k=2时,此方程为二元一次方程.【点睛】本题主要考查一元一次方程和二元一次方程的定义,熟练掌握它们的定义,是解题的关键.34.随着“低碳生活、绿色出行”理念的普及,新能源汽车在逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A型汽车,3辆B型汽车的进价共计80万元;3两A型汽车,2两B型汽车的进价共计95万元.(1)问A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利800元,销售1辆B型汽车可获利500元;在②的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润多少元?【答案】(1)A型汽车每辆进价为25万元,B型汽车每辆进价为10万元;(2)一共有三种购买方案:购进A型汽车2辆,购进B型汽车15辆;购进A型汽车4辆,购进B型汽车10辆;购进A型汽车6辆,购进B型汽车5辆;(3)购进A型汽车2辆,购进B型汽车15辆,可获得最大利润,利润为9100元.【解析】【分析】(1)设A型汽车每辆进价为a万元,B型汽车每辆进价为b万元,根据“2辆A型汽车,3辆B型汽车的进价共计80万元;3两A型汽车,2两B型汽车的进价共计95万元”列出二元一次方程组,即可求解;(2)设A型汽车购进x辆,B型汽车购进y辆,列出二元一次方程,结合x,y为正整数,即可求解;(3)列出利润的表达式,分别求出(2)小题三种方案的利润,进行比较,即可可得结论.【详解】(1)设A型汽车每辆进价为a万元,B型汽车每辆进价为b万元,由题意得:23803295a ba b+=⎧⎨+=⎩,解得:2510ab=⎧⎨=⎩,答:A型汽车每辆进价为25万元,B型汽车每辆进价为10万元;(2)设A型汽车购进x辆,B型汽车购进y辆,由题意得:25x+10y=200,∵x,y为正整数,∴215xy=⎧⎨=⎩或410xy==⎧⎨⎩或65xy=⎧⎨=⎩,答:一共有三种购买方案:购进A型汽车2辆,购进B型汽车15辆;购进A型汽车4辆,购进B型汽车10辆;购进A型汽车6辆,购进B型汽车5辆;(3)由题意可得:利润=800x+500y,购进A型汽车2辆,购进B型汽车15辆,利润为9100元;购进A型汽车4辆,购进B型汽车10辆,利润为8200元;购进A型汽车6辆,购进B型汽车5辆,利润为7300元.答:购进A型汽车2辆,购进B型汽车15辆,可获得最大利润,利润为9100元.【点睛】本题主要考查二元一次方程(组)的实际应用,找出数量关系,列出二元一次方程组或代数式,是解题的关键.。

部编数学七年级下册期中必刷真题01(选择易错50道提升练,七下册人教)【拔尖特训】 (解析版)

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】期中必刷真题01(选择易错50道提升练,七下人教)一.选择题(共50小题)1.(2022春•南靖县期中)如图所示,∠ACB=∠DCE=90°.则下列结论:①∠1=∠3;②∠2+∠BCE=180°;③若AB∥CE,则∠2=∠E;④若∠2=∠B,则∠4=∠E.其中正确的结论有( )A.1个B.2个C.3个D.4个【分析】利用余角的定义,平行线的性质对各结论进行分析即可.【详解】解:∵∠ACB=∠DCE=90°,∴∠1+∠2=∠3+∠2,即∠1=∠3,故①结论正确;∵∠ACB+∠DCE=180°,∴∠ACB+∠2+∠3=180°,即∠BCE+∠2=180°,故②结论正确;∵AB∥CE,∴∠4=∠E,故③结论错误;∵∠2=∠B,∠B+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴AB∥CE,∴∠4=∠E,故④结论正确.故正确的结论有3个.故选:C.【点睛】本题主要考查平行线的性质,余角,解答的关键是对相应的知识的掌握与运用.2.(2022秋•怀宁县期中)如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )A.138°B.136°C.134°D.132°【分析】过点E作AB的平行线,将角度进行转换,利用圆周角为360°求出∠1的度数即可.【详解】解:如图,过点E作EF∥AB∥CD,∴∠1=∠AEF,∠C+∠FEC=180°,∴∠FEC=180°﹣44°=136°,∴∠AEF=360°﹣90°﹣136°=134°,∴∠1=134°.故选:C.【点睛】本题考查平行线的性质,能够灵活运用平行线的性质是解答本题的关键.3.(2022秋•望花区校级期末)如图,能判定AD∥BC的是( )A.∠1=∠2B.∠1=∠3C.∠3=∠4D.∠B+∠BCD=180°【分析】根据平行线的判定定理判断求解即可.【详解】解:∵∠1=∠2,∴AD∥BC,故A符合题意;由∠1=∠3不能判定AD∥BC,故B不符合题意;由∠3=∠4,∴AB∥DC,故C不符合题意;∵∠B+∠BCD=180°,∴AB∥CD,故D不符合题意;故选:A.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.4.(2022春•沙坪坝区校级期中)如图,直线m、n被直线a、b所截,下列条件中,不能判断直线m∥n的是( )A.∠2=∠5B.∠3+∠4=180°C.∠3=∠5D.∠1=∠6【分析】根据平行线的判定定理求解即可.【详解】解:∵∠2=∠5,∴m∥n,故A不符合题意;∵∠3+∠4=180°,∴m∥n,故B不符合题意;由∠3=∠5,不能判定m∥n,故C符合题意;∵∠1=∠6,∴m∥n,故D不符合题意;故选:C.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.5.(2022春•海淀区校级期中)下列命题中,真命题的个数是( )①相等的角是对顶角;②同位角相等;③等角的余角相等;④如果x2=y2,那么x=y.A.1B.2C.3D.4【分析】根据对顶角、平行线的性质、余角的概念、平方根的概念判断即可.【详解】解:①相等的角不一定是对顶角,故本说法是假命题;②两直线平行,同位角相等,故本说法是假命题;③等角的余角相等,本说法是真命题;④如果x2=y2,那么x=±y,故本说法是假命题;故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(2021秋•余姚市期中)木条a、b、c如图用螺丝固定在木板α上且∠ABM=50°,∠DEM=70°,将木条a、木条b、木条c看作是在同一平面α内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系,则下列描述错误的是( )A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°【分析】根据平行线的判定定理判断求解即可.【详解】解:A.木条b、c固定不动,木条a绕点B顺时针旋转20°,∴∠ABE=50°+20°=70°=∠DEM,∴AC∥DF,故A不符合题意;B.木条b、c固定不动,木条a绕点B逆时针旋转160°,∴∠CBE=50°+20°=70°=∠DEM,∴AC∥DF,故B不符合题意;C.木条a、c固定不动,木条b绕点E逆时针旋转20°,∴∠DEM=70°﹣20°=50°=∠ABE,∴AC∥DF,故C不符合题意;D.木条a、c固定不动,木条b绕点E顺时针旋转110°,∴木条b和木条c重合,AC与DF不平行,故D符合题意.故选:D.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.7.(2022春•龙岗区校级期中)观察如图图形,并阅读相关文字:那么5条直线相交,最多交点的个数是( )A.10B.14C.21D.15【分析】根据图示解决问题.【详解】解:两条直线相交,最多交点数为1个;三条直线相交,最多交点数为1+2=3(个);四条直线相交,最多交点数为1+2+3=6(个);五条直线相交,最多交点数为1+2+3+4=10(个).故选:A.【点睛】本题主要考查相交线,熟练掌握几何直观的数学能力解决本题的关键.8.(2022春•黄石期中)如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=119°,则∠EMF的度数为( )A.57°B.58°C.59°D.60°【分析】根据平行线的性质得到∠DEG+∠AFH=119°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,从而得到∠DEM与∠AFH的和.利用两个平角求出∠FEM与∠EFM的和,最后根据三角形内角和等于180°即可求出答案.【详解】解:∵长方形ABCD,∴AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=119°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×119°=238°,∴∠FEM+∠EFM=360°﹣238°=122°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣122°=58°,故选:B.【点睛】本题考查了平行线的性质和三角形内角和定理,解决本题的关键是掌握平行线的性质.9.(2019春•杭州期中)若将一副三角板按如图所示的方式放置,则下列结论正确的是( )A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE【分析】根据平行线的判定和性质一一判断即可【详解】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.【点睛】本题考查平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(2022春•云州区期中)如图所示,下列推理不正确的是( )A.若∠2=∠BAE,则AB∥DEB.若∠B+∠BAD=180°,则AD∥BCC.若∠1=∠C,则AE∥CDD.若∠C+∠ADC=180°,则AB∥CD【分析】根据平行线的判定方法进行判断即可.【详解】解:A.由∠2=∠BAE,根据内错角相等两直线平行,可以判定AB∥DE,故A不符合题意;B.由∠B+∠BAD=180°,根据同旁内角互补两直线平行,可以判定AD∥BC,故B不符合题意;C.由∠1=∠C,根据同位角相等两直线平行,可以判定AE∥CD,故C不符合题意;D.由∠C+∠ADC=180°,根据同旁内角互补两直线平行,可以判定AD∥BC,但不能判定AB∥CD,故D不符合题意.故选:D.【点睛】本题主要考查了平行线的判定,熟练掌握内错角相等两直线平行,同旁内角互补两直线平行,同位角相等两直线平行,是解题的关键.11.(2022春•博兴县期中)①如图1,AB∥CD,则∠A+∠E+∠C=360°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E﹣∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的是( )A.①②③④B.①②③C.②③④D.①②④【分析】①过点E作直线EF∥AB,由平行线的性质即可得出结论;②过点E作直线EF∥AB,由平行线的性质即可得出结论;③过点E作直线EF∥AB,由平行线的性质可得出∠A+∠E﹣∠1=180°;④先根据三角形外角的性质得出∠1=∠C+∠P,再根据两直线平行,内错角相等即可作出判断.【详解】解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠C+∠AEC=360°,故①正确;②过点E作直线EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠A=∠1,∠2=∠C,∴∠AEC=∠1+∠2=∠A+∠C,故②正确;③过点E作直线EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC﹣∠1=180°,故③正确;④如图,∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,∴∠A=∠C+∠P,故④正确.综上所述,正确的小题有①②③④.故选:A.【点睛】本题考查的是平行线的性质及三角形外角的性质,根据题意作出辅助线是解答此题的关键.12.(2022春•南湖区校级期中)如图,AB∥CD,∠1=∠ABF,CE平分∠DCF,设∠ABE=∠1,∠E=∠2,∠F=∠3,则∠1、∠2、∠3的数量关系是( )A.∠1+2∠2+∠3=360°B.2∠2+∠3﹣∠1=360°C.∠1+2∠2﹣∠3=90°D.3∠1+∠2+∠3=360°【分析】过点E作EH∥AB,过点F作FI∥CD,根据题意得∠ABF=3∠1,∠DCF=2∠ECD,根据平行线的性质得AB∥EH∥CD,AB∥FI∥CD,可得∠ABE=∠BEH=∠1,∠ECD=∠CEH,∠ABF+∠BFI=180°,∠ECF+∠CFI=180°,即可得∠ABE+∠ECD=∠BEH+∠CEH=∠BEC=∠2,∠ABF+∠BFI+∠DCF+∠CFI=180°+180°=360°,则∠1+∠ECD=∠2,3∠1+∠3+2∠DCE=360°,得∠ECD=∠2﹣∠1,即可得3∠1+∠3+2(∠2﹣∠1)=360°,进行计算即可得.【详解】解:如图所示,过点E作EH∥AB,过点F作FI∥CD,∵,CE平分∠DCF,∠ABE=∠1,∴∠ABF=3∠1,∠DCF=2∠ECD,∵AB∥CD,∴AB∥EH∥CD,AB∥FI∥CD,∴∠ABE=∠BEH=∠1,∠ECD=∠CEH,∠ABF+∠BFI=180°,∠ECF+∠CFI=180°,∴∠ABE+∠ECD=∠BEH+∠CEH=∠BEC=∠2,∠ABF+∠BFI+∠DCF+∠CFI=180°+180°=360°,即∠1+∠ECD=∠2,3∠1+∠3+2∠DCE=360°,∴∠ECD=∠2﹣∠1,∴3∠1+∠3+2(∠2﹣∠1)=360°,∴3∠1+∠3+2∠2﹣2∠1=360°,∴∠1+2∠2+∠3=360°.故选:A.【点睛】本题考查了平行线的性质,角平分线,解题的关键是理解题意并掌握这些知识点.13.(2022春•靖江市校级期中)如图a是长方形纸带,∠DEF=28°,将纸带沿EF折叠成图b,再沿BF 折叠成图c,则图c中的∠CFE的度数是( )A.94°B.96°C.102°D.128°【分析】根据两直线平行,内错角相等可得∠BFE=∠DEF,再根据翻折变换的性质,折叠后重叠了3层,然后根据平角的定义列式进行计算即可得解.【详解】解:∵长方形的对边AD∥BC,∴∠BFE=∠DEF=28°,∴∠CFE=180°﹣3×28°=96°.故选:B.【点睛】本题考查了平行线的性质,翻折变换的性质,观察图形,判断出重叠部分重叠了3层是解题的关键.14.(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是( )A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【详解】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.15.(2022春•新罗区期中)如图,直线AB∥CD,点E、M分别为直线AB、CD上的点,点N为两平行线间的点,连接NE、NM,过点N作NG平分∠ENM,交直线CD于点G,过点N作NF⊥NG,交直线CD 于点F,若∠BEN=θ(90°<θ<180°),则∠NGD﹣∠MNF的角度等于( )A.90°B.270°﹣θC.90°+θD.2θ﹣270°【分析】过N点作NH∥AB,则AB∥NH∥CD,由平行线的性质得∠BEN+∠ENG+∠GNM+∠MNF+∠NFG=360°,进而由NG平分∠ENM和∠BEN=θ得∠GNM+∠GNM+∠MNF+∠NFG=360°﹣θ,再由得∠GNM+∠NFG=270°﹣θ,进而由外角定理得结果.【详解】解:过N点作NH∥AB,则AB∥NH∥CD,∴∠BEN+∠ENH=∠HNF+∠NFG=180°,∴∠BEN+∠ENH+∠HNF+∠NFG=360°,∴∠BEN+∠ENG+∠GNM+∠MNF+∠NFG=360°,∵∠BEN=θ,∴∠ENG+∠GNM+∠MNF+∠NFG=360°﹣θ,∵NG平分∠ENM,∴∠ENG=∠GNM,∴∠GNM+∠GNM+∠MNF+∠NFG=360°﹣θ,∵NF⊥NG,∴∠GNM+∠MNF=∠GNF=90°,∴∠GNM+90°+∠NFG=360°﹣θ,∴∠GNM+∠NFG=270°﹣θ,∵∠NGD=∠GNM+∠MNF+∠NFG,∴∠NGD﹣∠MNF=∠GNM+∠NFG=270°﹣θ,故选:B.【点睛】本题主要考查了平行线的性质,垂线的性质,三角形的外角定理.关键是求得∠GNM+∠NFG=270°﹣θ.16.(2022春•下城区期中)如图,AB∥CD,BF平分∠ABE,且BF⊥DE,垂足为F,则∠ABE与∠EDC 的数量关系是( )A.∠EDC﹣∠ABE=90°B.∠ABE+∠EDC=180°C.∠ABE=∠EDC D.∠ABE+∠EDC=90°【分析】过F点作FG∥AB,可得FG∥CD,根据两直线平行,内错角相等可得∠BFG=∠ABF,再根据两直线平行,同旁内角互补可得∠DFG+∠CDF=180°,再根据垂直的定义和角平分线的定义即可解答.【详解】解:过F点作FG∥AB,∵AB∥CD,∴FG∥CD,∴∠BFG=∠ABF,∠DFG+∠CDF=180°,∵BF⊥DE,∴∠BFD=90°,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠BFG+∠DFG+∠CDF=∠ABF+180°,∴90°+∠CDE=∠ABE+180°,即∠EDC﹣∠ABE=90°.故选:A.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,作辅助线,利用平行线的性质是关键,也是本题的难点.17.(2022秋•龙岗区期中)四个实数5,0,,中,最小的无理数是( )A.B.0C.D.5【分析】题目求的是最小的无理数,5和0是有理数,剩下两个根据无理数大小的比较方法得出答案.【详解】解:5和0是有理数,故5和0不是,与中的被开方数8>3,故>.故选:A.【点睛】本题考查的是实数大小的比较,5与0是有理数,只需要比较与即可.18.(2022秋•沈河区校级期中)如图,根据图中的标注和作图痕迹可知,在数轴上的点A所表示的数为( )A.﹣1﹣B.﹣1+C.D.1【分析】根据勾股定理可求出圆的半径,进而求出点A到原点的距离,再根据点A的位置确定点A所表示的数.【详解】解:根据勾股定理可求出圆的半径为:=,即点A到表示﹣1的点的距离为,那么点A到原点的距离为(+1)个单位,∵点A在原点的左侧,∴点A所表示的数为:﹣﹣1,故选:A.【点睛】考查数轴表示数,勾股定理等知识,理解一个有理数是由符号和绝对值组成的,确定一个数先确定符号,再确定它的绝对值.19.(2021春•诸城市期中)若实数x、y、z满足+(y﹣3)2+|z+6|=0,则xyz的算术平方根是( )A.36B.±6C.6D.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【详解】解:由题意得,x+2=0,y﹣3=0,z+6=0,解得x=﹣2,y=3,z=﹣6,所以,xyz=(﹣2)×3×(﹣6)=36,所以,xyz的算术平方根是6.故选:C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.(2022秋•万州区校级期中)已知,则有( )A.5<m<6B.4<m<5C.3<m<4D.2<m<3【分析】先将m进行化简得到,再确定的取值范围,即可求出答案.【详解】解:,∵,∴,∴.故选:D.【点睛】本题考查了二次根式的乘法以及二次根式取值估算,解题关键是掌握二次根式乘法运算法则以及利用平方数确定二次根式范围取值范围.21.(2022秋•永康市期中)实数a,b,c,d在数轴上的对应点的位置如图所示,则下列关系式正确的是( )A.|a|<|b|B.|ac|=﹣ac C.b>d D.c+d<0【分析】利用数轴知识计算判断.【详解】解:|a|>|b|,A选项错误;|ac|=﹣ac,B选项正确;b<d,C选项错误;c+d>0,D选项错误,故选:B.【点睛】本题考查了实数与数轴,绝对值,解题的关键是掌握数轴知识,绝对值的定义.22.(2022秋•朝阳区校级期中)在数轴上,点A表示的数为﹣1,点B表示的数为,点B关于点A的对称点为C,则C所表示的数为( )A.﹣1B.2﹣C.﹣2﹣D.﹣2﹣1【分析】首先根据数轴上点A表示的数为﹣1,点B表示的数为,可以求出线段AB的长度,然后根据点B和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.【详解】解:∵数轴上点A表示的数为﹣1,点B表示的数为,∴BA=﹣(﹣1)=+1,∵点B关于点A的对称点为点C,∴BA=AC,设点C表示的数为x,则+1=﹣1﹣x,∴x=﹣2﹣;∴点C的坐标为:﹣2﹣.故选:C.【点睛】本题考查的是实数与数轴的关系,用到的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较大的数,就用较小的数加上两点间的距离.23.(2022秋•萧山区期中)设面积为31的正方形的边长为x,则x的取值范围是( )A.5.0<x<5.2B.5.2<x<5.5C.5.5<x<5.7D.5.7<x<6.0【分析】利用正方形的面积=边长×边长可得正方形边长x=,再估算的范围即可.【详解】解:正方形边长x=,∵5.52=30.25,5.62=31.36,∵5.5<<5.6.故选:C.【点睛】此题主要考查了估算无理数的大小,思维方法:用有理数逼近无理数.24.(2022秋•浠水县期中)已知实数a,b,c在数轴上的位置如图,则化简式子|a|+|c﹣b|﹣|a+b|的结果为( )A.c﹣2b B.c﹣2a C.c D.﹣c【分析】先根据数轴判断各字母的值的正负,再根据绝对值的意义化简符号求解.【详解】解:由数轴得:a<b<0<c,则:c﹣b>0,a+b<0,∴|a|+|c﹣b|﹣|a+b|=﹣a+c﹣b+a+b=c,故选:C.【点睛】本题靠考查了实数、绝对值及数轴,数形结合是解题的关键.25.(2022春•海安市期中)下列说法,其中错误的有( )①的平方根是4;②是2的算术平方根;③﹣8的立方根为±2;④.A.1个B.2个C.3个D.4个【分析】根据平方根,算术平方根,立方根和绝对值的定义逐个判断.【详解】解:①∵=4,∴的平方根是±2,原说法错误;②是2的算术平方根,原说法正确;③﹣8的立方根为﹣2,原说法错误;④,原说法正确.∴错误的说法有2个.故选:B.【点睛】本题考查了平方根,算术平方根,立方根和绝对值,掌握其定义是关键.26.(2022春•朝阳区校级期中)下列说法正确的是( )A.绝对值是的数是B.﹣的相反数是±C.1﹣的绝对值是﹣1D.的相反数是﹣2【分析】利用绝对值的意义,立方根,相反数的意义对每个选项作出判断即可得出结论.【详解】解:∵绝对值是的数是或﹣,∴A选项的结论不正确;∵﹣的相反数是,∴B选项的结论不正确;∵1﹣的绝对值是﹣1,∴C选项的结论正确;∵=﹣2,∴的相反数为2.∴D选项的结论不正确;故选:C.【点睛】本题主要考查了实数的性质,绝对值的意义,立方根,相反数的意义,正确利用绝对值的意义,立方根,相反数的意义进行解答是解题的关键.27.(2022春•黔东南州期中)实数a、b在数轴上的位置如图所示,那么|a﹣b|+的结果是( )A.2a B.2b C.﹣2a D.﹣2b【分析】先根据数轴得出b<a<0,据此知a+b<0,a﹣b>0,再利用绝对值的性质和二次根式的性质化简即可.【详解】解:由数轴知b<a<0,则a+b<0,a﹣b>0,∴原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b,故选:D.【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则.28.(2022春•白云区校级期中)如果≈1.333,≈2.872,那么约等于( )A.28.72B.0.2872C.13.33D.0.1333【分析】根据立方根,即可解答.【详解】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义.29.(2022秋•邗江区期中)如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是( )A.0B.2C.4D.6【分析】根据从点﹣1到点2019共2020个单位长度,正方形的边长为2(个单位长度),2020÷8=252余4,是252周余4个单位长度,即可解答.【详解】解:从点﹣1到点2019共2020个单位长度,正方形的边长为8÷4=2(个单位长度),2020÷8=252余4,故数轴上表示2019的点与正方形上表示数字4的点对应,故选:C.【点睛】本题考查了数轴及正方形的边长与周长的关系.找出正方形的周长与数轴上的数字的对应关系是解答此类题目的关键.30.(2022春•平舆县期中)一个自然数的算术平方根为a,则下一个自然数的算术平方根是( )A.B.C.﹣a+1D.a2+1【分析】根据乘方运算,可得被开方数,再根据开方运算,可得答案.【详解】解:一个自然数的算术平方根为a,则下一个自然数的算术平方根是,故选:B.【点睛】本题考查了算术平方根,开方运算是解题关键.31.(2022秋•桐柏县期中)已知a=﹣1,b=﹣,c=﹣2,那么a,b,c的大小关系是( )A.a<b<c B.b<c<a C.c<b<a D.a<c<b【分析】利用倒数法比较大小即可.【详解】解:∵===+1,===+,===,∴<<,∴a>b>c,即:c<b<a.故选:C.【点睛】本题考查了实数大小比较,掌握倒数法比较大小是解题的关键.32.(2021春•昌吉州期中)若m2=16,则的值为( )A.0B.﹣2C.0或﹣2D.0或2【分析】根据平方根的定义,求得m=±4.再运用分类讨论的思想以及立方根的定义解决此题.【详解】解:∵m2=16,∴m=±4.∴当m=4,;当m=﹣4时,.综上:=0或﹣2.故选:C.【点睛】本题主要考查立方根、平方根,熟练掌握立方根、平方根的定义是解决本题的关键.33.(2021秋•诸暨市期中)若9﹣的整数部分为a,小数部分为b,则2a+b等于( )A.12﹣B.13﹣C.14﹣D.15﹣【分析】先估算的大小,再估算9﹣的大小,进而确定a、b的值,最后代入计算即可.【详解】解:∵3<<4,∴﹣4<﹣<﹣3,∴5<9﹣<6,又∵9﹣的整数部分为a,小数部分为b,∴a=5,b=9﹣﹣5=4﹣,∴2a+b=10+(4﹣)=14﹣,故选:C.【点睛】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.34.(2022秋•岑溪市期中)已知点P(﹣3,4),则P到y轴的距离为( )A.﹣3B.4C.3D.﹣4【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【详解】解:P(﹣3,4),则点P到y轴的距离是|﹣3|=3.故选:C.【点睛】本题考查了点的坐标,点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.35.(2022秋•太原期中)在平面直角坐标系中,若点P(a,﹣5)与点Q(4,3)所在直线PQ∥y轴,则a的值等于( )A.﹣5B.3C.﹣4D.4【分析】根据直线PQ∥y轴,得到P,Q横坐标相等,即可求解.【详解】解:∵直线PQ∥y轴,∴P,Q横坐标相等,∴a=4,故选:D.【点睛】本题考查了坐标与图形性质,直线PQ∥y轴,得到P,Q横坐标相等是解题的关键.36.(2021秋•荣昌区校级期中)点P(x,y)到x轴距离为2,到y轴距离为3,且x+y>0,xy<0,则点P 的坐标为( )A.(3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)【分析】由点P(x,y)到x轴距离为2,到y轴距离为3,可得x,y的可能的值,由x+y>0,xy<0,可得两数异号,且正数的绝对值较大;根据前面得到的结论即可判断点P的坐标.【详解】解:∵点P(x,y)到x轴距离为2,到y轴距离为3,∴|x|=3,|y|=2,∴x=±3,y=±2;∵x+y>0,xy<0,∴x=3,y=﹣2,∴P的坐标为(3,﹣2),故选:A.【点睛】本题涉及到的知识点为:点到x轴的距离为点的纵坐标的绝对值;点到y轴的距离为点的横坐标的绝对值;两数相乘,异号得负;异号两数相加,结果的符号和绝对值较大的加数的符号相同.37.(2022春•西城区校级期中)在平面直角坐标系xOy中,若某个点横、纵坐标均为整数,则称这个点为坐标平面内的整点.若点P(x,y)是第一象限的整点,且P点的坐标满足x+2y=5,则满足条件的整点P的个数( )A.3B.2C.1D.0【分析】根据第一象限内的点横坐标大于零,纵坐标小大于零,可得答案.【详解】解:点P(x,y)是第一象限的整点,且P点的坐标满足x+2y=5,∴x=5﹣2y>0,y=>0,解得x<5,y<且x、y均为整数,∴x=1或2或3或4,y=1或2,当x=1时,y=2,P(1,2)满足条件;当x=2时,y=,P(2,)不满足条件;当x=3时,y=1,P(3,1)满足条件;当x=4时,y=,P(4,)不满足条件;∴满足条件的整点P的个数为2,故选:B.【点睛】本题考查了点的坐标,利用第一象限内的点横坐标大于零,纵坐标大于零得出x的值是解题关键.38.(2021秋•凌海市期中)下列说法不正确的是( )A.若x+y=0,则点P(x,y)一定在第二、第四象限角平分线上B.点P(﹣2,3)到y轴的距离为2C.若P(x,y)中xy=0,则P点在x轴上D.点A(﹣a2﹣1,|b|+1)一定在第二象限【分析】根据各象限角平分线上点的坐标特征,坐标轴上点的坐标特征以及点到y轴的距离等于横坐标的长度对各选项分析判断即可得解.【详解】解:A、若x+y=0,则x、y互为相反数,点P(x,y)一定在第二、四象限角平分线上,原说法正确,故此选项不符合题意;B、点P(﹣2,3)到y轴的距离是2,原说法正确,故此选项不符合题意;C、若P(x,y)中xy=0,则P点在x轴或y轴上,原说法不正确,故此选项符合题意;D、因为﹣a2﹣1<0,|b|+1>0,所以点A(﹣a2﹣1,|b|+1)一定在第二象限,原说法正确,故此选项不符合题意.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).39.(2022秋•泗县期中)如图,小石同学在正方形网格中确定点A的坐标为(﹣1,1),点B的坐标为(2,0),则点C的坐标为( )A.(1,﹣2)B.(﹣2,1)C.(﹣1,﹣2)D.(1,﹣1)【分析】直接利用已知点坐标确定平面直角坐标系,进而得出答案.【详解】解:如图所示:点C的坐标为(1,﹣2).故选:A.【点睛】此题主要考查了点的坐标,正确得出原点位置是解题的关键.40.(2021春•阳东区期中)有甲、乙、丙三人,它们所在的位置不同,他们三人都以相同的单位长度建立不同的坐标系,甲说:“如果以我为坐标原点,乙的位置是(4,3)”;丙说:“以我为坐标原点,乙的位置是(﹣3,﹣4)”;如果以乙为坐标原点,甲和丙的位置分别是( )A.(3,4),(﹣3,﹣4)B.(4,﹣3),(3,﹣4)C.(﹣3,﹣4),(4,3)D.(﹣4,﹣3),(3,4)【分析】由于已知三人都以相同的单位长度建立不同的坐标系,则以甲为坐标原点,乙的位置是(4,3),则以乙为坐标原点,甲的位置是(﹣4,﹣3);同样得到以丙为坐标原点,乙的位置是(﹣3,﹣4),则以乙为坐标原点,丙的位置是(3,4).【详解】解:以甲为坐标原点,乙的位置是(4,3),则以乙为坐标原点,甲的位置是(﹣4,﹣3);以丙为坐标原点,乙的位置是(﹣3,﹣4),则以乙为坐标原点,丙的位置是(3,4).故选:D.【点睛】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应.41.(2015秋•薛城区期中)已知点M(3,2)与点N(a,b)在同一条平行于x轴的直线上,且点N到y 轴的距离为4,那么点N的坐标是( )A.(4,﹣2)或(﹣5,2)B.(4,﹣2)或(﹣4,﹣2)C.(4,2)或(﹣4,2)D.(4,2)或(﹣1,2)【分析】根据平行于x轴的直线上的点的纵坐标相等可得点N的纵坐标为2,再分点N在y轴的左边和右边两种情况求出点N的横坐标,然后解答即可.【详解】解:∵点M(3,2)与点N(a,b)在同一条平行于x轴的直线上,∴点N的纵坐标为2,∵点N到y轴的距离为4,∴点N的横坐标为4或﹣4,∴点N的坐标为(4,2)或(﹣4,2);故选:C.【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键,难点在于分情况讨论.42.(2022春•互助县期中)互助县是中国唯一一个土族自治县,以下能准确表示互助自治县地理位置的是( )A.青海省的东北部B.东经102°,北纬37°C.与甘肃省相邻D.在中国西南方【分析】在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序数对与之对应,能准确表示位置.【详解】解:A.青海省的东北部大体确定位置,故选项错误,不符合题意;B.东经102°,北纬37°精准确定坐标位置,故选项正确,符合题意;C.与甘肃省相邻粗略确定位置,故选项错误,不符合题意;D.在中国西南方大概确定位置,故选项错误,不符合题意.故选:B.【点睛】此题考查了直角坐标系的定义,解题关键是熟记概念并与生活实际相结合.43.(2022春•韩城市期中)家长会前,四个孩子分别向家长描述自己在班里的座位,在没有其他参考信息的情况下,家长能根据描述准确找到自己孩子座位的是( )A.小强说他坐在第一排B.小明说他坐在第三列C.小刚说他的座位靠窗D.小青说她坐在第二排第五列【分析】直接利用坐标确定位置需要两个量,进而分析得出答案.【详解】解:A.小强说他坐在第一排,无法确定座位位置,故此选项不合题意;B.小明说他坐在第三列,无法确定座位位置,故此选项不合题意;C.小刚说他的座位靠窗,无法确定座位位置,故此选项不符合题意;D.小青说她坐在第二排第五列,能够确定座位位置,故此选项符合题意;故选:D.【点睛】此题主要考查了坐标确定位置,掌握具体位置确定需两个量是解题关键.44.(2022春•云州区期中)如图是利用平面直角坐标系画出的我市东新区的部分建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示大同市政府的点的坐标为(0,8),表示大同市图书馆的点的坐标为(1,﹣2),则表示下列建筑的点的坐标正确的是( )A.大同市大剧院(4,2)B.大同大学(6,﹣8)C.大同市美术馆(0,﹣3)D.大同市博物馆(﹣2,3)【分析】根据大同市政府的点的坐标和大同市图书馆的点的坐标,进而得出四个选项中各建筑的点的坐标.【详解】解:由题意可得如下坐标系:∴大同市大剧院(2,4),大同大学(﹣8,6),大同市美术馆(﹣3,0),大同市博物馆(﹣2,3).故选:D.【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.45.(2022春•定南县期中)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是( )A.(2022,1)B.(2022,0)C.(2022,2)D.(2022,﹣1)【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。

七年级数学期中测试题及答案

七年级数学期中测试题及答案七年级数学期中测试快到了,这时候一定要勤加复习。

多做一些七年级数学期中测试题很有帮助哦。

小编整理了关于七年级数学下期中测试题及参考答案,希望对大家有帮助!七年级数学下期中测试题一、选择题(共10小题,每小题3分,满分30分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、错选或选出的代号超过一个的(不论是否在括号内)一律得0分1.如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是( )A. B. C. D.2.点P(﹣1,5)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.有下列四个论断:①﹣是有理数;② 是分数;③2.131131113…是无理数;④π是无理数,其中正确的是( )A.4个B.3个C.2个D.1个4.如果一个角的两边和另一个角的两边互相平行,那么这两个角之间关系为( )A.相等B.互补C.相等或互补D.不能确定5.下列各式中,正确的是( )A. =±4B.± =4C. =﹣3D. =﹣46.估计的大小应在( )A.7与8之间B.8.0与8.5之间C.8.5与9.0之间D.9与10之间7.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为( )A.30°B.60°C.90°D.120°9.下列命题:①若点P(x、y)满足xy<0,则点P在第二或第四象限;②两条直线被第三条直线所截,同位角相等;③过一点有且只有一条直线与已知直线平行;④当x=0时,式子6﹣有最小值,其最小值是3;其中真命题的有( )A.①②③B.①③④C.①④D.③④10.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,小岛C在小岛A的北偏东60°方向,在小岛B的北偏西45°方向,那么从C岛看A,B两岛的视角∠ACB的度数为.12.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.13.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为.14.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB= ∠CGE.其中正确的结论是(填序号)三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣|2﹣ |﹣ .16.一个正数x的平方根是a+3和2a﹣18,求x的立方根.四、(本大题共2小题,每小题8分,满分呢16分)17.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=( ),又因为∠1=∠2,所以∠1=∠3(),所以AB∥( ),所以∠BAC+=180°(),因为∠BAC=80°,所以∠AGD=.18.先观察下列等式,再回答下列问题:① ;② ;③ .(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).五、(本大题共2小题,每小题10分,满分20分)19.如图,已知直线AB∥DF,∠D+∠B=180°,(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.20.在直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得△A′B′C′(其中B′、C〃分别是B、C的对应点).(2)(1)中所得的点B′,C′的坐标分别是,.(3)直接写出△ABC的面积为.六、(本题满分12分)21.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿BC→CD移动.若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题,并说明你的理由:①当t为多少秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标(用含t的式子表示)七、(本题满分12分)22.如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,l4和l1,l2相交于C,D两点,点P在直线AB上,(1)当点P在A,B两点间运动时,问∠1,∠2,∠3之间的关系是否发生变化?并说明理由;(2)如果点P在A,B两点外侧运动时,试探究∠ACP,∠BDP,∠CPD之间的关系,并说明理由.八、(本题满分14分)23.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+ =0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积= △ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积= △ABC 的面积恒成立?若存在,请直接写出符合条件的点M的坐标.七年级数学下期中测试题参考答案一、选择题(共10小题,每小题3分,满分30分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、错选或选出的代号超过一个的(不论是否在括号内)一律得0分1.如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是( )A. B. C. D.【考点】利用平移设计图案.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是D.【解答】解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.点P(﹣1,5)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标符号直接判断的判断即可.【解答】解:∵P(﹣1,5),横坐标为﹣1,纵坐标为:5,∴P点在第二象限.故选:B.3.有下列四个论断:①﹣是有理数;② 是分数;③2.131131113…是无理数;④π是无理数,其中正确的是( )A.4个B.3个C.2个D.1个【考点】实数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:①﹣是有理数,正确;② 是无理数,故错误;③2.131131113…是无理数,正确;④π是无理数,正确;正确的有3个.故选:B.4.如果一个角的两边和另一个角的两边互相平行,那么这两个角之间关系为( )A.相等B.互补C.相等或互补D.不能确定【考点】平行线的性质;余角和补角.【分析】根据两个角的两边互相平行及平行线的性质,判断两角的关系即可,注意不要漏解.【解答】解:两个角的两边互相平行,如图(1)所示,∠1和∠2是相等关系,如图(2)所示,则∠3和∠4是互补关系.故选:C.5.下列各式中,正确的是( )A. =±4B.± =4C. =﹣3D. =﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.6.估计的大小应在( )A.7与8之间B.8.0与8.5之间C.8.5与9.0之间D.9与10之间【考点】估算无理数的大小.【分析】由于82=64,8.52=72.25,92=81,由此可得的近似范围,然后分析选项可得答案.【解答】解:由82=64,8.52=72.25,92=81;可得8.5 ,故选:C.7.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【考点】平行线的判定;作图—基本作图.【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为( )A.30°B.60°C.90°D.120°【考点】平行线的性质.【分析】先根据两直线平行,内错角相等得到∠ADB=∠B=30°,再利用角平分线定义得到∠ADE=2∠B=60°,然后再根据两直线平行,内错角相等即可得到∠DEC的度数.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠B=60°,∵AD∥BC,∴∠DEC=∠ADE=60°.故选B.9.下列命题:①若点P(x、y)满足xy<0,则点P在第二或第四象限;②两条直线被第三条直线所截,同位角相等;③过一点有且只有一条直线与已知直线平行;④当x=0时,式子6﹣有最小值,其最小值是3;其中真命题的有( )A.①②③B.①③④C.①④D.③④【考点】命题与定理.【分析】根据第二、四象限点的坐标特征对①进行判定;根据平行线的性质对②进行判定;根据平行公理对③进行判定;根据二次根式的非负数性质对④进行判定.【解答】解:若点P(x、y)满足xy<0,则点P在第二或第四象限,所以①正确;两条平行直线被第三条直线所截,同位角相等,所以②错误;过直线外一点有且只有一条直线与已知直线平行,所以③错误;当x=0时,式子6﹣有最小值,其最小值是3,所以④正确.故选C.10.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为( )A. B. C. D.【考点】规律型:点的坐标.【分析】结合图象可知:纵坐标每四个点循环一次,而2015=503×4+3,故A2015的纵坐标与A3的纵坐标相同,都等于0;由A3(1,0),A7(3,0),A11(5,0)…可得到以下规律,A4n+3(2n+1,0)(n为自然数),当n=503时,A2015.【解答】解:由A3(1,0),A7(3,0),A11(5,0)…可得到以下规律,A4n+3(2n+1,0)(n为自然数),当n=503时,A2015.故选C.。

【冲刺卷】七年级数学下期中一模试卷带答案

【冲刺卷】七年级数学下期中一模试卷带答案一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.点(),A m n 满足0mn =,则点A 在( ) A .原点 B .坐标轴上 C .x 轴上D .y 轴上 3.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°4.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠5.下列命题是真命题的有( )个①对顶角相等,邻补角互补 ②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .36.下列现象中是平移的是( )A.将一张纸对折B.电梯的上下移动C.摩天轮的运动D.翻开书的封面7.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°8.如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8 9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍C.横向压缩为原来的12D.纵向压缩为原来的1210.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°11.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用普查方式B.调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C.旅客上飞机前的安检,采用抽样调查方式D.了解我市每天的流动人口数,采用抽样调查方式12.把等宽的一张长方形纸片折叠,得到如图所示的图象,若170∠=︒,则a的度数为()A .50°B .55°C .60°D .70°二、填空题13.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④对顶角相等是真命题;
⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离是假命题;
所以④为真命题;
故选B.
8.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为( )
A.(2,2) B.(3,2) C.(2,-3) D.(2,3)
【答案】C
【解析】已知正方形的两个顶点为(2,3),(2,1),可得正方形的边长为:1(3)=4,再由第三个点的坐标为(2,1),可求得第四个顶点的坐标为(2,3),故选D.
A.0个 B.1个 C.2个 D.3个
【答案】B
【解析】①同一平面内两直线的位置关系有相交、平行、重合,故错误,不是真命题;
②两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角互为邻补角,所以有一条公共边的角叫邻补角错误,不是真命题;
③只有两条直线平行,内错角相等,所以只说内错角相等错误,不是真命题;
一、单选题
1.能与数轴上的点一一对应的是( )
A.实数 B.有理数 C.无理数 D.整数
【答案】D
【解析】根据实数与数轴上的点是一一对应关系.故选A
考点: 实数与数轴
2.∠1的对顶角是∠2,∠2的邻补角是∠3,若∠3=75 ,则∠1的度数是( )
A.75 B.105 C.90 D.75 或105
【答案】B
C.在平移过程中图形上的个别点的坐标不变
D.平移后的两个图形的对应角相等,对应边相等,对应边平行或共线
【答案】C
【解析】把一个图形平移到一个确定位置,大小形状都不变,在平移图形的过程中,图形上的各点坐标发生同样的变化,平移后的两个图形的对应角相等,对应边相等,对应边平行或共线,都可由平移基本性质得到.故A、B、D正确.
18.如图,AB∥CD,EF分别交AB、CD于点E、F,∠1=70°,则∠2=___________。
【答案】110°
【解析】
∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=70°,
∴∠3=180°∠1=180°70°=110°,
∵∠2=∠3,
∴∠2=110°.
故答案为:110°.
19.如图所示,如果 OBC的面积为12,那么点C的纵坐标为__________.
A.1个 B.2个 C.3个 D.4个
【答案】B
【解析】在实数 , , , , 中,
其中 ,π是无理数.
故选B.
6.下列说法:①10的平方根是± ;②2是4的一个平方根;③ 的平方根是 ;④0.01的算术平方根是0.1;⑤ .其中正确的有()
A.1个 B.2个 C.3个 D.4个
【答案】C
【解析】①10的平方根是± ,正确;
【解析】由于一个正数有两个平方根,它们互为相反数,由此得到2a3+5a=0,解方程即可.
根据题意得:2a3+5a=0
解之得:a=2.
17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”
位于 .
∠D=180°
【答案】(3,3)
【解析】:由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)
②2是4的一个平方根,正确;
③ 的平方根是± ,故错误;
④0.01的算术平方根是0.1;
⑤ =a2,故错误,
其中正确的是①②④.
故选C.
7.下列命题中,真命题的个数有( )
①同一平面内,两条直线一定互 相平行;②有一条公共边的角叫邻补角;
③内错角相等。④对顶角相等;
⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离。
【答案】4
【解析】过C点作CA⊥x轴,交x轴于点A,
【解析】∵∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=75°,
∴∠1=∠2,∠2+∠3=180°,
∴∠1+∠3=180°,
则∠1的度数是:180°75°=105°.
故选B.
3.三个实数 ,2, 之间的大小关系是( )
A. B.
C. D.
【答案】C
【解析】∵−2= ,
又∵ < <
∴−2> > .
故选C.
9.如图所示,点A到BD的距离是指( )
A.线段AB的长度 B.线段AD的长度 C.线段AE D.线段AE的长度
【答案】D
【解析】:点A到BD的距离是指线段AE的长度.故选D.
10.下列说法不正确的是( )
A.把一个图形平移到一个确定位置,大小形状都不变
B.在平移图形的过程中,图形上的各点坐标发生同样的变化
在平移过程中图形上的所有点的坐标都改变.故C错误.
故选C.
11.在平面直角坐标系中,点P的坐标为(2,a2+1),则点P所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】B
【解析】∵a2为非负数,∴a2+1为正数,∴点P的符号为(,+)∴点P在第二象限.
12.下列对 的大小估计正确的是( ).
∴∠MND=∠1=70°,
∵NG平分∠MND,
∴∠3= ∠MND=35°,
∵AB∥CD,
∴∠2=∠3=35°.
故选D.
二、填空题
14.把命题“同位角相等”改写成“如果…那么…”的形式为______.
【答案】如果两个角是同位角,那么这两个角相等
【解析】命题可以写成“如果…那么…”的形式,“如果”的后接部分是题设,“那么”的后接部分是结论
4.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A.15° B.20° C.25° D.30°
【答案】C
【解析】
如图,
∵直尺的两边平行,∠1=20°,
∴∠3=∠1=20°,
∴∠2=45°20°=25°.
故选C.
5.在实数 , , , , 中,无理数有( )
A.在4~5之间 B.在5~6之间 C.在6~7之间 D.在7~8之间
【答案】D
【解析】∵7< <8,
∴ 在7到8Biblioteka 间,故选D.13.如图所示,已知AB∥CD, NG平分∠MND,若∠1=70°, 则∠2的度数为( )
A.10° B.15° C.20° D.35°
【答案】D
【解析】∵AB∥CD,∠1=70°,
∴把命题“同位角相等”改写成“如果…那么…”的形式是“如果有两个角是同位角,那么这两个角相等”,
15. 的相反数是_________,绝对值是__________.
【答案】 , .
【解析】1- 的相反数是1+ ,绝对值是 1.
16.一个正数x的平方根是2a 3与5 a,则a=_________;
【答案】49
相关文档
最新文档