DC-DC电源拓扑及其工作模式讲解

合集下载

双向dcdc变换器 (2)

双向dcdc变换器 (2)

双向 DC-DC 变换器简介双向 DC-DC 变换器是一种可以实现能量在两个方向上传输的电路,能够将能量从一个电源转移到另一个电源。

它在电动车、太阳能系统、电池储能系统等应用中得到广泛应用。

本文将介绍双向 DC-DC 变换器的原理、工作模式和应用。

原理双向 DC-DC 变换器通过两个独立的电感和开关器件实现能量的双向传输。

其拓扑结构常见的有升降压式和升压式两种。

在升降压式拓扑中,输入电源可以比输出电源的电压高或低;而在升压式拓扑中,输入电源的电压必须比输出电源的电压高。

下面介绍升降压式和升压式拓扑的工作原理:升降压式拓扑升降压式拓扑常用的桥式电感拓扑是最常见的升降压式拓扑。

其电路图和工作原理如下:升降压式拓扑升降压式拓扑在升降压式拓扑中,当开关 SW1 和 SW2 关闭时,电感 L1 储存电能;当 SW1和 SW2 开启时,通过二极管 D1 转移到电容 C1 上。

同样,当开关 SW3 和 SW4 关闭时,电感 L2 储存电能;当 SW3 和 SW4 开启时,通过二极管 D2 转移到电容 C2 上。

升压式拓扑升压式拓扑常用的桶式电感拓扑是最常见的升压式拓扑。

其电路图和工作原理如下:升压式拓扑升压式拓扑在升压式拓扑中,当开关 S1 关闭时,电感 L1 储存电能;当 S1 开启时,通过二极管 D1 转移到电感 L2 上。

此时,电容 C1 上的电压逐渐升高,最终达到所需的输出电压。

工作模式双向 DC-DC 变换器有三种工作模式:降压模式、升压模式和反向电流保护模式。

降压模式降压模式是指输入电压高于输出电压的情况。

在此模式下,开关器件周期性地开启和关闭,以维持输出电压在设定范围内。

当开关器件关闭时,电感和电容储存能量;而当开关器件打开时,能量从电感和电容中释放,通过二极管传递到输出端。

这个过程会不断循环,以保持输出电压稳定。

升压模式升压模式是指输入电压低于输出电压的情况。

在此模式下,开关器件周期性地开启和关闭,以提供所需的输出电压。

第6课电源拓扑(L升压电路)

第6课电源拓扑(L升压电路)
(2)稳流过程2发光二极管电流减少:
I LED VB VB 0.23 V D PL VOUT I LED
4、保护电路: (1)过流保护: 在向能量筐储能时, 电流过大,引起取 样电阻电压增大,运 算放大器OCP关闭开 关MOS管。
2、过压保护电路
MOS管反压过大, OVP将关闭MOS管。
(4) 、升压二极管D:导通吸收能量期间是截止, 断开期间 为电感提供释放能量的通道。 (5) 、负载滤波电容C: 储存电感释放能量为负载提供电流 。 (6)、 电阻R: 代表用电设备。 注意: 给电容充电的能量是每次切片的能量和电源释 放期间能传递的能量之和。在电容端重建的电压为: Us+每 次切片的能量所形成的电压。因此,BOOST为升压电路。 切片----转换----重建
切片----转换----重建 切片,转换,重建是理解开关电源原理的核心 和要义。开关周期一次就完成这三种功能一次。周期越短 ,频率越高,切片就小,能量就越小,电感(变压器)体 积就会小,因此产品就会做的越小。
四、电感BOOST电路应用举例:XL6003 应用于路灯,太阳能灯,LED背光,汽车LED灯
1、BOOST拓扑元件:
2、XL6003 5和6脚对地电压波形:
1 1 T 2.5uS 3 f 400*10
3、电压重建、稳流电路
VB RS * I LED
(1)稳流过程1 发光二极管电流增大:
I LED VB VB 0.23V D PL VOUT I LED
3、第2次励磁 出发点: 不是B轴上+Br,而是A点。 终点很高。很可能到达 Bs磁饱和。所以,CCM 模式磁芯必须开气隙。 开气隙磁滞曲线向右下倾 斜,意味着励磁电流更大 些才能达到磁饱和。

DC-DC工作原理介绍

DC-DC工作原理介绍

1
脉冲宽度调制(PWM)
使用PWM技术控制开关管的开关时间,从而改变输出电压的平均值。
2
电感和电容滤波器
使用电感和电容元件对电流和电压进行滤波,以去除噪音和波动。
3
电路拓扑
使用不同的电路拓扑,如升压、降压、半桥和全桥,实现不同的电源变换功能。
DC-DC电源的优势
1 高效能
DC-DC电源能够以高效率进行能量转换,减少能量的损失和浪费。
2 稳定性
DC-DC电源能够提供稳定的输出电压和电流,保障电子设备的正常工作。
3 小型化
DC-DC电源的体积小巧,适合应用于紧凑的电子设备中。
DC-DC电源的应用
移动设备
DC-DC电源广泛应用于手机、平板电脑和可穿戴 设备等移动设备中,为其提供稳定的电源。
通信设备
DC-DC电源被使用于网络设备、路由器和交换机 等通信设备中,为其提供可靠的电源。
• 部分DC-DC电源会产生电磁干扰,可能对其他电子设备造成干扰。 • 不同类型的DC-DC电源有不同的转换效率和功耗特性。 • 部分DC-DC电源需要外部元件(如电感和电容)辅助工作,增加了系统的复杂性。
3
升降型
能够根据输入电压的不同,自动实现升压或降压的功能,广泛应用于电源管理系 统。
常见DC-DC电源的选择和设计
• 根据设备的动态电流需求,选择合适的输出电流和功率。 • 考虑输入电压和输出电压之间的差异,选择合适的变换拓扑。 • 使用模拟或数字控制技术,以提高功率转换的效率和稳定性。
DC-DC电源的缺点和局限性
DC-DC技术的工作原理
DC-DC电源是一种将直流电能转换为不同电压、电流,并提供给其他电子设备 使用的电子元件。它通过不同的电路拓扑实现电能的变换和调整。

六种基本DCDC变换器拓扑结构总结

六种基本DCDC变换器拓扑结构总结

六种基本DC/DC变换器拓扑,依次为buck,boost,buck-boost,cuk,zeta,sepic变换器半桥变换器也是双端变换器,以上是两种拓扑。

半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。

半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。

正激变换器绕组复位正激变换器LCD复位正激变换器RCD复位正激变换器有源钳位正激变换器双管正激吸收双正激有源钳位双正激原边钳位双正激软开关双正激推挽变换器无损吸收推挽变换器推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管.但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合.而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免.如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激.其管子电压应力下降为输入电压.其他等同.推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题.在VRM中有应用.半桥变换器也是双端变换器,以上是两种拓扑.半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决.半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制.全桥变换器全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS 接下去,会收集一些三电平变换器贴出来,在以后就给出boost族的隔离变换器....反激变换器.....正反激变换器......APFC.....PPFC.... 单级PFC.....谐振变换器等.....三电平变换器(three level converter)选了看起来比较舒服的两个拓扑,这些三电平是半桥演化而来,同样可以演化出多电平变换器,合适高压输入场合.而且可以通过全桥的移相控制方式实现软开关.。

储能双向三电平dcdc拓扑

储能双向三电平dcdc拓扑

储能双向三电平dcdc拓扑储能双向三电平dcdc拓扑是一种用于能量储存系统的电路拓扑,它可以实现能量在不同能源之间的双向转换。

本文将以储能双向三电平dcdc拓扑为主题,从拓扑结构、工作原理、控制策略等方面一步一步进行详细的阐述。

第一部分:储能双向三电平dcdc拓扑的基本结构和功能储能双向三电平dcdc拓扑是基于多电平变换器的一种降压拓扑结构。

它由两个脉宽调制(PWM)三电平图形逆变器连接在一个中间电感上构成。

其中,输入端连接外部电源,输出端连接储能元件,例如电池或超级电容器。

该拓扑在双向能量转换过程中,可以将高压能源转换为低压能源,并将低压能源转换为高压能源。

储能双向三电平dcdc拓扑的主要功能包括:1. 实现能量储存系统的高效能量转换:该拓扑能够将输入端的能量转换为适合储能元件的电能,并在需要时将储能元件的电能转换为输出端所需的能量。

2. 双向能量流动:该拓扑可以实现能量在不同能源之间的双向转换,使得能源的利用更加灵活和高效。

3. 优化能量传输:该拓扑能够通过PWM技术和多电平变换器的结构优化能量的传输效果,提高系统的效率和稳定性。

第二部分:储能双向三电平dcdc拓扑的工作原理储能双向三电平dcdc拓扑的工作原理如下:1. 入口端工作原理:当输入能源的电压高于设定的储存能量元件的电压时,PWM逆变器产生特定的脉宽调制信号,通过电感和开关元件将能源传输到储能元件中进行储存。

在这个过程中,逆变器中的开关元件被适时开启和关闭,以保持输入电压和输出电压之间的转换效果,同时将电压传输到储能元件中。

2. 出口端工作原理:当储能元件的电能被需要时,PWM逆变器将产生适当的脉宽调制信号,通过开关元件和电感将储能元件中的电能转换为输出端所需的电能。

在这个过程中,逆变器中的开关元件以适当的方式开启和关闭,以保持输入电流和输出电流之间的转换效果,同时将电能传输到输出端。

3. 控制策略:储能双向三电平dcdc拓扑的控制策略通常分为两个部分,即输入端控制和输出端控制。

buck拓扑结构工作原理

buck拓扑结构工作原理

buck拓扑结构工作原理Buck拓扑结构工作原理1. 引言Buck拓扑结构是一种常见的DC-DC(直流-直流)转换器拓扑结构,被广泛应用于电源管理系统中。

其工作原理基于能量的存储和转移,通过控制开关管的开关状态来调整输出电压。

2. Buck拓扑结构概述Buck拓扑结构由输入电源、开关管(开关元件)、电感、电容和负载组成。

其基本原理是在一定的开关频率下,通过调节开关管的导通和截止时间来控制输出电压的稳定性。

3. 工作原理详解当开关管导通时,输入电源的电流通过电感流向负载和电容。

此时,电容储存一部分能量,电感储存另一部分能量,并向负载提供电能。

当开关管截止时,电流路径被切断,电感的磁场会导致电流继续流向负载,从而保持输出电压的稳定性。

4. 工作原理的数学描述当开关管导通时,输入电压通过电感和电容储存能量,此时电感电流增加。

根据基尔霍夫电压定律和基尔霍夫电流定律,可以得到以下公式描述开关导通时的电压和电流关系。

V_in = L(di/dt) + V_out其中,V_in为输入电压,L为电感的感值,di/dt为电流变化率,V_out为输出电压。

当开关管截止时,电感的磁场储存的能量被释放,此时电感电流减小。

同样可以根据基尔霍夫电压定律和基尔霍夫电流定律,得到以下公式描述开关截止时的电压和电流关系。

V_out = -L(di/dt)其中,V_out为输出电压,L为电感的感值,di/dt为电流变化率。

通过控制开关管的导通和截止时间,可以调节电感电流的变化率,从而实现对输出电压的精确控制。

5. Buck拓扑结构的优势Buck拓扑结构具有以下优势:- 高效性:通过能量的转移和存储,减小了能量损耗,提高了能量利用效率。

- 稳定性:通过控制开关管的导通和截止时间,可以实现对输出电压的精确控制,从而保持输出电压的稳定性。

- 简单性:Buck拓扑结构由少量的元件组成,结构简单,容易实现。

6. Buck拓扑结构的应用领域Buck拓扑结构广泛应用于电源管理系统中,如:- 电池充电器- 汽车电子系统- 可穿戴设备- 通信设备7. 结论Buck拓扑结构是一种常见的DC-DC转换器拓扑结构,通过能量的存储和转移来实现对输出电压的精确控制。

隔离dcdc电源拓扑结构

隔离dcdc电源拓扑结构

隔离dcdc电源拓扑结构一、引言隔离DC-DC电源作为电子产品中不可或缺的组成部分,其主要功能是将输入电压转换为所需的输出电压,并且通过隔离器件实现输入输出间的电气隔离。

本文将介绍隔离DC-DC电源的拓扑结构。

二、非隔离式DC-DC电源非隔离式DC-DC电源是最简单的一种拓扑结构,其原理如下:通过一个开关管控制输入电压,使得输入电压在开关管导通期间充入能量存储元件(如电感),在开关管截止期间释放能量存储元件中的能量并将其转换为所需输出电压。

由于该结构没有使用隔离器件进行输入输出间的隔离,因此存在安全风险。

三、反激式DC-DC电源反激式DC-DC电源是一种基于变压器实现输入输出间隔离的拓扑结构,其原理如下:通过一个开关管控制输入端与变压器之间的连接,使得输入端充入能量存储元件(如电容),当开关管截止时,在变压器中产生高频交流磁场,通过磁耦合将能量传递到输出端,再通过输出端的整流电路转换为所需输出电压。

由于该结构使用了变压器进行输入输出间的隔离,因此能够有效降低安全风险。

四、正激式DC-DC电源正激式DC-DC电源是一种基于变压器实现输入输出间隔离的拓扑结构,其原理如下:通过一个开关管控制输入端与变压器之间的连接,使得输入端充入能量存储元件(如电感),当开关管导通时,在变压器中产生高频交流磁场,通过磁耦合将能量传递到输出端,再通过输出端的整流电路转换为所需输出电压。

由于该结构使用了变压器进行输入输出间的隔离,因此能够有效降低安全风险。

五、谐振式DC-DC电源谐振式DC-DC电源是一种基于谐振现象实现输入输出间隔离的拓扑结构,其原理如下:在开关管导通时,将能量存储元件中的能量传递到谐振网络中;在开关管截止时,利用谐振网络中形成的高频交流磁场将能量传递到输出端。

由于该结构使用了谐振网络进行输入输出间的隔离,因此能够有效降低安全风险。

六、总结本文简要介绍了隔离DC-DC电源的拓扑结构,包括非隔离式DC-DC电源、反激式DC-DC电源、正激式DC-DC电源和谐振式DC-DC电源。

buck拓扑结构工作原理

buck拓扑结构工作原理

buck拓扑结构工作原理Buck拓扑结构工作原理一、引言Buck拓扑结构是一种常见的直流-直流(DC-DC)转换器拓扑结构,广泛应用于电源管理系统中。

它通过将输入电压转换为稳定的输出电压,以满足电子设备对电源的要求。

本文将从Buck拓扑结构的原理入手,详细介绍其工作过程和应用。

二、Buck拓扑结构概述Buck拓扑结构由开关管、电感、电容和二极管组成。

其基本工作原理是通过开关管的周期性开关操作,控制电感和电容的充放电过程,从而实现输入电压的降压转换。

Buck拓扑结构具有高效率、稳定性好等优点,因此被广泛应用于电源管理领域。

三、Buck拓扑结构工作过程1. 开关管导通状态:当开关管导通时,电感储存能量,并将电流传输到负载和电容上。

此时,输入电压通过电感和负载之间的电流流过,负载得到稳定的输出电压。

2. 开关管截止状态:当开关管截止时,电感中储存的能量会被释放,同时二极管导通,将电感中的电流传输到负载和电容上。

此时,负载仍然可以得到稳定的输出电压。

四、Buck拓扑结构工作原理1. 电压降压:Buck拓扑结构通过开关管的周期性开关操作,将输入电压降低到所需的输出电压。

开关管导通时,输入电压通过电感和负载之间的电流流过,负载得到稳定的输出电压;而开关管截止时,电感中的能量会被释放,通过二极管传输到负载和电容上,从而维持输出电压的稳定性。

2. 脉宽调制:Buck拓扑结构中,通过调节开关管的导通时间和截止时间,可以实现不同输出电压的调节。

通常采用脉宽调制(PWM)技术,即通过改变开关管导通和截止的时间比例,来控制输出电压的大小。

当需要增大输出电压时,延长导通时间;当需要减小输出电压时,延长截止时间。

3. 控制电路:为了实现输出电压的稳定性,Buck拓扑结构通常会配备反馈控制电路。

该控制电路会根据输出电压的变化情况,自动调节开关管的导通和截止时间,以保持输出电压恒定。

常见的控制方式有电流模式控制和电压模式控制,可以根据具体应用需求进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DC-DC电源拓扑及其工作模式讲解
一、DC-DC电源基本拓扑分类:
开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。

如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。

如果电感连接到输出端,就构成了降压变换器。

基本拓扑图如下:
1.Buck
2.Boost
3.Buck-Boost
二、DC-DC复杂拓扑结构
1.反激隔离电源(FlyBack)
另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。

2.Buck+Boost拓扑
本质是用一个降压“加上”一个升压,来实现升降压。

SEPIC拓扑:集成了Boost和Flyback拓扑结构
3.Cuk、Sepic、Zeta拓扑
通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。

Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。

但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极
串联拓扑节省了复用的器件。

通过这样串联和演进,产生了新的三个电源拓扑。

同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。

4.四开关Buck-Boost拓扑
同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑
5.反激、正激、推挽拓扑的演进
利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。

可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。

将两个正激变换器进行并联,可以形成推挽拓扑。

正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。

总结:所有的拓扑都可以通过基本拓扑进行组合、演进而来。

全景图如下:
三、工作模式讲解(CCM、DCM、BCM)
以Buck电路为例开展讲解
图中,输入电压是12V,输入电容是33uF。

控制脉冲的电压是12V,上升时间500ns,下降时间500ns,脉宽4us,周期10us。

输出电感是3.3uH。

输出电容是100uF。

CCM、DCM、BCM的定义讲解:
M (Continuous Conduction Mode),连续导通模式:
在一个开关周期内,电感电流从不会达到0A。

或者说电感从不“复位”,意味着在开关周期内电感磁通从不会到0,功率管闭合时,线圈中还有电流流过。

CCM模式电感电流波形如图所示。

2.DCM,(Discontinuous Conduction Mode)非连续导通模式:
在开关周期内,电感电流总会到0,意味着电感被适当地“复位”,即功率开关闭合时,电感电流为零。

DCM模式电感电流波形如图所示。

3.BCM(Boundary Conduction Mode),边界或边界线导通模式:
控制器监控电感电流,一旦检测到电流等于0,功率开关立即闭合。

控制器总是等电感电流“复位”来激活开关。

如果电感值电流高,而截至斜坡相当平,则开关周期延长,因此,BCM变化器是可变频率系统。

BCM变换器可以称为临界导通模式或CRM(Critical Conduction Mode)。

BCM模式电感电流波形如图所示。

将三种模式下电感电流的波形放在一起对比,如图所示。

四、CCM、DCM、BCM工作模式的特点
以图所示的非同步Buck电路为例,来说明三种工作模式的特点。

为了说明问题,我们只在仿真电路上修改了负载为2欧姆,增加I,使其更大,这样电感电流是基于I进行变化的,纹波电流与0A距离更远。

非同步Buck电路仿真图如图所示。

开关点电压和电感电流实测波形如图所示:
开关点电压和电感电流仿真波形如下图所示
图中,紫色为IL电感电流,绿色为Vsw公共开关点电压
非同步控制器的降压变换器Buck工作于CCM,会带来附加损耗。

因为续流二极管反向恢复电荷需要时间来消耗,这对于功率开关管而言,是附加的损耗负担。

BCM是一种特殊的CCM,它的电感的电流最小值为0。

此时我们把负载调为3.6Ω,这样让纹波电流压着0A,形成一个临界的状态。

BCM模式仿真电路图如图所示。

BCM模式开关点电压和电感电流实测波形如图所示:
BCM模式开关点电压和电感电流实测波形图
BCM模式开关点电压和电感电流仿真波形如图所示。

以非同步BUCK的DCM模式为例。

如果把负载调小,也就是IL电源的输出电流变小了。

相当于上面的纹波电流继续往下移动,穿过0A的坐标线。

由于二极管的正向导通性,上管关闭。

所以电感上的电
流不会出现负数(我们设定输出方向为正方向)。

此时就会出现电感上电流为0。

DCM 模式仿真电路图如图所示。

DCM模式开关点电压和电感电流实测波形如图所示
DCM模式开关点电压和电感电流仿真图如图所示,黄色为电感电流,蓝色为Vsw 电压
CCM与DCM比较:
①DCM能降低功耗的,DCM模式的转换效率更高些;
②工作于DCM模式,在电感电流为0的时候,会产生振荡现象;
③工作于CCM模式,输出电压与负载电流无关,当工作于DCM模式,输出电压受负载影响,为了控制电压恒定,占空比必须随着负载电流的变化而变化。

相关文档
最新文档