实验Z变换、零极点分析

合集下载

实验-Z变换、零极点分析

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

数字信号处理实验离散系统的Z域分析

数字信号处理实验离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析学号:姓名: 评语: 成绩: 一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:。

∑∞-∞=-=n n z n x Z X )()(在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为:syms n; f=(1/2)^n+(1/3)^n;ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n n z n h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若,则系统稳∞<∑∞-∞=n n h |)(|定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为,若z =1时H (z )收敛,即∑∞-∞=-=n n z n h z H )()(,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

∞<=∑∞-∞==n z n h z H |)(||)(1因此因果稳定系统应满足的条件为:,即系统函数H (z )的所有极点全部落在1,||<∞≤<ααz z 平面的单位圆之内。

3、MATLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

z变换实验报告

z变换实验报告

南昌大学实验报告(信号与系统)学生姓名:肖江学号:6100210030 专业班级:电子103班实验类型:□验证□综合□设计□创新实验日期:2012/6/1 实验成绩:Z变换、离散时间系统的Z域分析一、实验目的1、学会用matlab求解z变换与逆z变换。

2、学会离散系统零极点分布图的绘制,理解离散系统零极点分布图的含义。

3、求解离散系统的频率响应特性。

二、实验说明1、一离散系统的差分方程为y(n)-by(n-1)=x(n),若激励为x(n)=a n u(n),起始值y(-1)=0,求响应y(n)。

2、当H(s)极点位于z平面中各方框附近的位置,画出对应的h(n)波形填入方框中。

3、求系统差分方程为y(n)-1.1y(n-1)+0.7y(n-2)=x(n-1),的系统的频率响应特性。

三、实验内容1、syms n a b z%定义符号n a b zx=a^n; %定义激励信号X=ztrans(x); %计算激励信号的变换H=1/(1-b*z^(-1)); %写出系统z变换式Y=H*X; %计算输出的变换式y1=iztrans(Y); %计算输出时域表达式y=simplify(y1) %化简表达式2、pos=[26,19,18,17,24,27,13,11,9,23,28,7,4,1,22];figure,id=1; %生成新图框,子图id初始化为1for r=0.8:0.2:1.2 %极点的幅度依次为0.8,1.0,1.2for theta=0:pi/4:pi %极点的弧度依次为0,Π/4,Π/2,3Π/4,Πp=r*exp(j*theta);if theta~=0&theta~=pip=[p;p']; %如果极点不在实轴上添加一个共轭极点end[b a]=zp2tf([],p,1); %由零极点得到传递函数subplot(4,7,pos(id));[h,t]=impz(b,a,20); %计算20个点的单位样值响应stem(t,h,'k-','MarkerSize',5);%绘制单位样值响应id=id+1; %子图序号加1end%退出弧角循环end%退出幅度循环3、a=[1,-1.1,0.7];b=[0,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a) %绘制频率特性4、a=[1,-1.1,0.6];b=[0.6,-1.1,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a); %绘制频率响应n=[0:40]'; %生成时间点x1=sin(0.1*pi*n); %生成单频信号x2=0*n; %准备方波信号x2(mod(n,10)<5)=1; %生成周期为10的方波信号y1=filter(b,a,x1); %分别对两个信号滤波y2=filter(b,a,x2);figuresubplot(2,1,1),stem(n,x1); %绘制单频信号及其输出波形subplot(2,1,2),stem(n,y1);figuresubplot(2,1,1),stem(n,x2); %绘制方波信号及其输出波形subplot(2,1,2),stem(n,y2);四、实验结果1、y =(a^(1+n)-b^(1+n))/(a-b)2、输出波形如下3、输出波形如下:4、输出波形如下:五、实验总结通过本次实验的学习,对离散系统有了更多的了解,通过用matlab画出离散系统的零极点分布图,使我对离散系统的零极点分布与其对用的频响特性有了深刻的了解;同时对全通网络的相频失真有了进一步了解,幅度没有失真,但对不同的频率信号的相移不同,因此单频信号输入时,其输出信号的波形没有失真,只是整个波形发生了移位,但对于方波信号,由于其中包含了各种频率的信号,因此不同频率的信号相频失真不同,因此输出波形不再是方波。

实验三零极点分布对系统频率响应地影响(数字信号实验)

实验三零极点分布对系统频率响应地影响(数字信号实验)

备注:(1)、按照要求独立完成实验内容。

(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc)后,实验室统一刻盘留档。

实验三零极点分布对系统频率响应的影响一、实验目的学习用分析零极点分布的几何方法分析研究信号和系统频率响应。

二、实验原理如果知道信号的Z变换以及系统的系统函数H(z),可以得到它们的零极点分布,由零极点分布可以很方便地对它们的频率响应进行定性分析。

信号的幅度特性由零点矢量长度之积除以极点矢量的长度之积,当频率ω从0变化到2π时,观察零点矢量长度和极点矢量长度的变化,重点观察那些矢量长度较短的情况。

另外, 由分析知道, 极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,如果零点在单位圆上,那么频率特性为零。

根据这些规律可以定性画出频率响应的幅度特性。

峰值频率和谷值频率可以近似用响应的极点和零点的相角表示,例如极点z1=0.9ejπ/4,峰值频率近似为π/4,极点愈靠近单位圆,估计法结果愈准确。

本实验借助计算机分析信号和系统的频率响应,目的是掌握用极、零点分布的几何分析法分析频率响应,实验时需要将z=ejω代入信号的Z变换和系统函数中,再在0~2π之间,等间隔选择若干点,并计算它的频率响应。

三、实验内容(包括代码与产生的图形)要求:不仅打印幅度特性曲线,而且要有系统频率特性的文字分析。

1. 假设系统用下面差分方程描述:y(n)=x(n)+ay(n-1)假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。

a=0.7代码:B=1;a=0.7A=[1,-a];subplot(3,1,3);zplane(B,A);xlabel('ʵ²¿Re');ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼');grid on[H,w]=freqz(B,A,'whole');subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('·ùƵÏìÓ¦ÌØÐÔ');axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性a=0.8代码:B=1;a=0.8A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-6-4-20246实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.61.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-202ω/πφ(ω)相频响应特性a=0.9代码:B=1;a=0.9A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性分析:由y (n )=x (n )+ay (n -1)可知:H[z]=B[z]/A[z]=1/(1-az^(-1))系统极点z=a ,零点z=0,当B 点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a 越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi 点形成波谷;z=0处零点不影响幅频响应。

实验-Z变换、零极点分析

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H ΛΛ (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

第四章Z变换解析

第四章Z变换解析

位圆上均匀抽样,就是对 DTFT 即信号频谱抽样,这本自就
是 DFT 与频域抽样的关系。
6
4.2 Z变换的收敛域
X
(z)
x(n) z n
n
x(2) z 2
x(1) z
x(0)
x(1) z
x(2) z2
由于z变换是一个无穷级数,必然存在收敛问题。即: 并不是任何信号的z变换都存在,也不是任何复数z都 能使一个信号的z变换存在。
xp (t) xa (nT ) (t nT ) n
x(n) xa (nT )
p(t) (t nT ) n
4
对 xp (t) 作拉氏变换有: 对 x(n)作 z 变换有:
X p (s) xa (nT )esnT n
X (z) xa (nT )zn n
X (z) ZeST X p (s)
z z3
z
z
1
(z
8 3
z
3)(z
1 3
)
8 3
1 (1 3z1)(1
1 3
z 1)
3
j Im[z]
1 z 3 3
o
Re[ z ]
11
例四、
x(n)
(
1 3
)n
u
(n)
(
1 2
)
n
u
(
n
1)
X (Z ) (1)n z n 1 (1 )n z n
n0 3
n 2
11
1
1 3
z 1
1
1 2
0 r 1.....右半面 单位圆外
0 0...S实轴 正实轴
T
....... 负实轴
5
四。z 变换与 DFT 的关系:

数字信号处理MATLAB实验报告

数字信号处理MATLAB实验报告
MATLAB提供了求离散时间系统频响特性的函数freqz,调用freqz的格式主要有两种。一种形式为
[H,w]=freqz(B,A,N)
其中,B与A分别表示 的分子和分母多项式的系数向量;N为正整数,默认值为512;返回值w包含 范围内的N个频率等分点;返回值H则是离散时间系统频率响应 在 范围内N个频率处的值。另一种形式为
[H,w]=freqz(B,A,N,’whole’)
与第一种方式不同之处在于角频率的范围由 扩展到 。
上机练习:
试用MATLAB的residuez函数,求出 的部分分式展开和。
b=[2 16 44 56 32];
a=[3 3 -15 18 -12];
[R,P,K]=residuez(b,a)
R =
+
zplane(B,A)
其中,B与A分别表示 的分子和分母多项式的系数向量。它的作用是在Z平面上画出单位圆、零点与极点。
与拉氏变换在连续系统中的作用类似,在离散系统中,z变换建立了时域函数 与z域函数 之间的对应关系。因此,z变换的函数 从形式可以反映 的部分内在性质。我们仍旧通过讨论 的一阶极点情况,来说明系统函数的零极点分布与系统时域特性的关系。
[R,P,K]=residuez(B,A)
其中,B,A分别表示X(z)的分子与分母多项式的系数向量;R为部分分式的系数向量;P为极点向量;K为多项式的系数。若X(z)为有理真分式,则K为零。
离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即
(4-4)
如果系统函数 的有理函数表示式为
x=iztrans(z)
上式中的x和Z分别为时域表达式和z域表达式的符号表示,可通过sym函数来定义。
如果信号的z域表示式 是有理函数,进行z反变换的另一个方法是对 进行部分分式展开,然后求各简单分式的z反变换。设 的有理分式表示为

实验一 基于matlab语言的线性离散系统的z变换分析法1(1)

实验一 基于matlab语言的线性离散系统的z变换分析法1(1)

实验一基于MATLAB语言的线性离散系统的Z变换分析法一、实验目的1. 学习并掌握 Matlab 语言离散时间系统模型建立方法;2.学习离散传递函数的留数分析与编程实现的方法;3.学习并掌握脉冲和阶跃响应的编程方法;4.理解与分析离散传递函数不同极点的时间响应特点。

二、实验工具1. MATLAB 软件(6.5 以上版本);2. 每人计算机一台。

三、实验内容1. 在Matlab语言平台上,通过给定的离散时间系统差分方程,理解课程中Z变换定义,掌握信号与线性系统模型之间Z传递函数的几种形式表示方法;2. 学习语言编程中的Z变换传递函数如何计算与显示相应的离散点序列的操作与实现的方法,深刻理解课程中Z变换的逆变换;3. 通过编程,掌握传递函数的极点与留数的计算方法,加深理解G(z)/z 的分式方法实现过程;4. 通过系统的脉冲响应编程实现,理解输出响应的离散点序列的本质,即逆变换的实现过程;5. 通过编程分析,理解系统的Z传递函数等于单位脉冲响应的Z变换,并完成响应的脉冲离散序列点的计算;6. 通过程序设计,理解课程中脉冲传递函数极点对系统动态行为的影响,如单独极点、复极点对响应的影响。

四、实验步骤1.创建系统How to create digital system g Four examples are as follows:numg=[0.1 0.03 -0.07];deng=[1 -2.7 2.42 -0.72];g=tf(numg,deng,-1)get(g);[nn dd]=tfdata(g,'v')[zz,pp,kk]=zpkdata(g,'v')Unite circle region with distrbuting zeros points and poles points hold onpzmap(g), hold offaxis equal运行结果:2.转换为零极点标准形式Convert from tf(z-function) to zpk(z-function) Part C exercise form gg=zpk(g)[zz,pp,kk tts]=zpkdata(gg,'v')[z,p k,ts]=zpkdata(g,'v')运行结果:3.四个例子Four examples are as follows:Part A exerciseeg1mun=[1.25 -1.25,0.30];eg1den=[1 -1.05 0.80 -0.10];eg1=tf(eg1mun,eg1den,-1);eg1zpk=zpk(eg1);[zz1,pp1,kk1,tts1]=zpkdata(eg1zpk,'v');Part B exerciseeg2mun=[0.84 -0.062 -0.156 0.058];eg2den=[1 -1.03 0.22 0.094 0.05];eg2=tf(eg2mun,eg2den,-1);eg2zpk=zpk(eg2);[zz2,pp2,kk2,tts2]=zpkdata(eg2zpk,'v');Part C exercisezz3=[-0.2 0.4];pp3=[0.6 0.5+0.75i 0.5-0.75i 0.3];kk3=150;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);Part D exercisezz4=[-0.3 0.4+0.2i 0.4-0.2i];pp4=[-0.6 -0.3,0.5 0.6];kk4=5;tts4=-1;eg4zpk=zpk(zz4,pp4,kk4,tts4);eg4=tf(eg4zpk);4.留数法Residue method and impluse response numg=[2 -2.2 0.65];deng=[1 -0.6728 0.0463 0.4860]; [rGoz, pGoz,other]=residue(numg,[deng 0]) [mag_pGoz,theta_pGoz] =xy2p(pGoz)[mag-rGoz,theta-rGoz]=xy2p(rGoz)G=tf(numg,deng,-1)impulse(G)[y,k]=impulse(G);stem(k,y,'filled');impulse(G)运行结果:5.复杂极点响应When transfer function is G(Z) with complex ,t=t*ts;pole of z=e^(+-j*30*pi/3) and z=-0.5,as well as its gain value is unit step signal,its collecting cycle is 0.5 second,how to analyze its response.gcfts=0.3;num=[1 0.5];den=conv([1 -exp(i*pi/3)],[1 -exp(-i*pi/3)]);g1=tf(num,den,ts)[y,k]=impulse(g1,20);stem(k,y,'filled'),grid运行结果:6.重极点响应How to analyze response with repeating poles dtime=[0:90];y(k+2)-1.8y(k+1)+0.81y(k)=3u(k+1)-1.2u(k) yi=impulse(gstep,dtime)gcfnum=[3 -1.2];den=[1 -1.8 0.81];[rGoz, pGoz,other]=residue(num,[den 0])t=0:60;y=rGoz(2,1).*(t.*(pGoz(2,1).^(t-1)))+rGoz(1,1).*(pGoz(1,1).^(t)) y1=zeros(1,61);y1(1,1)=rGoz(3,1);y=y+y1;t=ts*t;stem(t,y,'filled'),gridSpecial example about difference real pole tosystem response[rGoz,pGoz,other]=residue(num,[den,0])num1=[rGoz(1) 0];den1=[1 -pGoz(1)]gg1=tf(num1,den1,ts)[y,t]=impulse(gg1,50)stem(t,y,'filled'),grid运行结果:7.阶跃响应numg=[2 -2.2 0.56];deng=[1 -0.6728 0.0463 0.4860];g=tf(numg,deng,1);numgstep=[numg 0];dengstep=conv(deng,[1 -1]);gstep=tf(numgstep,dengstep,1)dtime=[0:90];yi=impulse(gstep,dtime)subplot(2,1,1)stem(dtime,yi,'filled')ys=step(g,dtime);subplot(2,1,2)stem(dtime,ys,'filled')dcgain(g)ys_ss=ys(end)ys_ss=ys(max(dtime))运行结果:Example 1: Analysis of subsection input function subplot(1,1,1)num=[2 -2.2 0.56];den=[1 -0.6728 0.0463 0.4860];ts=0.2;g=tf(num,den,ts);dtime=[0:ts:8]';u=2.0*ones(size(dtime));ii=find(dtime>=2.0); u(ii)=0.5;y=lsim(g,u,dtime);stem(dtime,y,'filled'),gridhold onplot(dtime,u,'o')hold offtext(2.3,-1.8,'output')text(1.6,2.3,'input')运行结果:五、实验思考1、根据实验结果,分析离散传递函数不同极点的时间响应特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 学会运用MATLAB 求离散时间信号的z 变换和z 反变换;〔一〕离散时间信号的Z 变换1.利用MATLAB 实现z 域的局部分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进展局部分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为局部分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的局部分式展开式。

解:利用MATLAB 计算局部分式展开式程序为% 局部分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans 〔〕,其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求〔1〕指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解〔1〕Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify()化简得到 :-z/(-z+a)〔2〕Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n〔二〕系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与鼓励的z 变换之比,即)()()(z X z Y z H = 〔3-1〕 如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H 〔3-2〕 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

它的作用是将)(z H 的有理分式表示式转换为零极点增益形式,即:)())(()())(()(2121n m p z p z p z z z z z z z k z H ------= 〔3-3〕 【实例3】 一离散因果LTI 系统的系统函数为16.032.0)(2+++=z z z z H 试用MATLAB 命令求该系统的零极点。

解:用tf2zp 函数求系统的零极点,MATLAB 源程序为B=[1,0.32];A=[1,1,0.16];[R,P,K]=tf2zp(B,A)R=-0.3200P=-0.8000-0.2000K=1因此,零点为32.0=z ,极点为8.01=p 与2.02=p 。

假设要获得系统函数)(z H 的零极点分布图,可直接应用zplane 函数,其语句格式为:zplane(B,A)其中,B 与A 分别表示)(z H 的分子和分母多项式的系数向量。

它的作用是在Z 平面上画出单位圆、零点与极点。

【实例4】 一离散因果LTI 系统的系统函数为68.052.136.0)(22+--=z z z z H ,试用MATLAB 命令绘出该系统的零极点分布图。

解:用zplane 函数求系统的零极点,MATLAB 源程序为B=[1,0,-0.36];A=[1,-1.52,0.68];zplane(B,A),grid onlegend('零点','极点')title('零极点分布图')程序运行结果如图3-1所示。

可见,该因果系统的极点全部在单位圆内,故系统是稳定的。

2、系统函数的零极点分布与其时域特性的关系与拉氏变换在连续系统中的作用类似,在离散系统中,z 变换建立了时域函数)(n h 与z 域函数)(z H 之间的对应关系。

因此,z 变换的函数)(z H 从形式可以反映)(n h 的局部内在性质。

我们仍旧通过讨论)(z H 的一阶极点情况,来说明系统函数的零极点分布与系统时域特性的关系。

【实例5】 试用MATLAB 命令画出现以下系统函数的零极点分布图、以及对应的时域单位取样响应)(n h 的波形,并分析系统函数的极点对时域波形的影响。

〔1〕72.02.1)(23+-=z z z z H 解:MATLAB 源程序为b3=[1,0];a3=[1,-1.2,0.72];图3-1 零极点分布图subplot(1,2,1)zplane(b3,a3)title('极点在单位圆内的共轭复数')subplot(1,2,2)impz(b3,a3,30);grid on;figure程序运行结果分别如图3-2的〔a 〕所示。

(a)当极点位于单位圆内时,)(n h 为衰减序列;当极点位于单位圆上时,)(n h 为等幅序列;当极点位于单位圆外时,)(n h 为增幅序列。

假设)(n h 有一阶实数极点,那么)(n h 为指数序列;假设)(n h 有一阶共轭极点,那么)(n h 为指数振荡序列;假设)(n h 的极点位于虚轴左边,那么)(n h 序列按一正一负的规律交替变化。

〔三〕离散时间LTI 系统的频率特性分析对于因果稳定的离散时间系统,如果鼓励序列为正弦序列)()sin()(n u n A n x ω=,那么系统的稳态响应为)()](sin[|)(|)(n u n e H A n y j ss ωϕωω+=。

其中,()j H e ω通常是复数。

图3-2 系统函数的零极点分布与其时域特性的关系离散时间系统的频率响应定义为)(|)(|)(ωϕωωj j j e e H e H =〔3-4〕其中,|)(|ωj e H 称为离散时间系统的幅频特性;)(ωϕ称为离散时间系统的相频特性;)(ωj e H 是以s ω〔Ts πω2=,假设零1=T ,πω2=s 〕为周期的周期函数。

因此,只要分析)(ωj e H 在πω≤||X 围内的情况,便可分析出系统的整个频率特性。

MATLAB 提供了求离散时间系统频响特性的函数freqz ,调用freqz 的格式主要有两种。

一种形式为[H,w]=freqz(B,A,N)其中,B 与A 分别表示)(z H 的分子和分母多项式的系数向量;N 为正整数,默认值为512;返回值w 包含],0[πX 围内的N 个频率等分点;返回值H 那么是离散时间系统频率响应)(ωj e H 在π~0X 围内N 个频率处的值。

另一种形式为[H,w]=freqz(B,A,N,’whole’)与第一种方式不同之处在于角频率的X 围由],0[π扩展到]2,0[π。

【实例6】 用MATLAB 命令绘制系统8109.056.19028.096.0)(22+-+-=z z z z z H 的频率响应曲线。

解:利用函数freqz 计算出)(ωj e H ,然后利用函数abs 和angle 分别求出幅频特性与相频特性,最后利用plot 命令绘出曲线。

MATLAB 源程序为b=[1 -0.96 0.9028];a=[1 -1.56 0.8109];[H,w]=freqz(b,a,400,'whole');Hm=abs(H);Hp=angle(H);subplot(211)plot(w,Hm),grid onxlabel('\omega(rad/s)'),ylabel('Magnitude')title('离散系统幅频特性曲线')subplot(212)plot(w,Hp),grid onxlabel('\omega(rad/s)'),ylabel('Phase')title('离散系统相频特性曲线')程序运行结果如图3-3所示。

1、计算9.0||,))9.01()9.01(1)(121>+-=--z z z z X 的Z 反变换。

图3-3 离散系统频响特性曲线提示:b=1;a=poly([0.9 0.9 -0.9]);[r,p,k]=residuez(b,a) 因此得到9.0||9.0125.0)9.01(5.09.0125.0)(1211>++-+-=---z zz z z X 相应的 )()9.0(25.0)1()9.0)(1(95)()9.0(25.0)(1n u n u n n u n x n n n -++++=+ 2、某离散系统的系统函数为3.0005.05.012)(232+--++=z z z z z z H 试用MATLAB 求出该系统的零极点,并画出零极点分布图,求系统的单位冲激响应和幅频响应,并判断系统的是否稳定。

1、讨论极点与系统稳定性的关系?根据程序运行结果判断该系统的稳定性。

2、根据实验程序的运行结果写出z 反变换x(n)。

相关文档
最新文档