第8组 实验二 系统函数与Z变换

合集下载

实验二z变换及其应用

实验二z变换及其应用

实验三z变换及其应用3.1实验目的1)加深对离散系统变换域分析——z变换的理解;2)掌握进行z变换和z反变换的基本方法,了解部分分式法在z反变换中的应用;3)掌握使用MATLAB语言进行z变换和z反变换的常用函数。

3.2实验涉及的MATLAB函数1)ztrans功能:返回无限长序列函数x(n)的z变换。

调用格式:X=ztrans(x);求无限长序列函数x(n)的z变换X(z),返回z变换的表达式。

2)iztrans功能:求函数X(z)的z反变换x(n)。

调用格式:x=iztrans(X);求函数X(z)的z反变换x(n),返回z反变换的表达式。

3)syms功能:定义多个符号对象。

调用格式:syms a b w0;把字符a,b,w0定义为基本的符号对象。

4)residuez功能:有理多项式的部分分式展开。

调用格式:[r,p,c]=residuez(b,a);把b(z)/a(z)展开成部分分式。

[b,a]=residuez(r, p, c);根据部分分式的r、p、c数组,返回有理多项式。

其中:b,a为按降幂排列的多项式的分子和分母的系数数组;r为余数数组;p为极点数组;c为无穷项多项式系数数组。

3.3实验原理1)用ztrans 子函数求无限长序列的z 变换MATLAB 提供了进行无限长序列的z 变换的子函数ztrans 。

使用时须知,该函数只给出z 变换的表达式,而没有给出收敛域。

另外,由于这一功能还不尽完善,因而有的序列的z 变换还不能求出,z 逆变换也存在同样的问题。

例1 求以下各序列的z 变换。

012345(1)(),(),(),21(),()(1)n jw n n n x n a x n n x n x n e x n n n -=====- syms w0 n z a x1=a^n; X1=ztrans(x1) x2=n; X2=ztrans(x2) x3=(n*(n-1))/2; X3=ztrans(x3) x4=exp(j*w0*n); X4=ztrans(x4) x5=1/(n*(n-1)); X5=ztrans(x5)2)用iztrans 子函数求无限长序列的z 反变换MATLAB 还提供了进行无限长序列的z 反变换的子函数iztrans 。

信号与系统 第八章 Z变换及分析

信号与系统 第八章 Z变换及分析
东北大学秦皇岛分校计算机工程系通信工程专业信号与系统201155东北大学秦皇岛分校计算机工程系通信工程专业信号与系统系统函数零极点分布与系统时域频域特性及稳定性的关系有抽样信号单边拉氏变换东北大学秦皇岛分校计算机工程系通信工程专业信号与系统单边z变换snt则有广义上
东北大学秦皇岛分校 计算机工程系通信工程专业
信号与系统

几类序列的收敛域
n2
(1)有限长序列:在有限区间内,有非零的有限值 的序列 x(n)
X ( z ) x(n) z
n n1
n
n1 n n2
n1 0, n2 0 收敛域为除了0和
j Im[z]
的整个 z 平面。
0 z
另,思考:
Re[z ]
n1 0, n2 0 n1 0, n2 0
n 0

X s ( s)

0
x(nT ) (t nT )e
n 0 0
st
dt
x(nT ) (t nT )e dt
st

x(nT )e
n 0
n 0
snT
东北大学秦皇岛分校 计算机工程系通信工程专业
信号与系统
X s ( s) x(nT )e snT
0 0 0
4.余弦序列
j0 n
j0n
0
z e 0 z e z ( z cos0 ) 2 z 2 z cos0 1
0
z sin 0 ZT [sin 0 n] 2 z 2 z cos0 1
5.正弦序列
说明: n 0, z 1
东北大学秦皇岛分校 计算机工程系通信工程专业

(完整版)实验二z变换及其应用

(完整版)实验二z变换及其应用

实验三z变换及其应用3.1实验目的1)加深对离散系统变换域分析——z变换的理解;2)掌握进行z变换和z反变换的基本方法,了解部分分式法在z反变换中的应用;3)掌握使用MATLAB语言进行z变换和z反变换的常用函数。

3.2实验涉及的MATLAB函数1)ztrans功能:返回无限长序列函数x(n)的z变换。

调用格式:X=ztrans(x);求无限长序列函数x(n)的z变换X(z),返回z变换的表达式。

2)iztrans功能:求函数X(z)的z反变换x(n)。

调用格式:x=iztrans(X);求函数X(z)的z反变换x(n),返回z反变换的表达式。

3)syms功能:定义多个符号对象。

调用格式:syms a b w0;把字符a,b,w0定义为基本的符号对象。

4)residuez功能:有理多项式的部分分式展开。

调用格式:[r,p,c]=residuez(b,a);把b(z)/a(z)展开成部分分式。

[b,a]=residuez(r, p, c);根据部分分式的r、p、c数组,返回有理多项式。

其中:b,a为按降幂排列的多项式的分子和分母的系数数组;r为余数数组;p为极点数组;c为无穷项多项式系数数组。

3.3实验原理1)用ztrans 子函数求无限长序列的z 变换MATLAB 提供了进行无限长序列的z 变换的子函数ztrans 。

使用时须知,该函数只给出z 变换的表达式,而没有给出收敛域。

另外,由于这一功能还不尽完善,因而有的序列的z 变换还不能求出,z 逆变换也存在同样的问题。

例1 求以下各序列的z 变换。

012345(1)(),(),(),21(),()(1)n jw n n n x n a x n n x n x n e x n n n -=====- syms w0 n z a x1=a^n; X1=ztrans(x1) x2=n; X2=ztrans(x2) x3=(n*(n-1))/2; X3=ztrans(x3) x4=exp(j*w0*n); X4=ztrans(x4) x5=1/(n*(n-1)); X5=ztrans(x5)2)用iztrans 子函数求无限长序列的z 反变换MATLAB 还提供了进行无限长序列的z 反变换的子函数iztrans 。

信号与系统 z变换

信号与系统 z变换

信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。

本文将介绍信号与系统中的z变换原理及应用。

一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。

在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。

它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。

z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。

通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。

此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。

二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。

通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。

2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。

我们可以通过分析代数方程的根的位置,判断系统的稳定性。

如果差分方程的根都在单位圆内,说明系统是稳定的。

3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。

通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。

4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。

通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。

然后再通过z逆变换将离散时间信号重构为连续时间信号。

5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。

通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。

z变换是信号与系统分析中非常重要的工具。

第8章z变换、离散时间系统的z变换分析概论

第8章z变换、离散时间系统的z变换分析概论

(n) 1
收敛域 为Z平面
2. 单位阶跃序列u(n)
u(n)
1 0
(n 0) (n 0)
Z[u(n)]
u( n)z - n
n0
z-n
n0
1 1 z-1
z z 1
收敛域 为 z >1
3. 斜变序列
间接求 解方法
已知 两边对(z -1)求导
两边乘(z -1)

同理,两边再求导,得 …

其中 反变换为
分子,当j≥2,从最后一项(n-j+2)一直递增乘到n
例 s = 2,
例题 解
求x(n) = ?

∴ 见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性
若 x(n) ←→ X(z) y(n) ←→ Y(z)
z变换 X(z)
z = e jω 有条件
序列的傅里叶变换X(e jω)
利用z变换求解离散系统的响应 利用离散系统函数H(z)分析系统 分析序列的频率特性 分析离散系统的频率响应特性
二、 抽样信号xs(t)的拉氏变换→z变换
理想抽样:
单边x(t) = x(t)u(t)
抽样间隔
对上式取双边拉氏变换,得到
∴ z = e ( + jΩ)T = e T + jΩT = e T e jΩT 令 |z| = e T , ΩT = ω,则有z = |z| e jω 其中:Ω模拟角频率, ω数字频率, T抽样间隔
二、 典型序列的z变换
1. 单位样值序列δ(n)
(n)
1 0
(n 0) (n 0)

Z变换离散时间系统的Z域分析

Z变换离散时间系统的Z域分析

| x[n] | M
n1
z 1
显然lim X (z) x[0]
z
学习材料
22
§8.2 Z变换及其收敛域
终值定理:假设n<0,xn]=0,则序列的终值为
lim x[n] lim{( z 1)X (z)}
n
z1
证明:利用单边Z 变换时移性质,有:
Z{x[n 1]} x[n 1]zn zX (z) zx[0] n0
注:交集 R1 一R2般小于R1或R2。但有时会扩大,如
零点与极点相消时。
学习材料
15
§8.2 Z变换及其收敛域
2).时域平移(双边信号〕
x[n] X (z), ROC Rz x[n n0 ] zn0 X (z), ROC Rz ,
证明:依据双边Z变换的定义式,有
Z[x[n n0 ]} x[n n0 ]zn zn0 x[k]zk
X (z) x[n]r ne jn DTFT{x[n]r n} n
DTFT{x[n] | z |n}
即x[n] | z |n 是收敛的
假设 x[n] | z |n x[n] n , n由0 .
| z |n n | z |
即,右边函数时收敛域为| z|>α的圆外地域。
其它信号依学习此材料 类推…。
z
,
n0
z 1
极点z1 1,
1
Re
∴收敛域为 |z|>1 的单位圆以外。
ROC | z | a
例8-2.求 x[n] anu的[nz变1换] 。xn]是一个从-1到-∞的左
边序列。
解:
X (z) x[n]zn anu[n 1]zn
n
n
1

Z变换详细讲解2

Z变换详细讲解2

f (t)
j
F
(s)e
st
ds
由于z esT , dz Te sT
Tz
j
ds
f (t) f (nT ) f (n)
F (s) f (n)z n F (z) n
e sT e snT z n
ds 1 dz dz Tz z
j
j
c
10
f (n) 1 F (z)z n1dz 令z re j
n0
zm x(n m)z(nm) zm x(k)zk
n0
k m
zm
x(k ) z k
m1
x(k ) z k
k 0
k 0
zm
X
(z)
m1
x(k ) z k
k 0
15
(3)双边右移序列旳单边Z变换
X (z) x(n)u(n)zn n0
ZT[x(n m)u(n)] x(n m)zn
.画出下列系统函数所表示系统的建立级联和 并联形式的结构图。
H (z) 3z3 5z 2 10z z3 3z2 7z 5
解:
H
(
z
)=
(
z z
(3z 2 1)(
z2
5z 10) 2z 5)
1 1 z 1
3 5z 1 1 2z 1
10z 2 5z2
1
H (z)
1 1 z1
br z r
r 0
N
ak zk
k 0
请注意这里 与解差分有 何不同?
因果!
22
(2)定义二:系统单位样值响应h(n) 旳Z变换
• 鼓励与单位样值响应旳卷积为系统零状
态响应
y(n) x(n)*h(n)

[物理]《信号与线性系统分析》第8章 z变换

[物理]《信号与线性系统分析》第8章 z变换
m
d 1 n m u( n) Z n m u( n) z 1 1 1 d z 1 z


1 d n x ( n) Z n x ( n) z X (z) 1 dz
m m


m
n是离散变量,所以对n没有微积分运算; z是连续变量,所以对z有微积分运算。
n
a
1
n n
z
z (a z ) 1 za n 0
1
za
n
n 1

14
• 收敛域的定义
X ( z ) Z [ x ( n)]
n n x ( n ) z 2
x (1) x ( 2) x ( 2) z x ( 1) z x ( 0) 2 z z
n1 0, n2 0 : 0 z
n1 0, n2 0 : z
j Im[z]
n1 0, n2 0 : z 0
Re[z ]
17
2.右边序列:只在n≥n1的区间内,有非零的 有限值的序列
x(n),
X (z)
n

n n1
n n1 n x ( n ) z
10
• 指数序列
x(n) a n u( n)
1 z X z a z 1 1 az za n 0
n n
za
当a e ,
b

当a e
当a e
j ω0
, 则
, 则
z z eb Z e u( n) z eb z jω0 n Z e u( n) z 1 jω0 ze
5
8.2 典型序列的z变换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 系统函数与Z 变换
`
院 系 自动化系 专业班级 自动化1402 学生姓名 常浩宁 张文俊 学 号 201402020202 201402020226 指导教师 白 康
1.实验所需的函数求解过程及稳定性判断
1.1系统函数H(z)
H(z)=Y(z)/X(z)
(1-1)
由y(n)=0.9y(n-1)+x(n)得y(z)-0.9z^(-1)y(z)=x(z)
H(z)=Y(z)/X(z)=1/(1-0.9z^(-1))=z/(z-0.9)
1.2系统频率响应H(e^(jw))
H(e^(jw))=1/(1-0.9e^(jw)^(-1))=e^(jw)/(e^(jw)-0.9)
1.3系统单位样值响应h(n)
h(n)=((0.9)^n)*u(n)
1.4对系统稳定性的判断
由于∑|h(n)|=10<∞
且h(n)=0,n<0因此系统稳定
2.程序实现
2.1函数介绍
2.1.1系统函数H(z)
系统函数H(z)由其分子、分母多项式的系数数组b、a描述,即
H(z)=Y(z)/X(z)=∑bj*z^(-j)/∑ai*z^(-i)
(2-1)
且length(b)=M+1, length(a)=N+1
2.1,2zplane(b, a)
画系统函数的零极点图.
2.1.3 [h, w]=freqz(b, a, N)
对于以a、b为分母、分子系数的系统函数,在数字角频率为[0,π]的弧度范围上均匀取样N点得到的频率响应,其中,h为复振幅, w为N个取样点对应的数字角频率,单位为弧度。

2.1.4impz(b, a, N)
求系统函数的反z变换。

2.1.5length(x)
计算序列x的长度。

2.1.6abs(z)
求表达式绝对值,函数返回值类型与数值表达式的数据类型相同。

2.1.7angle(x)
用来求复数矩阵相位角的弧度值,其取值为-pi到pi。

2.2实验结果图像
如下图所示,分别画出了零极点示意图,系统的幅频特性|H(e^(jw))|和相频特性图)(ωϕ 以及系统的单位取样脉冲响应h(n)的序列图。

2.3源程序
a=[1 -0.9];%初始化系数数组
b=[1];
syms z;%定义字符常量z
yz=0;
xz=0;
for i=1:length(b);
yz=yz+b(i).*z^(1-i);end;%用累加法求Y (z )
for i=1:length(a);
xz=xz+a(i).*z^(1-i);end;
hz=yz./xz%计算hz
subplot(411);
zplane(b,a);title('零极点示意图');xlabel('Re(z)');ylabel('jIm(z)');%画出系统的零极点示意图[h,w]=freqz(b,a,256,'whole');
am=abs(h);%求系统的幅值
subplot(412);
plot(w,am);title(‘'幅频特性图');xlabel('w(rad)');ylabel('|H(e^(jw))|');%画出系统的幅频特性图ang=angle(h);%求系统的相角
subplot(413);
plot(w,ang);title('相频特性图');xlabel('w(rad)');ylabel('φ(w)');%画出系统的相频特性图subplot(414);
n=1:110;
h(n)=impz(b,a,110);%利用z反变换求h(n)
stem(n,h(n));title('单位取样脉冲响应序列图');xlabel('n');ylabel('h(n)');%画出系统的单位取样脉冲响应序列图
2.4实验总结
本次实验我们利用Matlab研究离散时间LTI系统的特性,深入了解了z变换与离散时间系统的内在联系,掌握了相关函数的用法。

在实验过程中我们了解了系统函数的定义、形式及Z变换的应用,并进一步熟悉了Matlab的功能和应用。

我要为老师创新的教学方式鼓掌,这种不同于以往填鸭式模仿学习的方法不仅可以激发我们的创造力,而且使我们对相关知识的掌握更加牢固,这种启发为主讲解为辅的教学方法值得推广。

相关文档
最新文档