高考数学难点之三个“二次”及关系
高考数学中的二次函数问题解析

高考数学中的二次函数问题解析高考数学是很多学生最为担心的科目之一,其中涉及到的二次函数问题更是令学生头疼不已。
二次函数在高中数学中的重要性不言而喻,其解题方法多种多样,需要学生有一定的数学基础和逻辑思维能力。
在本文中,将着重解析高考数学中的二次函数问题,让学生能够更好地应对考试。
一、二次函数的基本形式二次函数是高中数学的一个重要概念,也是高考的重点内容之一。
二次函数的一般式为:y = ax² + bx + c其中,a、b、c 分别为实数,二次函数的图像为开口朝上或开口朝下的抛物线。
a 的取值决定了二次函数的开口方向和大小,当a > 0 时,抛物线开口朝上,当 a < 0 时,抛物线开口朝下;而 b 和c 的取值则分别影响抛物线的位置和与坐标轴的交点。
二、二次函数的求根公式在解决二次函数的问题时,一个常见的问题是求解方程ax² + bx + c = 0其中,a、b、c 分别为实数。
由于一般的二次方程不易直接求解,因此需要使用二次函数的求根公式:x1,2 = (-b ± √(b² - 4ac)) / 2a其中,+/- 代表正负号取两种情况,√ 表示开方,a、b、c 分别代表一般式中的系数。
需要注意的是,在运用此公式求解时,首先应该对给定方程进行分类讨论,判断它的解的数量与情况。
三、二次函数的最值问题另一个常见的二次函数问题是求取最值。
通过对一般式 y = ax²+ bx + c 的求导,我们可以得到其导函数为:y' = 2ax + b当 y' = 0 时,可以求得此时的 x 值,即为二次函数的极值点。
根据抛物线的开口方向,可以推断出该点是函数的最大值或最小值。
此外,需要注意的是,当 a > 0 时,抛物线开口朝上,其最小值为 y = c - b² / 4a;而当 a < 0 时,抛物线开口朝下,其最大值为y = c - b² / 4a。
高考数学中的二次函数与相关题型分析

高考数学中的二次函数与相关题型分析高考数学是考生们最为担心的科目之一,而其中涉及到的二次函数和相关题型更是让人头疼。
二次函数是高中数学的重点和难点,因此在备战高考时务必要重视和复习。
本文将着重分析高考数学中的二次函数和相关题型,并介绍备考中的一些技巧和方法。
一、二次函数的基本概念二次函数是形如 y = ax^2 + bx + c 的一类函数,其中 a、b、c都是实数,且a ≠ 0。
二次函数的图像为一个开口向上或向下的抛物线。
二次函数的一些基本概念包括:1. 零点:指函数图象与 x 轴的交点,也就是方程 ax^2 + bx + c= 0 的解。
2. 判别式:指二次方程 ax^2 + bx + c = 0 的 b^2-4ac 部分,用于判断此方程的解的数量和类型。
3. 对称轴:指函数图象中抛物线的对称轴,其方程为x = -b/2a。
4. 单调性和极值:指函数图象的凹凸性和最值点。
二、高考中的二次函数题型在高考数学中,二次函数的考察主要分为以下几个方面:1. 二次函数的图像及性质该题型主要考查二次函数的开口方向、顶点坐标、对称轴等性质,需要通过化式子、配方法、求导等方法计算。
例如:已知二次函数 f(x) = 2x^2 - 4x + 1,求出它的零点、对称轴和顶点坐标。
2. 二次函数的解析式以及单调性和极值该题型主要考查对二次函数解析式的把握和对单调性和极值的理解,需要通过求导、解方程等方法计算。
例如:已知二次函数 f(x) = x^2 - 2x + 3,求出它的解析式和单调性和极值。
3. 二次函数与其他函数的关系该题型主要考查二次函数与指数函数、对数函数、三角函数等其他函数的关系,需要掌握函数的基本性质和变换。
例如:已知二次函数 y = x^2 + 2x + 1 和指数函数 y = e^x,求出它们的交点坐标。
4. 实际问题中的二次函数该题型主要考查将二次函数应用于实际问题中的能力,需要理解问题背景和建立模型。
高考数学二轮复习 第03课时 三个“二次”及关系

第03课时 三个“二次”及关系【考点点悟】传道解惑,高屋建瓴三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本课时主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.1.二次函数的三种表示法:y =ax 2+bx +c ; y =a (x -x 1)(x -x 2); y =a (x -x 0)2+n .2.当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m , f (q )=M ; 若p ≤-a b 2<x 0, 则f (-a b2)=m , f (q )=M ;若x 0≤-a b 2<q ,则f (p )=M , f (-a b2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m .3.二次函数2()f x ax bx c =++,由(0)f c =,(1)f a b c =++,(1)f a b c -=-+可得,11(1)(1)(0)22a f f f =+--、11(1)(1)22b f f =--、(0)c f = .从而有21111()[(1)(1)(0)][(1)(1)](0)2222f x f f f x f f x f =+--+--+ .4.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+ab 2|,当a <0时,f (α)<f (β) ⇔|α+a b 2|>|β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p ab a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 【小题热身】明确考点,自省反思1. 已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________.2.已知32()f x x ax bx c =+++,过曲线()y f x =上一点(1,(1))P f 的切线方程是31y x =+,如()y f x =在[]2,1-上为增函数,则实数b 的取值范围为 .3.二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________.4.若函数32321y x x =+-在区间(,0)m 上是减函数,则 m 的取值范围是 .【考题点评】分析原因,醍醐灌顶例1. 已知32()f x x ax b =-++,若曲线()y f x =在[]0,1x ∈这一段上任一点处切线的斜率都在区间[]0,1上.求实数a 的取值范围.思路透析: 曲线()y f x =在点(,())x f x 处的切线斜率为2()32f x x ax '=-+,由题意可知,20321x ax ≤-+≤在区间[]0,1上恒成立.(1)0x =时,a 可取一切实数.(2)(]0,1x ∈时,由2320x ax -+≥恒成立,32a x ∴≥在(]0,1上恒成立. 而32x 在(]0,1上最大值为32 32a ∴≥. 由2321x ax -+≤在(]0,1上恒成立,11(3)2a x x∴≤+在(]0,1上恒成立.由11(3)2x x +≥x =时取“=”)(]0,1x ∴∈时11(3)2x x +的最小值a ∴≤综上所述,所求实数a 的取值范围为32a ≤≤. 点评: 三次函数的导数是二次函数,这样就出现了以三次函数的导数为载体考查二次函数、一元二次方程、及一元二次不等式的所谓“三个二次”问题 ,这些问题,灵活性大,综合性强.例 2.已知函数2()2,()1f x x a g x x =-=+,()()()H x f x g x =⋅. 设方程2310x ax -+=的两实根为,()αβαβ<,且函数()H x 在区间[,]αβ上的最大值比最小值大8,求a 的值.思路透析:由232()(2)(1)22H x x a x x ax x a=-+=-+-得2()2(31)H x x ax '=-+,即 ,αβ是方程()H x '0=的两实根,故当(,)x αβ∈时,有()0H x '<,从而()H x 在[,]αβ上是减函数, 故maxmin()(),()()H x H H x H αβ==,由题意,()()8H H αβ-=,由韦达定理得,1,33a αβαβ+==, 而()()H H αβ-=2()[2()2()2]a αβαβαβαβ-+--++2232[2()2]333a a =--+==8,解得a =±点评:本题的关键是利用二次方程的根与二次不等式的关系,得出函数()H x 为减函数,再利用韦达定理,从而使问题求解.例 3. 已知函数()32,[1,g x a x b x =+∈-单调递增,有最大值2,函数32()f x ax bx cx d =+++([1,1]x ∈-)图象的任一切线都不会与双曲线221y x -=的两支都相交,且()f x . (1)求证|()|2g x ≤; (2)求()f x .思路透析: (1)函数()32,[1,1]g x ax b x =+∈-单调递增,有最大值2,故322(0)a b a +=> 又32()f x ax bx cx d =+++的任一切线都不会与双曲线221y x -=的两支都相交,|()|1f x '≤,|(1)||32|1,|(0)|||1f a b c f c ''-=-+≤=≤.故|(1)||32||32|g a b a b c c -=-+=-+-|32|||2a b c c ≤-++≤,故|()|2g x ≤.(2)|(1)||32||2|1f a b c c '=++=+≤,31c -≤≤-,又11c -≤≤,故1c =-,而()f x '为二次函数,故()f x '的最小值为1-,得0b =,从而23a =,由2()210f x x '=-=得,2x =-时取最大值3,即(03f -=,解得0d =,因此32()3f x x x =-. 点评:熟练利用二次函数、方程的有关知识来解决三次问题应是理所当然之事.例4. 若2()f x ax bx c =++,a 、b 、c 为实数,在区间[0,1]上恒有|()|f x ≤1 .(1)对所有这样的()f x ,求||||||a b c ++的最大值;(2)试给出一个这样的()f x ,使||||||a b c ++确实取到上述最大值.思路透析: (1)由题意得|(1)|||f a b c =++≤1,1|()|||242a bf c =++≤1, |(0)|||f c =≤1 .于是 |||(1)(0)|a b f f +=-≤|(1)||(0)|f f +≤2 ,1|||3()58()||3(1)5(0)8()|422a b a b a b c c c f f f -=+++-++=+-≤3+5+8=16 .∴当ab ≥0时, ||||||||||a b c a b c ++=++≤2+1=3 ; 当ab <0时,∴max (||||||)17a b c ++= .(2)当8,8,1a b c ==-=时, 221()8818()12f x x x x =-+=-- ,当[0,1]x ∈时,有221|()||881||8()1|2f x x x x =-+=--≤1成立 ,此时有|||||a b c ++=17 .点评:解决此类问题的关键是抓住(0)f 、(1)f 、(1)f -、1()2f 等这些特殊的函数值,找出它们与二次函数系数的关系,代入后并进行转化,最后利用不等式的放缩法求解.例 5.已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围.思路透析: (1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2] ∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-a b 2,x 1x 2=ac . |A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a acc a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得ac ∈(-2,-21)∵]1)[(4)(2++=a c a c a c f 的对称轴方程是21-=a c .ac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).点评:本题主要考查考生对函数中函数与方程思想的运用能力,熟练应用方程的知识来解决问题及数与形的完美结合.例6.已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围. 思路透析: (1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或 (这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过)点评:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点. 本题重点考查方程的根的分布问题,解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义.【即时测评】学以致用,小试牛刀 1.函数321()2f x x x bx =-+的图象有与x 轴平行的切线,则实数b 的取值范围为( ) A.112b ≥ B. 112b < C.112b ≤ D. 112b >2. 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( ) A.(-∞,2] B.[-2,2] C.(-2,2] D.(-∞,-2)3. 设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为()A.正数B.负数C.非负数D.正数、负数和零都有可能4.已知函数()f x 32(6)1x ax a x =++++有极大值和极小值,则实数a 的取值范围是 A .12a -<< B .36a -<< C .3a <-或6a > D .1a <-或2a >5.已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,则关于x 的方程2+a x=|a -1|+2的根的取值范围为( ) A. 49≤x ≤425 B. 6≤x ≤12 C. 49≤x ≤6 D. 49≤x ≤12.【课后作业】学练结合,融会贯通一、填空题:1.设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.则实数a 的取值范围为 .2.函数32()(6)2f x x ax a x =++++有极大值和极小值,则实数a 的取值范围为 .3.已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[1,1]-上有零点,则a 的取值范围 .4.已知三次函数()(1)()f x x x x a b =-++,若()f x 在(1,)+∞上是增函数,则a 的取值范围为 .5.如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,则m 的取值范围为 .6.已知a ∈R ,二次函数.22)(2a x ax x f --=设不等式()f x >0的解集为A ,又知集合B={x |1<x <3}.若A B ⋂≠∅,则a 的取值范围为 .7.设函数()f x =-cos 2x -4tsin 2x cos 2x +4t 3+t 2-3t+4,x ∈R,将()f x 的最小值记为g(t).则g(t)= .二、解答题: 8. 已知函数3211()(1)(,32f x x b x cx b c =+-+是常数). (1)()f x 在12(,),(,)x x -∞+∞内为增函数,在12(,)x x 内为减函数, 又211x x ->,求证:224b b c >+.(2)在(1)的条件下,如1t x <,比较2t bt c ++与1x 的大小.9.已知函数2()f x ax bx c =++,对任何[1,1x ∈-,都有|()|f x ≤1.设432222()|()()g x acx b a c x a b c x =+++++()|b a c x ac +++,[1,1]x ∈-,求函数()g x 的最大值.10.二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证: (1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.第03课时 三个“二次”及关系参考答案【小题热身】1. (-3,23) 2. 0b ≥ 3. (-2,0) 4. 4[,0)9-【即时测评】1. C2. C3. A4. C5.D【课后作业】一、填空题:1.(03-, 2. 36a a <->或 3. 2731--≤≥a a 或 4. 1a ≥- 5. {m |m ≤1且m ≠0} 6. .276-<>a a 或 7. ⎪⎩⎪⎨⎧+∞∈+-+-∈+---∞∈+-+=),1(,454]1,1[,334)1,(,44)(23323t t t t t t t t t t t t g二、解答题:8. 解析:(1)证明:2()(1)f x x b x c '=+-+ 由题意知,12,x x 为()0f x '=的两个不相等的实根,12121,x x b x x c ∴+=-⋅= 224b b c ∴--()()21212121214x x x x x x =-+--+-⎡⎤⎡⎤⎣⎦⎣⎦221()1x x =-- 211x x ->221()1x x ∴-> 224b b c ∴-->0 ∴224b b c >+。
高考数学复习知识点讲解教案第5讲 一元二次方程、不等式

[解析] 由 + 1 2 − ≥ 0,得 + 1)( − 2 ≤ 0,
故原不等式的解集为{| − 1 ≤ ≤ 2}.
2
若关于的不等式
6.
−∞, 1
+ 2 + 1 < 0有实数解,则的取值范围是___________.
[解析] 当 = 0时,不等式为2 + 1 < 0,有实数解,满足题意;
≤ 0,即 3 − 2 − 3 ≤ 0,且 − 3 ≠ 0,
2
3
≤<3 .
(2)
不等式组0 <
2
[−2, −1) ∪ (2,3]
− − 2 ≤ 4的解集为___________________.
[思路点拨](2)解两个一元二次不等式0 <
2
−−
2
2和
− − 2 ≤ 4,
然后求交集.
例4
是(
对任意的 ∈ 1,4
D
A.[1, +∞)
2
,不等式
− 2 + 2 > 0恒成立,则实数的取值范围
)
B.
1
,1
2
[思路点拨] 分离参数得 >
1,4 上的最大值即可.
1
C.[ , +∞)
2
2−2
对任意的
2
∈ 1,4
D.
1
, +∞
2
2−2
恒成立,则求出 2 在区间
[解析] ∵ 对任意的 ∈ 1,4
数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.
②若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次
高中数学高三第六章不等式一元二次不等式及其解法(教案)

高三一轮复习 6.2 一元二次不等式及其解法【教学目标】1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
【重点难点】1。
教学重点:会解一元二次不等式并了解一元二次不等式与相应的二次函数、一元二次方程的联系;2。
教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】环节二:意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析[由题可得f(x)<0对于x∈[m,m+1]恒成立,即错误!解得-错误!〈m〈0.答案错误!知识梳理:知识点1 三个“二次”的关系ΔacΔ〉0Δ=0Δ数+a〉象次有两相异实根有两相等实根没有ax2+bx+c=0(a>0)的根x1,x2(x1<x2)x1=x2=-错误!ax2+bx+c〉0 (a>0)的解集{x|x〈x1或x〉x2}{x|x≠x1}Rax2+bx+c<0 (a〉0)的解集{x|x1〈x<x2}∅∅知识点2 用程序框图表示ax2+bx+c>0(a>0)的求解过程1.必会结论;(1)(x-a)(x-b)〉0或(x-a)(x-b)〈0型不等式解法教师引导学生及时总结,以帮助学生形成完整的认知结构。
由常见问题的解决和总结,使学。
2019届高考数学二轮复习专题三不等式第1讲三个“二次”的问题学案

第1讲 三个“二次”的问题1. “三个二次”在历年高考中都有考查,体现出二次函数、二次方程和二次不等式之间有密不可分的联系,即函数的研究离不开方程和不等式;方程和不等式的解的讨论同样要结合函数的图象和性质.2. 主要涉及的题型有:一是求二次函数的解析式;二是求二次函数的值域或最值,考查二次函数和一元二次方程、一元二次不等式的综合应用;三是考查一元二次不等式的解法及“三个二次”间的关系问题;四是从实际情景中抽象出一元二次不等式模型;五是以函数、导数为载体,考查不等式的参数范围问题.1. 不等式(1+x)(1-x)>0的解集是________. 答案:{x|-1<x<1}解析:原式可化为(x +1)(x -1)<0,所以不等式的解集为-1<x<1.2. (2018·海安第一次学业质量测试)关于x 的不等式x +ax+b≤0(a,b ∈R )的解集为{x |3≤x ≤4},则a +b 的值为________.答案:5解析:由题意可得⎩⎪⎨⎪⎧3+a3+b =0,4+a 4+b =0,解得⎩⎪⎨⎪⎧a =12,b =-7,所以a +b =5.3. (2018·镇江期末)已知函数f(x)=x 2-kx +4,对任意的x∈[1,3],不等式f(x)≥0恒成立,则实数k 的最大值为________.答案:4解析:由题意知x 2-kx +4≥0,x ∈[1,3],所以k≤x +4x对任意的x∈[1,3]恒成立.因为x +4x≥4(当且仅当x =2时取等号),所以k≤4,故实数k 的最大值为4.4. (2018·昆山中学月考)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是________.答案:[-1,4]解析:x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a≤4., 一)一元二次不等式的求解, 1)已知f(x)=-3x 2+a(6-a)x +b.(1) 解关于a 的不等式f(1)>0;(2) 当不等式f(x)>0的解集为(-1,3)时,求实数a ,b 的值.解:(1) f(1)=-3+a(6-a)+b =-a 2+6a +b -3.因为f(1)>0,所以a 2-6a +3-b <0.Δ=24+4b ,当Δ≤0,即b≤-6时,f(1)>0的解集为∅;当Δ>0,即b >-6时,3-b +6<a <3+b +6,所以b >-6时,f(1)>0的解集为{a|3-b +6<a <3+b +6}.(2) 因为不等式-3x 2+a(6-a)x +b >0的解集为(-1,3),所以⎩⎪⎨⎪⎧2=a (6-a )3,-3=b -3,解得⎩⎨⎧a =3±3,b =9.(2018·苏北四市一模)已知函数f(x)= ⎩⎪⎨⎪⎧2-|x +1|,x≤1,(x -1)2,x >1.若函数g(x)=f(x)+f(-x),则不等式g(x)≤2的解集为________.答案:[-2,2] 解析:f(x)=⎩⎪⎨⎪⎧3+x ,x <-1,-x +1,-1≤x≤1,(x -1)2,x>1, 所以f(-x)=⎩⎪⎨⎪⎧(x +1)2,x<-1,x +1,-1≤x≤1,-x +3,x >1,所以g(x)=f(x)+f(-x)=⎩⎪⎨⎪⎧x2+3x +4,x<-1 ①,2,-1≤x≤1 ②,x2-3x +4,x>1 ③.由不等式g(x)≤2,解得①⎩⎪⎨⎪⎧x<-1,x2+3x +4≤2⇒-2≤x<-1;②⎩⎪⎨⎪⎧-1≤x≤1,2≤2⇒-1≤x≤1;③⎩⎪⎨⎪⎧x>1,x2-3x +4≤2⇒1<x ≤2.综上所述,不等式g(x)≤2的解集为[-2,2]., 二)二次函数与二次不等式, 2)(2018·北京朝阳统考)已知函数f(x)=x 2-2ax -1+a ,a ∈R .(1) 若a =2,试求函数y =f (x )x(x >0)的最小值;(2) 对于任意的x ∈[0,2],不等式f (x )≤a 恒成立,试求a 的取值范围.解:(1) 依题意得y =f (x )x =x2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2.当且仅当x =1x,即x =1时,等号成立.所以y ≥-2. 所以当x =1时,y =f (x )x的最小值为-2.(2) 因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 恒成立”,只要“x 2-2ax -1≤0在[0,2]上恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34,则a 的取值范围是⎣⎢⎡⎭⎪⎫34,+∞.已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上的最大值为4,最小值为1,记f (x )=g (|x |).(1) 求实数a ,b 的值;(2) 若不等式f (log 2k )>f (2)成立,求实数k 的取值范围;(3) 定义在[p ,q ]上的一个函数m (x ),用分法T :p =x 0<x 1<…<x i -1<x i <…<x n =q 将区间[p ,q ]任意划分成n 个小区间,如果存在一个常数M >0,使得和式错误!f(x i )=f(x 1)+f(x 2)+…+f(x n ))解:(1) g(x)=a(x -1)2+1+b -a ,因为a>0,所以g(x)在区间[2,3]上是增函数,故⎩⎪⎨⎪⎧g (2)=1,g (3)=4,解得⎩⎪⎨⎪⎧a =1,b =0.(2) 由已知可得f(x)=g(|x|)=x 2-2|x|+1为偶函数,所以不等式f(log 2k )>f (2)可化为|log 2k |>2,解得k >4或0<k <14,故实数k 的取值范围是(0,14)∪(4,+∞).(3) 设函数f (x )为[1,3]上的有界变差函数.因为函数f (x )为[1,3]上的单调递增函数, 且对任意划分T :1=x 0<x 1<…<x i -1<x i <…<x n =3, 有f (1)=f (x 0)<f (x 1)<…<f (x n -1)<f (x n )=f (3),所以错误!|m(x i )-m(x i -1)|≤M 恒成立,所以M 的最小值为4., 三)二次方程与二次不等式, 3)对于函数f(x),若f(x 0)=x 0,则称x 0为函数f(x)的“不动点”;若f(f(x 0))=x 0,则称x 0为函数f(x)的“稳定点”.如果f(x)=x 2+a(a∈R )的“稳定点”恰是它的“不动点”,求实数a 的取值范围.解:(解法1)因为函数的“稳定点”恰是它的“不动点”,由f (f (x ))=x ,可得(x 2+a )2+a =x .方程可化为(x 2-x +a )(x 2+x +a +1)=0,所以方程x 2-x +a =0有解,且方程x 2+x +a +1=0无解或其解都是x 2-x +a =0的解,由方程x 2-x +a =0有解,得Δ1=1-4a ≥0,解得a ≤14.由方程x 2+x +a +1=0无解,得Δ2=1-4(a +1)<0,解得a >-34.若方程x 2+x +a +1=0有解且都是x 2-x +a =0的解.因为方程x 2-x +a =0与方程x 2+x +a +1=0不可能同解, 所以方程x 2+x +a +1=0必有两个相等的实根且是方程x 2-x +a =0的解,此时,Δ2=1-4(a +1)=0,解得a =-34,经检验,符合题意.综上,a 的取值范围是[-34,14].(解法2)显然,函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以f (x )=x 有解,但方程组⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1(x 1≠x 2)无解.由f (x )=x ,得x 2-x +a =0有解,所以1-4a ≥0,解得a ≤14.由⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1,得⎩⎪⎨⎪⎧x21+a =x 2,x 2+a =x 1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1, 代入消去x 2,得x 21+x 1+a +1=0.因为方程x 21+x 1+a +1=0无解或仅有两个相等的实根,所以1-4(a +1)≤0,解得a ≥-34,故a 的取值范围是[-34,14].定义:关于x 的两个不等式f (x )<0和g (x )<0的解集分别为(a ,b )和(1b ,1a),则称这两个不等式为对偶不等式.如果不等式x 2-43x cos θ+2<0与不等式x 2+2x sin θ+1<0为对偶不等式,且θ∈(π2,π),则θ=________.答案:2π3解析:由题意知不等式x 2-43x cos θ+2<0的解集为(a ,b ),所以a +b =43cos θ,ab =2.又不等式x 2+2x sin θ+1<0的解集为(1b ,1a),所以1b +1a=-2sin θ.又1b +1a =a +b ab =43cos θ2=-2sin θ,所以tan θ=-3. 又θ∈(π2,π),所以θ=2π3., 四)三个“二次”的综合问题, 4)设函数f(x)=ax 2+bx +c(a ,b ,c ∈R ),且f (1)=-a2,3a >2c >2b ,求证:(1) a >0且-3<b a <-34;(2) 函数f (x )在区间(0,2)内至少有一个零点;(3) 若x 1,x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.证明:(1) 因为f (1)=a +b +c =-a2,所以3a +2b +2c =0.又3a >2c >2b ,所以3a >0,2b <0,所以a >0,b <0. 又2c =-3a -2b ,3a >2c >2b ,所以3a >-3a -2b >2b .因为a >0,所以-3<b a <-34.(2) 因为f (0)=c ,f (2)=4a +2b +c =a -c ,①当c >0时,因为a >0,所以f (1)=-a2<0,且f (0)=c >0,所以函数f (x )在区间(0,1)内至少有一个零点;②当c ≤0时,因为a >0,所以f (1)=-a2<0,且f (2)=a -c >0,所以函数f (x )在区间(1,2)内至少有一个零点. 综合①②得函数f (x )在区间(0,2)内至少有一个零点.(3) 因为x 1,x 2是函数f (x )的两个零点,则x 1,x 2是方程ax 2+bx +c =0的两根.所以|x 1-x 2|=(x1+x2)2-4x1x2=(-b a )2-4(-32-ba)=(ba+2)2+2.因为-3<b a <-34,所以2≤|x 1-x 2|<574.已知函数f (x )=2x 2+ax -1,g (log 2x )=x 2-x2a -2.(1) 求函数g (x )的解析式,并写出当a =1时,不等式g (x )<8的解集;(2) 若f (x ),g (x )同时满足下列两个条件:①∃t ∈[1,4],使f (-t 2-3)=f (4t );②∀x ∈(-∞,a ],使g (x )<8.求实数a 的取值范围.解:(1) 令t =log 2x ,则x =2t,由g (log 2x )=x 2-x 2a -2,可得g (t )=22t -2t +2-a,即g (x )=22x -2x +2-a,当a =1时,不等式g (x )<8⇔22x-2x +1<8⇔(2x +2)(2x-4)<0,即2x<4,所以x <2,即不等式g (x )<8的解集为(-∞,2).(2) 因为f (x )=2x 2+ax -1,所以由①∃t ∈[1,4],使f (-t 2-3)=f (4t ),得∃t ∈[1,4],(-t 2-3)+4t =-a 2,即∃t ∈[1,4],a =2(t -2)2-2,所以a ∈[-2,6];由②∀x ∈(-∞,a ],使g (x )<8得∀x ∈(-∞,a ],42a >2x -82x,令μ=2x ,x ∈(-∞,a ],则y =2x-82x =μ-8μ,μ∈(0,2a],易知函数y =μ-8μ在(0,2a ]上是增函数,y max =2a-82a,所以42a>2a-82a,所以2a<23,所以a <1+12log 23.综上,实数a 的取值范围是[-2,1+12log 23).1. 函数y =3-2x -x2的定义域是 ________.答案:[-3,1]解析:要使函数有意义,必须有3-2x -x 2≥0,即x 2+2x -3≤0,所以-3≤x≤1.2. 设集合A ={x|x 2-4x +3<0},B ={x|2x -3>0},则A∩B=________.答案:(32,3)解析:集合A =(1,3),B =(32,+∞),所以A∩B=(32,3).3. (2017·山东卷)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .则命题p ∧綈q 的真假性为________.答案:真解析:易知命题p 为真命题,命题q 为假命题,所以綈q 为真命题,由复合命题真值表知,p ∧綈q 为真命题.4. 已知函数f (x )=⎩⎪⎨⎪⎧x2,x≤1,x +6x-6,x>1,则f (f (-2))=________,f (x )的最小值是________.答案:-1226-6解析:f (-2)=(-2)2=4,所以f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )≥0;当x >1时,f (x )≥26-6,当x =6时取等号,所以函数f (x )的最小值为26-6.5. 已知二次函数f(x)=ax 2+bx +c(a>0,c>0)的图象与x 轴有两个不同的公共点,且f(c)=0,当0<x<c 时,恒有f(x)>0. (1) 当a =13,c =2时,求不等式f(x)<0的解集;(2) 若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且ac =12,求a 的值;(3) 若f(0)=1,且f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,求正实数m 的最小值.解:(1) 当a =13,c =2时,f(x)=13x 2+bx +2,f(x)的图象与x 轴有两个不同交点.因为f(2)=0,设另一个根为x 1,则2x 1=6,x 1=3.则f(x)<0的解集为{x|2<x<3}.(2) 函数f(x)的图象与x 轴有两个交点,因为f(c)=0,设另一个根为x 2,则cx 2=c a ,于是x 2=1a.又当0<x<c 时,恒有f(x)>0,则1a >c ,则三交点分别为(c ,0),(1a,0),(0,c),以这三交点为顶点的三角形的面积为S =12(1a -c)c =8,且ac =12,解得a =18,c =4.(3) 当0<x<c 时,恒有f(x)>0,则1a>c ,所以f(x)在[0,c]上是单调递减的,且在x =0处取到最大值1,要使f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,必须f(x)max =1≤m 2-2m +1成立,即m 2-2m +1≥1,即m 2-2m ≥0,解得m ≥2或m ≤0,而m >0,所以m 的最小值为2.(本题模拟高考评分标准,满分16分)(2017·南通考前模拟)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ).(1) 当a =-6时,函数f (x )的定义域和值域都是[1,b 2],求b 的值;(2) 若函数f (x )在区间(0,1)上有两个零点,求b 2+ab +b +1的取值范围.解:(1) 当a =-6时,f (x )=x 2-6x +b ,函数的对称轴为直线x =3, 故f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.(2分)①当2<b ≤6时,f (x )在区间[1,b2]上单调递减;故⎩⎪⎨⎪⎧f (1)=b2,f (b2)=1,方程组无解;(4分)②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)≥f (b 2),故⎩⎪⎨⎪⎧f (1)=b 2,f (3)=1,解得b =10;(6分)③当b >10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)<f (b 2),故⎩⎪⎨⎪⎧f (b 2)=b 2,f (3)=1,方程组无解.所以b 的值为10.(8分)(2) 设函数f (x )=x 2+ax +b 的两个零点为x 1,x 2(0<x 1<x 2<1),则f (x )=(x -x 1)(x -x 2).又f (0)=b =x 1x 2>0,f (1)=1+a +b =(1-x 1)·(1-x 2)>0,(10分)所以b 2+ab +b +1=b (1+a +b )+1=f (0)f (1)+1,而0<f (0)f (1)=x 1x 2(1-x 1)(1-x 2)≤(x1+1-x12)2(x2+1-x22)2=116.(14分)由于x 1<x 2,故0<f (0)f (1)<116,则1<b 2+ab +b +1<1716,即b 2+ab +b +1的取值范围是(1,1716).(16分)1. 在R 上定义运算:⎝ ⎛⎭⎪⎫ab cd =ad -bc ,若不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.答案:32解析:由定义知,不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵ x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.2. 已知f(x)=-3x 2+a(6-a)x +6.(1) 解关于a 的不等式f(1)>0;(2) 若不等式f(x)>b 的解集为(-1,3),求实数a ,b 的值.解:(1) ∵ f(x)=-3x 2+a(6-a)x +6,∴ f(1)=-3+a(6-a)+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a<3+23,∴不等式的解集为{a|3-23<a<3+23}.(2) ∵ f(x)>b 的解集为(-1,3), ∴方程-3x 2+a(6-a)x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.3. 已知函数f(x)=x2+cax(x≠0,a >0,c <0),当x ∈[1,3]时,函数f(x)的取值范围是⎣⎢⎡⎦⎥⎤-32,56. (1) 求函数f(x)的解析式;(2) 若向量m =⎝ ⎛⎭⎪⎫-1x ,12,n =(k 2+k +2,3k +1)(k >-1),解关于x 的不等式f (x )<m ·n .解:(1) 因为c <0,f (x )=1a ⎝ ⎛⎭⎪⎫x +c x 在[1,3]上单调递增,所以⎩⎪⎨⎪⎧f (1)=-32,f (3)=56,解得⎩⎪⎨⎪⎧a =2,c =-4,故f (x )=x2-42x .(2) 由题意,得x2-42x <-k2+k +2x +3k +12,即x (x -2k )[x -(k +1)]<0.①当-1<k <0时,不等式的解集是(-∞,2k )∪(0,k +1); ②当0≤k <1时,不等式的解集是(-∞,0)∪(2k ,k +1);③当k =1时,不等式的解集是(-∞,0);④当k >1时,不等式的解集是(-∞,0)∪(k +1,2k ).。
二次函数的性质与高中数学的关系

二次函数的开口方向和顶点坐标是二次函数性质中的重要内容,对于函数的单调性、最值等问题 有重要影响。
二次函数的对称轴
二次函数图像的对 称轴是x=-b/2a
对称轴是二次函数 图像的垂直平分线
二次函数的对称轴 是函数图像的对称 轴
鼓励学生自主探 究,培养他们解 决实际问题的能 力和创新精神。
关注高考动态,及时调整教学重点和难点
关注高考动态:了解每年的高考数学试题,分析二次函数在其中的考查重 点和难点,为教学提供指导。
及时调整教学重点:根据高考动态,及时调整二次函数的教学重点,强调 与高考相关的知识点和解题方法。
突破教学难点:针对二次函数在高中数学中的难点问题,制定相应的教学 策略,帮助学生理解和掌握。
二次函数的对称轴 是函数图像的垂直 平分线
二次函数的单调性
二次函数开口方向由系数a决定,a>0时开口向上,a<0时开口向下 二次函数的最值出现在顶点处,顶点的x坐标为-b/2a 二次函数的单调性根据开口方向和对称轴位置确定,对称轴左侧单调递减,右侧单调递增 二次函数的对称轴为x=-b/2a
二次函数与高中数学其他知识 点的联系
价值
注重培养学生 的数学思维能 力和解决问题 的能力,提高 学生对二次函 数的理解和应
用能力
强化实践应用,培养学生解决实际问题的能力
结合生活实例, 引导学生理解二 次函数的应用价 值。
创设问题情境, 让学生在实际问 题中运用二次函 数知识。
开展数学活动, 让学生在实践中 加深对二次函数 性质的理解。
学会分析问题:通过分析二次函数的图像和性质,培养分析和解决问题的能力。
新高考数学复习知识点讲解与练习2---不等关系与不等式、一元二次不等式及其解法

新高考数学复习知识点讲解与练习不等关系与不等式、一元二次不等式及其解法知识梳理1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b ≠0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).3.三个“二次”间的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx+c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅∅1.有关分数的性质 若a >b >0,m >0,则 (1)真分数的性质b a <b +m a +m ;b a >b -m a -m (a -m >0). (2)假分数的性质a b >a +m b +m ;a b <a -m b -m(b -m >0). 2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.诊断自测1.判断下列说法的正误. (1)a >b ⇔ac 2>bc2.()(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.()(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0的解集为R .() (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.()答案(1)×(2)√(3)×(4)×解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ⇒/ ac 2>bc 2. (3)若方程ax 2+bx +c =0(a <0)没有实根.则不等式ax 2+bx +c >0的解集为∅. (4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 2.若a >b >0,c <d <0,则一定有() A.a d >b c B.a d <b c C.a c >b d D.a c <b d 答案B解析 因为c <d <0,所以0>1c >1d ,两边同乘-1得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0.两边同乘-1得a d <bc.故选B.3.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是() A.A ≤B B.A ≥B C.A <B D.A >B 答案B解析∵a ,b ∈[0,+∞),∴A ≥0,B ≥0,又A 2-B 2=(a +2ab +b )-(a +b )=2ab ≥0,∴A ≥B . 4.已知函数f (x )=x 3+ax 2+bx +c .且0<f (-1)=f (-2)=f (-3)≤3,则() A.c ≤3 B.3<c ≤6 C.6<c ≤9 D.c >9 答案 C解析 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9.5.已知角α,β满足-π2<α<β<π2,则α-β的取值范围是________.答案(-π,0)解析 因为-π2<α<β<π2,所以-π<α-β<π,且α-β<0,所以-π<α-β<0.所以α-β的取值范围是(-π,0).6.(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[-(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案(-∞,-3-22)∪(-3+22,+∞)考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是()A.c ≥b >aB.a >c ≥bC.c >b >aD.a >c >b(2)已知非负实数a ,b ,c 满足a +b +c =1,则(c -a )(c -b )的取值范围为________. 答案(1)A(2)⎣⎡⎦⎤-18,1 解析 (1)∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)因为a ,b ,c 为非负实数,且a +b +c =1,则a +b =1-c ,0≤c ≤1,故|(c -a )(c -b )|=|c -a ||c -b |≤1,即-1≤(c -a )(c -b )≤1;又(c -a )(c -b )=c 2-(1-c )c +ab ≥2⎝⎛⎭⎫c -142-18≥-18.综上,有-18≤(c -a )(c -b )≤1.感悟升华(1)比较大小常用的方法: ①作差法;②作商法;③函数的单调性法.(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除或特殊值法验证.【训练1】 (1)(2020·浙江卷)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则()A.a <0B.a >0C.b <0D.b >0(2)若a >b >0,且ab =1,则下列不等式成立的是() A.a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC.a +1b <log 2(a +b )<b 2aD.log 2(a +b )<a +1b <b 2a答案(1)C(2)B解析 (1)法一 由题意,知a ≠0,b ≠0,则方程 (x -a )(x -b )(x -2a -b )=0的根为a ,b ,2a +b .①a ,b ,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b ,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0, 此时(x -a )2(x +a )≥0,符合图(2).(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,符合图(3). 综合①②,可知b <0符合题意.故选C.法二(特殊值法) 当b =-1,a =1时,(x -1)(x +1)(x -1)≥0在x ≥0时恒成立;当b =-1,a =-1时,(x +1)(x +1)(x +3)≥0在x ≥0时恒成立;当b =1,a =-1时,(x +1)(x -1)(x +1)≥0在x ≥0时不一定成立.故选C.(2)令a =2,b =12,则a +1b =4,b 2a =18,log 2(a +b )=log 252∈(1,2),则b 2a <log 2(a +b )<a +1b .考点二 一元二次不等式的解法角度1 不含参的不等式【例2-1】求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 角度2含参不等式【例2-2】解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫2a≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .感悟升华 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论: (1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便正确写出解集.【训练2】 (1)(2019·天津卷)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. (2)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =() A.-3 B.1 C.-1 D.3答案(1)⎝⎛⎭⎫-1,23(2)A 解析 (1)3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝⎛⎭⎫-1,23.(2)由题意得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知a =-1,b =-2,则a +b =-3.考点三 一元二次不等式的恒成立问题角度1 在R 上恒成立【例3-1】若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为()A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0) 答案D解析一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,∴k ≠0,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解之得-3<k <0.角度2 在给定区间上恒成立【例3-2】设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 答案⎩⎨⎧⎭⎬⎫m |0<m <67或m <0解析 要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |0<m <67或m <0.角度3 给定参数范围的恒成立问题【例3-3】已知a ∈[-1,1]时,不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为() A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞) D.(1,3) 答案C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3. 感悟升华恒成立问题求解思路(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解. (2)一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性求其最小值,让最小值大于等于0,从而求参数的范围.(3)一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围就选谁当主元,求谁的范围谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是() A.[-1,4] B.(-∞,-2]∪[5,+∞) C.(-∞,-1]∪[4,+∞) D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.(3)若不等式x 2+(a -6)x +9-3a >0在|a |≤1时恒成立,则x 的取值范围是________.答案(1)A(2)⎝⎛⎭⎫-22,0(3)(-∞,2)∪(4,+∞) 解析(1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.(2)二次函数f (x )对于任意x ∈[m ,m +1],都有f (x )<0成立,则⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. (3)将原不等式整理成关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 故x 的取值范围是(-∞,2)∪(4,+∞).基础巩固题组一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是()A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化答案B解析f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b成立的有() A.1个 B.2个 C.3个 D.4个答案C解析 运用倒数性质,由a >b ,ab >0可得1a <1b,②、④正确.又正数大于负数,①正确,③错误,故选C.3.已知a ,b >0,且P =a +b 2,Q =a 2+b 22,则P ,Q 的大小关系是() A.P ≥Q B.P >Q C.P ≤Q D.P <Q答案C解析 因为a ,b >0,所以P 2-Q 2=(a +b )24-a 2+b 22=-(a -b )24≤0,当且仅当a =b 时取等号.故选C.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是()A.{a |0<a <4}B.{a |0≤a <4}C.{a |0<a ≤4}D.{a |0≤a ≤4}答案D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4. 5.已知函数f (x )=-x 2+ax +b 2-b +1,对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定答案C解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a 2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.6.若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则()A.a +b -c 的最小值为2B.a -b +c 的最小值为-4C.a +b -c 的最大值为4D.a -b +c 的最大值为6答案A解析 由题意可得-5≤(a -3)x +(b -4)y +c ≤5恒成立,所以a =3,b =4,-5≤c ≤5,则2≤a +b -c ≤12,即a +b -c 的最小值是2,最大值是12,A 正确,C 错误;-6≤a -b +c ≤4,则a -b +c 的最小值是-6,最大值是4,B 错误,D 错误,故选A.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 答案{x |x >1}解析 由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 8.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案⎝⎛⎭⎫-1,45 解析 由已知ax >b 的解集为⎝⎛⎭⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a 得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎫-1,45. 9.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为________.答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2.10.下面四个条件中,使a >b 成立的充分而不必要的条件是________.①a >b +1;②a >b -1;③a 2>b 2;④a 3>b 3答案①解析 ①中,若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;②中,当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;③中,当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;④中,a >b 是a 3>b 3的充要条件,综上所述答案为①.三、解答题11.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解(1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3. 所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 即a 的值为3±3,b 的值为-3.12.已知-1<x +y <4且2<x -y <3,求z =2x -3y 的取值范围.解 设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y ,所以⎩⎪⎨⎪⎧m +n =2,m -n =-3,所以⎩⎨⎧m =-12,n =52,由-1<x +y <4知-2<-12(x +y )<12,① 由2<x -y <3知5<52(x -y )<152,② ①+②得3<-12(x +y )+52(x -y )<8,即3<z <8. 能力提升题组13.(2021·浙江十校联盟联考)已知a >b >0,给出下列命题: ①若a -b =1,则a -b <1;②若a 3-b 3=1,则a -b <1;③若e a -e b =1,则a -b <1;④若ln a -ln b =1,则a -b <1.其中真命题的个数是()A.1B.2C.3D.4答案B解析 对于①,当a >b >0,a -b =1时,a -b =(a +b )(a -b )=(1+b +b )(1+b -b )=1+2b >1,①错误;对于②,由a 3-b 3=(a -b )(a 2+ab +b 2)=1得a -b =1a 2+ab +b 2.又因为a >b >0,a 3-b 3=1,所以a 3=1+b 3>1,即a >1,所以a 2+ab +b 2>1,a -b =1a 2+ab +b 2<1,②正确;对于③,由e a -e b =1得e a -b =e a e b =e b +1e b =1+1e b <2,所以a -b <ln 2<1,③正确;对于④,由ln a -ln b =1得a =b e ,则a -b =(e -1)b ,当b >1e -1时,a -b =(e -1)b >1,④错误.综上所述,真命题的个数为2,故选B.14.(2020·湖州期末质检)已知实数a ,b ,c 满足a 2+b 2+2c 2=1,则2ab +c 的最小值是()A.-34B.-98C.-1D.-43答案B解析 由题意得1-2c 2=a 2+b 2≥-2ab ,所以2ab +c ≥2c 2+c -1=2⎝⎛⎭⎫c +142-98≥-98,当且仅当c =-14,ab =-716时等号成立,所以2ab +c 的最小值为-98,故选B. 15.若关于x 的不等式a ≤34x 2-3x +4≤b 的解集恰好是[a ,b ],则a =________,b =________. 答案04解析 令f (x )=34x 2-3x +4=34(x -2)2+1,其图象对称轴为x =2.①若a ≥2,则a ,b 是方程f (x )=x 的两个实根,解得a =43,b =4,矛盾; ②若b ≤2,则f (a )=b ,f (b )=a ,两式相减得a +b =83,代入f (a )=b 可得a =b =43,矛盾; ③若a <2<b ,则f (x )min =1,所以a ≤1(否则在顶点处不满足a ≤f (x )),所以此时a ≤f (x )的解集是R ,所以f (x )≤b 的解集是[a ,b ],所以f (a )=f (b )=b .由⎩⎪⎨⎪⎧f (b )=b ,b >2 解得b =4,由⎩⎪⎨⎪⎧f (a )=4,a <2解得a =0. 16.若实数x ,y 满足x 2+4y 2+4xy +4x 2y 2=32,则x +2y 的最小值为________,7(x +2y )+2xy 的最大值为________.答案 -4216解析 因为x 2+4y 2+4xy +4x 2y 2=32,所以(x +2y )2+4x 2y 2=32,则(x +2y )2≤32,-42≤x +2y ≤42,即x +2y 的最小值为-4 2.由(x +2y )2+4x 2y 2=32,不妨设⎩⎨⎧x +2y =42sin θ,2xy =42cos θ,则7(x +2y )+2xy =42(7sin θ+cos θ)=16sin(θ+φ),其中tan φ=77,所以当sin(θ+φ)=1时,7(x +2y )+2xy 取得最大值16. 17.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a <0.因为方程(x -2)⎝⎛⎭⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅; 当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0, 根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. 18.(2016·浙江卷)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34,又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学难点之三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x=|a -1|+2的根的取值X 围. ●案例探究[例1]已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值X 围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-ab 2,x 1x 2=ac .|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a acc a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得a c ∈(-2,-21) ∵]1)[(4)(2++=a c ac a cf 的对称轴方程是21-=a c . a c ∈(-2,-21)时,为减函数 ∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).[例2]已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的X 围. (2)若方程两根均在区间(0,1)内,求m 的X 围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) ●锦囊妙计1.二次函数的基本性质 (1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-ab2)=m ; 若-ab2≥q ,则f (p )=M ,f (q )=m . 2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0; (2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0; (2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+a b 2|,当a <0时,f (α)<f (β)⇔|α+ab2|> |β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 ●歼灭难点训练 一、选择题1.(★★★★)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值X 围是( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)2.(★★★★)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A.正数B.负数C.非负数D.正数、负数和零都有可能 二、填空题3.(★★★★★)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值X 围是_________.4.(★★★★★)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值X 围是_________.三、解答题5.(★★★★★)已知实数t 满足关系式33log log aya t a a= (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值.6.(★★★★)如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值X 围.7.(★★★★★)二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证:(1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2 (1)当-23≤a <1时,原方程化为:x =-a 2+a +6,∵-a 2+a +6=-(a -21)2+425. ∴a =-23时,x mi n =49,a =21时,x max =425. ∴49≤x ≤425. (2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12.综上所述,49≤x ≤12. 歼灭难点训练一、1.解析:当a -2=0即a =2时,不等式为-4<0,恒成立.∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的X 围是-2<a ≤2. 答案:C2.解析:∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0.答案:A二、3.解析:只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1.∴p ∈(-3,23). 答案:(-3,23) 4.解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 答案:-2<x <0三、5.解:(1)由log a 33log aya t t =得log a t -3=log t y -3log t a 由t =a x 知x =log a t ,代入上式得x -3=xx y a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0).(2)令u =x 2-3x +3=(x -23)2+43(x ≠0),则y =a u ①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值. ②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值 ∴当x =23时,u mi n =43,y mi n =43a由43a=8得a =16.∴所求a =16,x =23. 6.解:∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意.(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm 解得0<m ≤1综上所述,m 的取值X 围是{m |m ≤1且m ≠0}. 7.证明:(1)])1()1([)1(2r m m q m m p p m m pf ++++=+])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0. (2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m)内有解; 若r ≤0,则f (1)=p +q +r =p +(m +1)=(-m r m p -+2)+r =mrm p -+2>0, 又f (1+m m )<0,所以f (x )=0在(1+m m,1)内有解. ②当p <0时同理可证.8.解:(1)设该厂的月获利为y ,依题意得 y =(160-2x )x -(500+30x )=-2x 2+130x -500 由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元.(2)由(1)知y =-2x 2+130x -500=-2(x -265)2+1612.5 ∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.。