单管共射放大电路Multisim仿真实验

合集下载

单管共射放大电路Multisim仿真实验

单管共射放大电路Multisim仿真实验

单管共射放大电路Multisim仿真实验
Lt
D
单管共射放大电路Multisim仿真
1.实验目的:在Multisim中构建单管共射放大电路,测量其
静态工作点,观察输入输出波形,测量输入输出电阻
2.实验器材(双踪示波器,万用表,电阻,电容,电源)
3.实验过程:
(1).测量静态工作点
〔2〕.观察Ui,Uo
〔3〕,当Ui=9.998mv时候
为了测量输出电阻R0,将RL开路的Uo’=1.567v
如图:
2.分压式工作点稳定电路Multisim仿真
〔1〕构建电路图,电路中三极管β=30,rbb`=300Ω
测得静态工作状态UBQ,UCQ,UEQ,IBQ,ICQ
(2).U0,Ii,示波器U0和UI相反
〔3〕.换上β=60的三极管后测得静态UBQ,UCQ,UEQ,IBQ,ICQ
反应放大电路Multisim仿真
1.实验目的:利用Multisim的直流工作点分析功能测量放大
电路的静态工作点
2.实验器材:双踪示波器,万用表,电阻,电容,电源.
3.实验过程
(1).构建如下电路图
(2). 利用Multisim的直流工作点分析功能测量放大电路的静态工作点
4.实验结果如图:。

Multisim10对单管共射放大电路的仿真与研究

Multisim10对单管共射放大电路的仿真与研究

Multisim10对单管共射放大电路的仿真与研究作者:李瑞金来源:《电子技术与软件工程》2016年第19期摘要模拟电子技术基础属于电类学科的专业基础课,作为一门理实一体化课程,对后续课程的学习影响较大。

为降低学生学习模拟电子技术课程的难度,在教学及实验过程中引入了Multisim10软件。

通过使用Multisim10可以使学生理论学习过程不再抽象,实验过程中,虚实结合,相辅相成很好地推动了实验教学,使实验教学更加容易,也能使学生学习轻松。

本文以模拟电子技术基础中的单管共射放大电路为例,对其进行了仿真分析研究。

在仿真的同时,不仅继续学习理解了模拟放大电路的相关知识,也熟练掌握了Multisim10的使用方法,更展现了软件的强大功能。

【关键词】Multisim10 模拟电子技术仿真软件模拟电子技术基础是高校电子、电气、自动化等理工科专业的专业基础课,是一门理论和实际紧密结合应用性很强的一门课程。

通过这门课的学习希望学生能够掌握基本放大电路的分析计算能力。

在长期的教学中,发现很多学生在学习这门课程时比较吃力。

理论学习过程中对晶体管构成的放大电路,感觉抽象不能较好的理解。

而在具体的实验过程中不能熟练的选用元器件,搭建电路,常因选用电路搭建不合理,测量方法不对而使实验设备损坏不能正常进行实验。

另外实验测量数据受各方面影响不够准确,不能帮助学生更好的理解放大电路的特性。

使得一门实用性很强的课程,变得学生怕学,老师怕教。

基于此我们在教学过程中引入了Multisim仿真软件。

理论教学过程中可以通过Multisim演示一边进行修改元件参数一边进行实验,直观的显示出各项数据及波形图与原理图。

实验教学过程中,可以先让学生进行Multisim 仿真,实验不消耗实际元件,必需的元件种类与数量没有限制,成本低,速度快,效率高;然后再动手搭建实际电路,减少了不必要的错误。

在这个过程中学生可以方便快速地对比和探究仿真电路和实际电路的区别。

multisim单管放大电路

multisim单管放大电路

ultisim单管放大电路实验一单管放大电路实验目的:1、掌握单管放大电路的电路特性;2、掌握单管放大电路的各项参数的测试方法;3、学习MULTISIM仿真软件的使用。

实验步骤:1、用MULTISIM仿真软件绘制电路图;2、共发射极放大电路的静态工作点的调整;3、共发射极放大电路的电压放大倍数的测量;4、共发射极放大电路的输入电阻的测量;5、共发射极放大电路的输出电阻的测量。

实验内容:一、共发射极放大电路1、元件选取1)电源V1:Place Sourc e→POWER_SOURCES→DC_POWER。

(此处的含义为:单击元器件工具栏的Place Source按钮,在打开的窗口的Family列表框中选择POWER_SOURCES,再在Component列表框中选择DC_POWER)2)接地:Place Source→POWER_SOURCES→GROUND,选取电路中的接地。

3)信号源V2:Place Source→SIGNAL_VOLTAGE_SO→AC_VOLTAGE,需要注意,默认的电压为1V,需要设置电压为2mV。

4)电阻:Place Basic→RESISTOR,选取2KΩ、10KΩ和750KΩ。

5)电容:Place Basic→CAPACITOR,选择10uF。

6)三极管:Place Transistor→GJT_NPN→2N222A。

2、电路组成将元器件及电源放置在仿真软件工作窗口合适的位置,连接成图1-1所示的仿真电路。

C110µFC210µFRB750kΩRC2.0kΩV112 VQ12N2222AR310kΩV22mVpk1kHz0°13452图1-1 仿真电路图3、电路仿真1)分析直流工作点首先在Sheet Properties对话框的Circuit选项卡中选中Show All选项。

然后执行菜单命令Simulation→Analysis,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图1-2所示。

基于multisim电子线路实验报告

基于multisim电子线路实验报告

实验一三极管输出曲线测量1. 实验目的1)熟悉multisim软件平台,掌握其“菜单栏”、“工具栏”、“元件库”和“仪表工具栏”及“电路窗口”的使用方法等。

2)熟悉如何在multisim创建和连接电路,并进行仿真试验。

3)通过三极管输出特性曲线的测试实验,来观察三极管输出电流i C、和基极电流i B及输出电压v CE的关系。

2. 实验电路及仪器设备1)实验电路三极管输出特性曲线测试电路如图1-1所示。

图1-1(a)逐点测量法电路图1-1(b)三极管输出特性曲线测试电路2)实验仪器设备虚拟数字式万用表XMM等3. 实验内容及步骤1)逐点测量法(根据所得数据绘图)2)利用DC Sweep Analysis 来测量(直接附图)4. 分析实验结果实验二单管共射极放大电路1. 实验目的1)掌握放大电路的静态工作点和电压放大倍数的测量方法。

2)了解电路元件参数改变对静态工作点和电压放大倍数的影响。

2)掌握放大电路输入、输出电阻的测量方法。

2. 实验电路及仪器设备1)实验电路单管共射放大电路如图2-1所示。

2.1 单管放大电路(射极偏置放大电路)2)实验仪器设备虚拟双踪示波器;虚拟直流稳压电源;虚拟信号发生器;虚拟数字式万用表等3. 实验内容及步骤1)测量静态工作点Q测量值计算值U B(V)U C(V)U E(V)R B2(KΩ)U BE(V) U CE(V)I C(mA) 2)观察输入信号的变化对放大电路输出的影响(观察失真)3)测量电压放大倍数A V在图2.1所示电路中,双击示波器图标,从示波器上观测到输入输出电压值,计算电压放大倍数A V=V o/Vi,并和估算值进行比较,分析误差大小及原因。

4)测量输入电阻在输入回路中接入电压表和电流表(都设置为交流AC),如图2.2所示。

运行仿真开关,分别从电压表和电流表中读取数据,则Ri=Ui/Ii,测得频率为1KHZ时的输入电阻,并和估算值进行比较,分析误差大小及原因。

放大电路multisim实验报告

放大电路multisim实验报告

放大电路multisim实验报告1. 实验目的通过实验,熟悉和掌握放大电路的基本原理和放大倍数的计算方法。

2. 实验原理放大电路是指用于增大输入信号的电压、电流或功率的电路。

常用的放大电路有共射放大电路、共集放大电路和共基放大电路等。

本实验以共射放大电路为例进行研究。

共射放大电路是一种常见的放大电路,其特点是输入信号加在基极上,输出信号从集电极取出。

放大电路的放大倍数可通过直流负载线和交流负载线的交点来确定。

3. 实验器材和仪器- Multisim电路仿真软件- 电脑4. 实验步骤4.1 搭建电路在Multisim电路仿真软件中,选择适当的元件并搭建共射放大电路。

4.2 设置输入信号为电路添加一个函数信号发生器,设置输入信号的振幅和频率。

4.3 测量输出信号连接示波器,测量输出信号的波形。

4.4 计算放大倍数根据示波器上的波形,测量输入信号和输出信号的幅值,然后计算放大倍数。

5. 实验结果将示波器上测得的信号波形截图作为实验结果。

6. 实验讨论分析实验结果,讨论放大倍数是否符合预期,有无改进的空间。

7. 实验结论通过实验,我们成功搭建了共射放大电路,并计算出放大倍数。

实验结果和预期的结果相符。

通过这次实验,我们对放大电路的原理和计算方法有了更深入的了解。

8. 实验总结本次实验通过Multisim电路仿真软件,从搭建电路到测量输出信号,并计算出放大倍数。

实验过程中我们掌握了放大电路的基本原理和计算方法。

通过实验,我们发现实际电路中可能存在误差,因此在实际应用中应对放大电路进行优化和调整,以获得理想的放大效果。

基于Multisim的单极共射放大电路的仿真设计

基于Multisim的单极共射放大电路的仿真设计

基于Multisim的单极共射放大电路的仿真设计齐龙友( 安庆师范学院物理与电气工程学院安徽安庆 246011)指导教师:王鹏摘要: 随着计算机技术的发展,计算机辅助分析与设计在电子电路的设计中得到越来越广泛的应用。

文章叙述了利用Multisim软件对NPN型三极管进行输出特性曲线测试的方法和步骤,及对基本共射放大电路进行静态和动态分析的方法和设计过程。

关键词: Multisim,单极共射放大电路,仿真设计一、引言传统的电子线路分析主要是根据经验和成熟的电路数据来分析、计算、判断,若想更进一步地得到电路的相关数据或波形等参数,则需要搭建试验电路来进行测试,但这种方法费用高、效率低。

随着计算机技术的发展,采用计算机仿真来代替实际的实验电路,可以大大减少工作量,提高工作效率,还能保持仿真过程中产生的大量数据、图形,为电子线路整体分析与改进提供方便。

实验所需时间较长,加上仪器本身的缺陷,所采集到的数据量较少且误差较大, 使用Multisim软件能很好的解决这些问题,它具有直观的图形界面、丰富的元器件库、丰富的测试仪器、完备的分析手段和强大的仿真能力等特点。

Multisim 软件用虚拟的元件搭建各种电路、用虚拟的仪表进行各种参数和性能的测试。

本文将以三极管的单极共射放大电路为例,用Multisim 进行单极共射放大电路的性能设计并进行分析。

二、Multisim相关介绍1 Multisim简介Multisim是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力,它以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

毕业设计(论文)--基于multisim仿真实验的共射放大电路的研究

毕业设计(论文)--基于multisim仿真实验的共射放大电路的研究

邯郸学院本科毕业论文题目基于multisim仿真实验的共射放大电路设计与研究学生指导教师教授年级2007级专业物理学系部物理与电气工程系邯郸学院物理与电气工程系学院2011年5月郑重声明本人的毕业论文是在指导教师张劼的指导下独立撰写完成的。

如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督。

特此郑重声明。

毕业论文作者(签名):年月日摘要单管共射放大电路在不同频率的工作信号下将影响其电压增益。

在这里,我们从理论分析单管共射放大电路入手,研究其产生频率响应的主要原因,然后用multisim进行仿真,通过改变电路参数观察对电路的上、下限截止频率产生的影响。

之后继续对特定的共射放大电路进行通频带的仿真测试并对单管共射放大电路的频率响应进行讨论,以加深对频率响应的理解。

关键词共射放大电路频率响应截止频率仿真实验Abstract目录摘要 (I)ABSTRACT (II)1 引言 (1)2 背景介绍 (1)3 频率响应的基本概念 (1)3.1高通电路 (1)3.2低通电路 (3)4 晶体管高频小信号模型 (4)4.1BJT完整的混合π模型 (4)4.2简化的混合π模型 (5)4.3混合π模型的主要参数 (6)4.4BJT的频率参数 (7)5 共射放大电路的频率响应 (9)5.1共射放大电路的低频响应 (9)5.2共射放大电路的中频响应 (12)5.3共射放大电路的高频响应 (13)5.4频率改变对共射放大电路输出波形的影响 (16)6 关于共射放大电路的频率响应的讨论 (20)参考文献 (21)致谢 (22)基于multisim 仿真实验的共射放大电路设计与研究1 引言晶体管共射放大电路是放大电路的基础,也是模拟电子技术、电工电子技术等课程的经典实验项目,实验内容设计方面广,实践应用性强。

实际的共射放大电路中总是存在一些电抗性元件,如电容、电感、电子器件的极间电容以及接线电感与接线电容等。

模电实验单级共射放大电路

模电实验单级共射放大电路

模电实验单级共射放⼤电路单极共射放⼤电路⼀、实验⽬的(1)掌握⽤Multisim 13 仿真软件分析单极放⼤电路主要性能指标的⽅法。

(2)熟悉掌握常⽤电⼦仪器的使⽤⽅法,熟悉基本电⼦元器件的作⽤。

(3)学会并熟悉“先静态后动态”的电⼦线路的基本调试⽅法。

(4)分析静态⼯作点对放⼤器性能的影响,学会调试放⼤器的静态⼯作点。

(5)掌握放⼤器的放⼤倍数、输⼊电阻、输出电阻及最⼤不失真输出电压的测试⽅法。

(5)测量放⼤电路的频率特性。

⼆、实验原理1.基本电路电路在接通直流电源CC V ⽽未加⼊输⼊信号时(通过隔直流电容1C 将输⼊端接地),电路中产⽣的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的⼀个⼯作点,称为静态⼯作的Q 。

三极管的静态⼯作点可⽤下式近似估算:)7.0~6.0(=BEQ V V 硅管;(0.2~0.3)V 锗管()e c CQ CC CEQ R R I V V +-=CC P BQ V R R R R V 212++= EBEQBQ EQ CQ R V V I I -=≈βCQ BQ I I =2.静态⼯作点的选择放⼤器静态⼯作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。

在晶体管低频放⼤电路中,静态⼯作点的选择及稳定具有举⾜轻重的作⽤,直接关系到放⼤电路能否正常可靠地⼯作。

若⼯作点偏⾼(C I 放⼤),则放⼤器在加⼊交流信号以后易产⽣饱和失真,此时输出信号o u 的负半周将被削底;若⼯作点偏低,则易产⽣截⽌失真,即o u 的正半周被削顶(⼀般截⽌失真不如饱和失真明显)。

这些情况都不符合不失真放⼤的要求。

所以在选定⼯作点以后还必须进⾏动态调试,即在放⼤电路的输⼊端加⼊⼀定的输⼊电压i u ,并检查输出电压o u 的⼤⼩和波形是否满⾜要求。

如不满⾜,则应调节静态⼯作点的位置。

还应说明的是,上⾯所说的⼯作点“偏⾼”或“偏低”不是绝对的,应该是相对信号的幅度⽽⾔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管共射放大电路Multisim仿真
1.实验目的:在Multisim中构建单管共射放大电
路,测量其静态工作点,观察输入输出波形,测量输入输出电阻
2.实验器材(双踪示波器,万用表,电阻,电容,电源)
3.实验过程:
(1).测量静态工作点
(2).观察Ui,Uo
(3),当Ui=时候
为了测量输出电阻R0,将RL开路的Uo’=如图:
2.分压式工作点稳定电路Multisim仿真
(1)构建电路图,电路中三极管β=30,rbb`=300Ω
测得静态工作状态UBQ,UCQ,UEQ,IBQ,ICQ
(2).U0,Ii,示波器U0和UI相反
(3).换上β=60的三极管后测得静态UBQ,UCQ,UEQ,IBQ,ICQ
反馈放大电路Multisim仿真
1.实验目的:利用Multisim的直流工作点分析功能测量放大电路的静态工作点
2.实验器材:双踪示波器,万用表,电阻,电容,电源.
3.实验过程
(1).构建如下电路图
(2). 利用Multisim的直流工作点分析功能测量放大电路的静态工作点
4.实验结果如图:。

相关文档
最新文档