圆柱与圆锥试卷分析
《圆柱与圆锥》单元检测 试卷分析 试卷讲评课教案

《圆柱与圆锥》检测题试卷分析试卷讲评教案第三单元检测题姓名:等级:一、认真读题,谨慎填写。
1.沿着圆柱的高剪,侧面展开得到一个(),它的一条边就等于圆柱的(),另一条边就等于圆柱的()。
2.8050毫升=()升()毫升; 9时15分=()2.8立方米=()立方分米; 6000毫升=()升5平方米40平方分米=()平方米 5.4平方分米=()平方厘米3.把一段圆柱形木料削成一个最大的圆锥,削去部分是圆锥体积的()倍。
4.一个圆柱的底面周长是12.56厘米,高是5厘米,它的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。
5.一个长方形长5厘米,宽4厘米,如果以宽为轴旋转一周得到一个立体图形,得到的是(),这个图形的体积是()立方厘米。
6.一个盛满水的圆锥体容器高9厘米,如果将水全部倒入与它等底等高的圆柱体容器中,则水高()厘米。
7.做一节底面直径为10分米,长40分米的烟筒,至少需要()平方分米铁片。
8.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.9.一圆柱形罐头盒,高是1分米,底面周长6.28分米,罐头盒的侧面商标纸的面积最大是()平方分米,这个罐头盒至少要用()平方分米的铁皮。
10.一根长4米,横截面半径为2分米的圆柱形木料截成同样长的5段,表面积比原来增加()平方分米。
11.一个圆柱高减少4cm,则侧面积减少12.56cm²,这个圆柱底面积是()cm²12.一个圆柱高减少4厘米,则侧面积减少12.56平方厘米,这个圆柱底面积是()平方厘米。
13.如图,把一个圆柱沿半径切割成若干等份后拼成一个近似的长方体。
长方体的长是12.56cm,高是3cm.圆柱的底面积是()cm²,圆柱的体积是( )cm³二、反复比较,精心选择。
1.下面()图形是圆柱的展开图。
(单位:cm)2.求圆柱形木桶内盛多少升水,就是求水桶的()。
青岛版数学五年级下第四单元试卷分析

参考人数
58人
年 级
5(2)班
内 容
第四单元试卷分析
分
析
情
况
一、试卷总体分析:
本单元的主要内容是圆柱和圆锥。包括圆柱特征、侧面积、表面积、体积和圆锥特征、体积等知识。
基础知识掌握情况:本次单元检测难易程度适中,以基础题目为主,同时带着一些生活实际问题和概念性问题,从检测结果看,学生对本单元的基础性知识,如圆柱的侧面积、表面积、体积,还有圆锥体积计算等等掌握的不牢固,尤其后进生,学习困难导致低分。
3、练习的形式要多样,对于易混题加强辨析系生活实际,把数学知识应用于生活中去。
二、不足之处;
部分学生对于圆柱侧面积公式的推导不能理解,导致在做题过程中公式运用错误;等底等高圆柱和圆锥的体积关系不能熟练运用解决问题;不能灵活运用公式,出错率较高。
三、在今后的线上教学中,要注意从这几方面加以改进:
1、加强审题能力的培养,让学生从细节着手,分析每一道题。
2、注重灵活运用知识能力的培养,学会分析的方法,能够举一反三,不想当然做题。
小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。
练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。
A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。
1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。
(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。
圆柱与圆锥试卷分析5篇范文

圆柱与圆锥试卷分析5篇范文第一篇:圆柱与圆锥试卷分析圆柱与圆锥试卷分析一、计算错误1、带小数的计算容易错,计算表面积和体积的时候都会用到3.14,致使计算繁琐,导致计算错误较多。
2、没有注意到题目中单位的不统一,导致计算错误。
措施:加强小数乘除法计算练习,特别是对于和3.14相乘的计算练习;强制养成读题习惯。
二、概念不清1、圆柱中何时需要计算“两个底面”“一个底面”“没有底面”搞不清。
这个有些和生活经验有关,比如“通风管”。
2、极少数学生在应用的时候搞不清算的是表面积还是体积。
3、个别学生圆锥体积计算时没有乘三分之一。
三、等底等高的圆柱和圆锥的体积之间的关系。
1、前提:等底等高。
类似判断题:圆锥的体积等于圆柱体积的三分之一。
2、概念延伸。
(1)圆柱的体积是和它等底等高的圆锥体积的3倍。
(2)把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的2倍。
(3)把一个圆柱削成一个最大的圆锥,削去部分的体积是圆柱体积的三分之二。
(4)把一个圆柱削成一个最大的圆锥,圆锥的体积是削去部分体积的二分之一。
(5)把一个圆柱削成一个最大的圆锥,圆柱的体积是削去部分体积的二分之三。
(6)等底等高的圆锥和长方体之间的体积关系。
类似题目:(1)一个圆柱的体积和它等底等高的圆锥的体积相差18立方分米,这个圆锥的体积是多少?(2)把一个圆柱形的木块削成一个最大的圆锥,削去部分的质量是24g。
这个圆锥重多少克?3、等体积等底的圆柱和圆锥的高之间的关系。
“圆锥的高是和它等体积等底的圆柱高的3倍。
” 这个要通过结合图让学生在大脑中建立两者之间的表象。
类似题目:(1)一个圆柱与一个圆锥体积相等,底面积也相等。
已知圆柱的高是12厘米,圆锥的高是()。
(2)一个圆柱与一个圆锥体积相等,圆柱的底面积是圆锥底面积的2倍,那么圆柱的高是圆锥高的()。
4、将一个形状的铁块铸成另一个形状时,它们的质量和体积不变。
类似题目:(1)将一块质量为156克的钢材铸成一个底面积是12平方厘米的圆锥形零件,这个零件的高是多少?(这种钢材每立方厘米质量是7.8克。
北师大版小学数学六年级下册圆柱和圆锥单元测试卷附答案与试题解析

北师大版小学数学六年级下册圆柱和圆锥单元测试卷附答案与试题分析一、填空:(24 分)1.(2 分)圆柱的上、下两个面叫做,他们是的两个圆,两个底面之间的距离叫做高.2.(2 分)圆锥的底面是一个,从圆锥的极点究竟面_________的距离是圆锥的高.3.(2 分)等底等高的圆柱和圆锥,它们的体积一共是48 立方分米,那么圆锥体积是_立方分米.4.(2 分) 3.2 立方米 =5.(2 分)一个圆锥体的底面半径是立方分米;3 分米,高是500 毫升 =10 分米,它的体积是升.立方分米.6.(2分)一个圆柱体,底面半径是 2 厘米,高是 6 厘米,它的侧面积是平方厘米.7.(2 分)(2012?平坝县)圆锥体底面直径是 6 厘米,高3 厘米,体积是立方厘米.8.(2 分)一个无盖的圆柱形铁水桶,高是0.3 米,底面直径是 0.2 米,做 10 个这样的水桶起码要用铁皮平方米.9.(2 分)假如一个圆柱体的侧面睁开是个正方形,则这个圆柱的底面周长和高_________.10.(2 分)一个圆柱和一个圆锥等底等高,它们的体积和是24 立方分米,那么圆柱的体积是立方分米.11.(2 分)把一段圆钢切削成一个最大的圆锥,切削掉的部分是 6 千克,这个圆锥的重量是千克.12.(2 分)一个圆柱形木材长 16 分米,半径是 3 分米,把它锯成两段后,表面积增添了分米.二、判断题:(10 分)13.(2 分)底面积相等,体积也相等的圆柱和圆锥,圆锥的高是圆柱的 3 倍.()14.(2 分)(2010?芜湖县)长方体、正方体、圆柱和圆锥的体积都能够用“底面积×高”计算.()15.(2 分)(2011?荣昌县)圆锥的体积是圆柱体积的.()16.(2 分)长方形一边为轴,旋转一周形成的图形是一个圆柱.17.(2 分)(2012?广州一模)圆锥的底面半径扩大为本来的3为本来体积的 9 倍.()()倍,它的体积就扩大三、选择( 10 分)18.( 2 分)求圆柱形水桶能装水多少升,是求它的(少铁皮,是求它的()A .侧面积B.表面积C.体积19.(2 分)一个圆柱的高是7.5 分米,底面半径是);做一节圆柱形通风管要多D.容积10 厘米,它的体积是()立方厘米.A .2355B.23550C.D.20.(2 分)一个圆柱体铁块能够浇铸成()个与它等底等高的圆锥形铁块.A .1B.2C.3D.421.(2 分)圆锥的体积是120 立方厘米,高是10 厘米,底面积是()平方厘米.A .12B.36C.4D.822.(2 分)把一圆柱形木材锯成两段,增添的底面有()A .1B.2C.3D.4四、解答题(共 1 小题,满分 16 分)23.(16 分)脱式计算:×+6250÷25+16×12(﹣)(+ )×.五、解答题(共 1 小题,满分 8 分)24.(8 分)填空:已知圆柱表面圆柱体积圆锥体积积底面半径 5 厘米高 1.2 厘米底面直径 3.6 分米高 2 分米底面周长 1.884 米高 3 米六、25.(8 分)计算下边各图形的体积(单位:cm)七、解决问题:(24 分)26.(4 分)一个圆柱形汽油桶,底面直径是12 厘米,高 2 厘米,这个油桶能装多少毫升汽油?27.(4 分)(2011?安平县)用铁皮制作一个圆柱形油桶,底面直径 6 分米,高 10 分米.制作这个油桶起码要用铁皮多少平方分米?28.(4 分)一个圆柱形小孩游泳池底面半径是 4 米,深 0.5 米.在它的周围和池底抹上水泥,每平方米需要水泥 10 千克,一共用水泥多少千克?29.(4 分)一个圆锥形沙堆,底面周长是 25.12 米,高 1.8 米.假如每立方米沙重 1.7 吨,这堆沙子重多少吨?(得数保存整吨数)假如用载重 3.4 吨的汽车来运,一共要运多少次?30.(4 分)一根圆柱形钢材,底面直径是 4 厘米,长是 80 厘米,将它铸成直径是 20 厘米的圆柱形部件,这个部件的高是多少厘米?31.(4 分)(2007?北塘区)一家饮料生产商生产一种饮料,采纳圆柱形易拉罐包装,从易拉罐外面量,底面直径 6 厘米,高 12 厘米.易拉罐侧面有“净含量 340 毫升”的字样,请问这家饮料商能否欺诈了花费者?(请你经过计算、比较后说明问题)北师大版六年级下数学素质测试卷一圆柱和圆锥参照答案与试题分析一、填空:(24 分)1.(2 分)圆柱的上、下两个面叫做底面,他们是完整相同的两个圆,两个底面之间的距离叫做高.考点:圆柱的特色.专题:立体图形的认识与计算.剖析:依据圆柱的特色,圆柱的上、下两个叫做底面,它们是完整相同的两个圆,侧面是一个曲面,两个底面之间的距离叫做圆柱的高.解答:解:圆柱的上、下两个叫做底面,它们是完整相同的两个圆,两个底面之间的距离叫做圆柱的高.故答案为:底面,完整相同.评论:本题考察的目的是使学生坚固掌握圆柱的特色.2.(2 分)圆锥的底面是一个圆,从圆锥的极点究竟面圆心的距离是圆锥的高.考点:圆锥的特色.专题:立体图形的认识与计算.剖析:依据圆锥的特色,圆锥的底面是一个圆,侧面是个曲面,侧面睁开是一个扇形,从圆锥的极点究竟面圆心的距离叫做圆锥的高.解答:解:圆锥的底面是一个圆,从圆锥的极点究竟面圆心的距离叫做圆锥的高.故答案为:圆,圆心.评论:本题主要考察圆锥的特色,考察目的是使学生坚固掌握圆锥的特色及圆锥各部分的名称.3.(2 分)等底等高的圆柱和圆锥,它们的体积一共是 48 立方分米,那么圆锥体积是 12 立方分米.考点:圆锥的体积;圆柱的侧面积、表面积和体积.剖析:等底等高的圆柱的体积是圆锥的体积的 3 倍,把它们的体积之和均匀分红四份,那么圆锥的体积就是此中的 1 份,由此即可解答.解答:解:48÷(3+1)=12(立方分米);答:圆锥的体积是12 立方分米.故答案为: 12.评论:本题考察了等底等高的圆柱与圆锥的体积倍数关系的灵巧应用.4.(2 分) 3.2 立方米 = 3200立方分米;500 毫升升.考点:体积、容积进率及单位换算.专题:长度、面积、体积单位.剖析:把 3.2 立方米转变立方分米数,用 3.2 乘进率 1000;把500 毫升转变为升数,用 500 除以 1000;据此解答即可.解答:解:3.2 立方米 =3200 立方分米;500 毫升 =0.5 升;故答案为: 3200,.评论:解决本题重点是要熟记单位间的进率,知道假如是高级单位的名数转变成初级单位的名数,就乘单位间的进率;反之,就除以进率来解决.5.(2 分)一个圆锥体的底面半径是 3 分米,高是 10 分米,它的体积是 94.2 立方分米.考点:圆锥的体积.剖析:2,由此代入公式即可计算.圆锥的体积 =×πr h解答:2解:××3×10,= ××9×10,(立方分米);答:它的体积是94.2 立方分米.故答案为:.评论:本题考察了圆锥的体积公式的计算应用.6.(2 分)一个圆柱体,底面半径是2 厘米,高是6 厘米,它的侧面积是75.36 平方厘米.考点:圆柱的侧面积、表面积和体积.剖析:依据圆柱体的侧面积公式:s 侧 =ch,圆的周长公式是: c=πd,或 c=2πr,已知底面半径是 2 厘米,高是 6 厘米,直接依据侧面积公式解答.解答:解:2××2×6×6(平方厘米);答:它的侧面积是75.36 平方厘米.故答案为:.评论:本题主要考察圆柱体的侧面积计算,直接依据侧面积公式解答即可.7.(2 分)(2012?平坝县)圆锥体底面直径是 6 厘米,高 3 厘米,体积是 28.26 立方厘米.考点:圆锥的体积.专题:立体图形的认识与计算.剖析:依据圆锥的体积公式: v= sh,第一依据圆的面积公式求出圆锥的底面积,再把数据代入圆锥的体积公式解答.解答:解:×(6÷2)2×3,=×9×3,(立方厘米);答:圆锥的体积是28.26 立方厘米.故答案为: 28.26 立方厘米.评论:本题考察的目的要修业生坚固掌握圆锥的体积公式,能够依据圆锥的体积公式正确快速地计算圆锥的体积.8.(2 分)一个无盖的圆柱形铁水桶,高是 0.3 米,底面直径是 0.2 米,做 10 个这样的水桶起码要用铁皮 2.198 平方米.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.剖析:依据题意知道,先求出做一个圆柱形水桶需要的铁皮,其实是求水桶的侧面积加底面积,依照圆柱的侧面积 =底面周长×高,圆柱的底面积 =πr2,再乘 10 即可.解答:解:×(÷2)2××,×,,(平方米),×(平方米),答:做 10 个这样的水桶起码要用铁皮 2.198 平方米;故答案为:.评论:解答本题的重点是理解:做这类水桶要用铁皮的面积,其实是求水桶的侧面积加1个底面积.9.(2 分)假如一个圆柱体的侧面睁开是个正方形,则这个圆柱的底面周长和高相等.考点:圆柱的睁开图.专题:立体图形的认识与计算.剖析:由圆柱的侧面睁开图的特色可知:圆柱的侧面睁开后是一个长方形,长方形的长等于圆柱的底面周长,宽等于圆柱的高,又因睁开后是一个正方形,则圆柱的底面周长等于圆柱的高,据此即可进行解答.解答:解:由圆柱的侧面睁开图的特色可知:假如一个圆柱体的侧面睁开是个正方形,则这个圆柱的底面周长和高相等.故答案为:相等.评论:本题主要考察圆柱的侧面睁开图的特色.10.(2积是分)一个圆柱和一个圆锥等底等高,它们的体积和是18 立方分米.24 立方分米,那么圆柱的体考点:圆柱的侧面积、表面积和体积;圆锥的体积.剖析:依据等底等高的圆柱的体积与圆锥的体积之比是3:1,把它们的体积之和均匀分红4 份,那么圆柱占了此中 3 份,圆锥占了 1 份,由此即可解决问题.解答:解:因为等底等高的圆柱的体积与圆锥的体积之比是 3:1,3+1=4,因此圆柱的体积是: 24×=18(立方分米),答:圆锥的体积是 6 立方分米,圆柱的体积是18 立方分米.故答案为: 18.评论:本题考察了等底等高圆柱与圆锥的体积的倍数关系的灵巧应用.11.(2量是分)把一段圆钢切削成一个最大的圆锥,切削掉的部分是3 千克.6 千克,这个圆锥的重考点:简单的立方体切拼问题;圆锥的体积.专题:立体图形的认识与计算.剖析:圆柱内削出的最大的圆锥,与原圆柱等底等高,因此圆锥的体积是圆柱的体积的,则圆锥的体积就是削去部分的体积,削去的部分是 6 千克,依据分数乘法的意义即可求出圆锥的体积.解答:解:6× =3(千克),答:这个圆锥的体积是 3 千克.故答案为: 3.评论:本题考察了圆柱内最大的圆锥的特色以及等底等高的圆柱与圆锥的体积倍数关系的灵巧应用.12.(2 分)一个圆柱形木材长 16 分米,半径是 3 分米,把它锯成两段后,表面积增添了56.52 平方分米.考点:简单的立方体切拼问题;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.剖析:把圆柱切成相同长的 2 段后,表面积比本来增添了 2 个圆柱的底面积,由此依据圆柱的底面半径求出圆柱的底面积,再乘以2,即可解决问题.解答:解:×32×2,×2,(平方分米),答:表面积比本来增添了56.52 平方分米.故答案为: 56.52 平方.评论:抓住圆柱的切割特色,得出表面积是增添了圆柱的2 个底面积是解决此类问题的重点.二、判断题:(10 分)13.(2 分)底面积相等,体积也相等的圆柱和圆锥,圆锥的高是圆柱的3倍.正确.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.剖析:设圆锥和圆柱的底面积是S,体积是 V,依据圆柱与圆锥的体积公式可得出它们的高,由此即可解答.解答:解:设圆锥和圆柱的底面积是S,体积是 V,则:圆锥的高是:,圆柱的底面积是:,圆锥的高是圆柱的高的:÷=3,因此原题说法正确,故答案为:正确.评论:本题考察了圆柱与圆锥的体积公式的灵巧应用,这里可得结论:体积相等,底面积相等的圆锥的高是圆柱的高的 3 倍.14.(2 分)(2010?芜湖县)长方体、正方体、圆柱和圆锥的体积都能够用“底面积×高”计算.错误.考点:长方体和正方体的体积;圆柱的侧面积、表面积和体积;圆锥的体积.专题:压轴题.剖析:长方体、正方体、圆柱的体积都能够用底面积×高来计算,可是,圆锥的体积= ×底面积×高,由此即可判断.解答:解:因为圆锥的体积计算是×底面积×高,因此,原题说法错误.故答案为:错误.评论:本题考察了长方体、正方体、圆柱、圆锥的体积公式的灵巧应用.15.(2 分)(2011?荣昌县)圆锥的体积是圆柱体积的.错误.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:压轴题.剖析:依据圆柱和圆锥的体积公式可知:等底等高的圆锥的体积是圆柱体积的,由此即可判断.解答:解:只有在等底等高的状况下,圆锥的体积是圆柱体积的,因此原题说法错误.故答案为:错误.评论:本题考察了等底等高的圆柱与圆锥的倍数关系的性质,要注意数学语言的严实性.16.(2 分)长方形一边为轴,旋转一周形成的图形是一个圆柱.正确.考点:将简单图形平移或旋转必定的度数;圆柱的特色.专题:立体图形的认识与计算.剖析:本题是一个长方形绕着它的一边旋转一周,依据面动成体的原理即可得解.解答:解:以长方形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故答案为:正确.评论:依据圆柱体的形成可作出判断.本题主要考察圆柱的定义.17.(2 分)(2012?广州一模)圆锥的底面半径扩大为本来的来体积的 9 倍.正确.3 倍,它的体积就扩大为原考点:圆锥的体积;积的变化规律.专题:立体图形的认识与计算.剖析:因为圆锥的体积 = ×底面积×高,用公式表示为v= sh= πr2h,因此半径 r 扩大 3 倍,即:(3r)2=9r2,因此体积扩大9 倍.解答:解:圆锥的体积公式表示为v= sh= πr2h,因此半径 r 扩大 3 倍,即:(3r)2=9r2,因此体积扩大9 倍.因此原题说法正确.故答案为:正确.评论:本题考察了学生对圆锥体积公式的掌握状况,以及对问题的剖析判断能力.三、选择( 10 分)18.(2 分)求圆柱形水桶能装水多少升,是求它的(铁皮,是求它的()A .侧面积B.表面积C.体积);做一节圆柱形通风管要多少D.容积考点:圆柱的侧面积、表面积和体积;体积、容积及其单位.专题:立体图形的认识与计算.剖析:(1)依据容积的定义,即可解答;(2)因为圆柱形通风管没有底面只有侧面,要求做一节圆柱形通风管需要多少铁皮,就是求它的侧面积是多少,由此选择答案即可.解答:解:(1)依据容积的定义可知:求圆柱形水桶能装水多少升,就是求这个圆柱水桶的容积;(2)因为圆柱形通风管没有底面只有侧面,要求做一节圆柱形通风管需要多少铁皮,就是求它的侧面积是多少;应选: D;A.评论:本题是利用圆柱的知识解决实质问题,要仔细剖析题意,明确是利用圆柱的哪些知识来解答.19.(2分)一个圆柱的高是7.5 分米,底面半径是10 厘米,它的体积是()立方厘米.A .2355B.23550C.D.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.剖析:圆柱的体积 V= πr2h,由此代入数据即可解答.解答:解:7.5 分米 =75 厘米,2×10 ×75,×100×75,答:它的体积是23550 立方厘米.应选: B.评论:本题考察了圆柱的体积公式的灵巧应用,要注意单位一致.20.(2 分)一个圆柱体铁块能够浇铸成()个与它等底等高的圆锥形铁块.A .1B.2C.3D.4考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.剖析:依据等底等高的圆柱的体积是圆锥体积的 3倍,可知 1 个圆柱形的铁块能够铸成 3个与它等底等高的圆锥形铁块;据此解答即可.解答:解:因为等底等高的圆柱的体积是圆锥体积的 3 倍,因此 1 个圆柱形的铁块能够铸成 3 个与它等底等高的圆锥形铁块;应选: C.评论:本题主要考察了等底等高的圆柱的体积与圆锥的体积的关系.21.(2 分)圆锥的体积是 120 立方厘米,高是 10 厘米,底面积是()平方厘米.A .12B.36C.4D.8考点:圆锥的体积.专题:立体图形的认识与计算.剖析:圆锥的底面积 =体积×3÷高,由此代入数据即可解答.解答:解:120×3÷10,=360÷10,=36(平方厘米),答:底面积是 36 平方厘米.应选: B.评论:本题考察了圆锥的体积 = πr2h 的灵巧应用.22.(2 分)把一圆柱形木材锯成两段,增添的底面有()A .1B.2C.3D.4考点:简单的立方体切拼问题.专题:立体图形的认识与计算.剖析:依据圆柱的切割特色可知,把一圆柱形木材锯成两段,表面积增添的是 2 个圆柱的底面,由此即可选择.解答:解:依据题干剖析可得:把一圆柱形木材锯成两段,表面积增添的是2 个圆柱的底面,应选: B.评论:抓住圆柱的切割特色即可解答问题.四、解答题(共 1 小题,满分 16 分)23.(16 分)脱式计算:×+6250÷25+16×12(﹣)(+ )×.考点:分数的四则混淆运算;整数四则混淆运算;运算定律与简易运算.专题:运算次序及法例;运算定律及简算.剖析:(1)把除法改为乘法,先算乘法,再算加法;(2)先算除法和乘法,再算加法;(3)(4)先算括号内的,再算括号外的.解答:解:(1)×÷ +,=×× + ,=+ ,=;(2)6250÷25+16×12,=250+192,=442;(3)(﹣),=(﹣)×,=×,=;(4)(+)× ,=× ,=.评论:在脱式计算中,特别注意运算次序和运算法例,在计算过程中,能约分的要约分.五、解答题(共 1 小题,满分8 分)24.(8 分)填空:已知圆柱表面圆柱体积圆锥体积积底面半径 5 厘米高 1.2 厘米底面直径 3.6 分米高 2分米底面周长 1.884 米高 3米考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.剖析:2π ;圆柱的体积22因为圆柱的表面积 =2πrrh= r h= r h+2π ;圆锥的体积π ;因此题干中先利用直径除以 2 求出半径;利用底面周长÷π÷2求出半径,再利用上述公式代入数据,即可计算填空.解答:解:(1)圆柱的表面积是:×(5×2)××52×2=37.68+157,(平方厘米),圆柱的体积是:×52×(立方厘米),圆锥的体积是:×52××(立方厘米);(2)底面半径是:÷(分米),圆柱的表面积是:×××2×2,,(平方分米),圆柱的体积是:×2×(立方分米),圆锥的体积是:×2×2×(立方分米);(3)底面半径是:÷÷(米),圆柱的表面积是:××2×2,,圆柱的体积是:×2×(立方米),由以上计算能够填空:评论:本题考察了圆柱表面积、体积和圆锥的体积公式的灵巧应用,要修业生熟记公式即可解答.六、25.(8 分)计算下边各图形的体积(单位:cm)考点:圆柱的侧面积、表面积和体积;圆锥的体积.剖析:依据圆柱的体积公式: v=sh,圆锥的体积公式: v= sh,把数据代入公式计算即可.解答:解:×(10÷2)2×10,×25×10,=785(立方厘米);×(20÷2)2×15,=×100×15,=1570(立方厘米);答:圆柱体的体积是785 立方厘米,圆锥的体积是1570 立方厘米.评论:本题主要考察圆柱的体积和圆锥的体积计算,直接依据它们的体积公式解答即可.七、解决问题:(24 分)26.(4 分)一个圆柱形汽油桶,底面直径是12 厘米,高 2 厘米,这个油桶能装多少毫升汽油?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.剖析:依据圆柱的体积公式 V=sh=πr2h,代入数据即可求出油桶的体积,即油桶的容积.解答:解:×(12÷2)2×2,×36×2,×72,(立方厘米),226.08 立方厘米 =226.08 毫升,答:这个油桶能装226.08 毫升汽油.评论:本题主要考察了圆柱的体积公式V=sh=πr2h 的灵巧应用.27.(4 分)(2011?安平县)用铁皮制作一个圆柱形油桶,底面直径 6 分米,高 10 分米.制作这个油桶起码要用铁皮多少平方分米?考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.剖析:要求制作这个油桶起码要用铁皮,实质是求圆柱形油桶的表面积,由此依据圆柱的侧面积公式 S=ch=πdh 与 S=πr2,列式解答即可.××18,×78,(平方分米);答:制作这个油桶起码要用铁皮244.92 平方分米.评论:本题主要考察了圆柱的表面积的计算方法:圆柱的表面积=侧面积 +2个底面积.28.(4 分)一个圆柱形小孩游泳池底面半径是 4 米,深 0.5 米.在它的周围和池底抹上水泥,每平方米需要水泥10 千克,一共用水泥多少千克?考点:对于圆柱的应用题.专题:立体图形的认识与计算.剖析:要求共需多少千克水泥,需求出涂水泥的面积,即求圆柱的侧面积和一个底面积(缺乏上边),由此列式解答即可.解答:解:×4×2××42,,(平方米);×10=628(千克);答:共需 628 千克水泥.评论:本题主要考察圆柱表面积的实质应用,重点要弄清是求圆柱哪些面的面积,再依条件列式解答即可.29.(4 分)一个圆锥形沙堆,底面周长是 25.12 米,高 1.8 米.假如每立方米沙重 1.7 吨,这堆沙子重多少吨?(得数保存整吨数)假如用载重 3.4 吨的汽车来运,一共要运多少次?考点:对于圆锥的应用题.专题:立体图形的认识与计算.剖析:依据圆锥的体积公式V= sh,求出圆锥形沙堆的体积,从而求出沙堆的重量,最后用沙堆的重量除以 3.4 吨就是要求的答案.解答:解:底面半径:÷÷2=4(米),××42××,= ××16××,×,,≈51(吨);51÷3.4=15(次),答:一共要运 15 次.评论:本题主要考察了圆锥的体积公式的实质应用,注意计算时不要忘了乘.30.(4 分)一根圆柱形钢材,底面直径是 4 厘米,长是 80 厘米,将它铸成直径是 20 厘米的圆柱形部件,这个部件的高是多少厘米?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.剖析:先利用圆柱的体积公式求出这根钢材的体积,利用圆的面积公式求出圆柱形部件的底面积,则这个部件的高 =体积÷底面积.解答:解:××80÷×] ,÷314,(厘米),答:部件的高是 3.2 厘米.评论:本题考察了圆柱的体积公式的灵巧应用.31.(4 分)(2007?北塘区)一家饮料生产商生产一种饮料,采纳圆柱形易拉罐包装,从易拉罐外面量,底面直径 6 厘米,高 12 厘米.易拉罐侧面有“净含量 340 毫升”的字样,请问这家饮料商能否欺诈了花费者?(请你经过计算、比较后说明问题)考点:圆柱的侧面积、表面积和体积.专题:压轴题.剖析:先利用 V=sh 求出它的体积,再与“净含量 340 毫升”比较,从而判断真伪.解答:解:×(6÷2)2×12,×9×12,×108,(立方厘米);339.12 立方厘米 =339.12 毫升;339.12 毫升< 340 毫升.答:经过计算发现,这个圆柱形易拉罐的体积是 339.12 立方厘米,它里面的净含量应当比339.12 毫升还要小一些,跟产品注明的“净含量340 毫升”更是少些,因此该产品是欺诈了花费者.评论:本题考察的是运用圆柱知识解决实质问题,对于一个容器来说,它的容积要比它的体积小.。
2022-2023年冀教版数学六年级下册第四单元《圆柱和圆锥》单元测试卷带参考答案和解析

选择题圆柱有()多条高.A.一B.无数C.无法判断【答案】B【解析】试题分析:根据圆柱的高的定义,圆柱的高是指两个底面之间的距离,圆柱的两个底面都是圆形的,且上下底面互相平行,所以圆柱有无数条高.解答:解:圆柱两个底面之间的距离叫做圆柱的高,圆柱有无数条高.故选:B.选择题下图是三位同学测量圆锥高的方法,你认为()的方法正确.A. B. C.【答案】C【解析】根据圆锥高的含义:从圆锥的顶点到底面圆心的距离是圆锥的高,并结合选项进行解答即可.选择题圆锥的底面直径6厘米,高1.2分米,它的体积是()立方厘米。
A.113.04B.226.08C.56.52D.282.6【答案】A【解析】根据圆锥体积=底面积×高×,来解答。
1.2分米=12厘米3.14×(6÷2)²×12×=3.14×9×4=113.04(立方厘米)故答案为:A选择题一张正方形的纸围成的圆柱,它的侧面积和底面积的比是()。
A.π∶1B.1∶πC.1∶4πD.4π∶1【答案】D【解析】用一张正方形的纸围成一个圆柱,那么这个圆柱的侧面积就是正方形的面积;正方形的边长就是圆柱底面的周长,令正方形的边长为1,先求出圆柱底面的半径,进而求出圆柱底面积;再写出它的侧面积和底面积的比,进而化简成最简比得解。
令正方形的边长为1,那么圆柱的侧面积:1×1=1圆柱的底面半径:1÷2π=圆柱的底面积:圆柱的侧面积∶底面积=1∶=4π∶1故答案为:D选择题一个圆柱和一个圆锥等底等高,它们的体积相差28立方厘米,那么圆柱的体积是()立方厘米。
A. 14B. 28C. 42D. 84【答案】C【解析】等底等高的圆柱是圆锥体积的3倍,圆锥体积是1份,那么圆柱的体积就是3份,圆柱比圆锥多2份,所以用多的28立方厘米除以2即可求出1份是多少,再乘3就是圆柱的体积.28÷2×3=42(立方厘米)故答案为:C判断题一个圆锥的体积比与它等底等高的圆柱的体积小12立方厘米.这个圆锥的体积是4立方厘米.(_____)【答案】错误【解析】【解答】12÷2=6立方厘米,原题计算错误.故答案为:错误.判断题圆锥的体积是和它等底等高的圆柱体积的._____.【答案】正确【解析】略判断题如果圆锥的底面积是圆柱底面积的3倍,则圆锥和圆柱的体积相等.(____)【答案】错误【解析】圆柱和圆锥的体积与底面积和高的大小有关,只确定底面积,不确定高,就无法确定体积的大小.圆柱和圆锥的高不确定,无法确定圆柱和圆锥的体积,原题说法错误.故答案为:错误判断题两个底面直径相等的圆柱体,表面积也一定相等。
小升初数学总复习圆柱和圆锥做题要点与例题分析

小升初数学总复习圆柱和圆锥做题要点与例题分析圆柱和圆锥(1)圆柱和圆锥的特征(2)圆柱的表面积和体积要点:圆柱的侧面积 = 底面周长×高圆柱的表面积 = 侧面积 + 底面积× 2圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积×高,用含有字母的式子表示是:V = sh 或者V = лr²h 。
例题:用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)侧面积:3.14 × 3 × 15 = 141.3(平方分米)≈ 142(平方分米)例题:一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部 抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?底面积:25.12 ÷ 3.14 ÷ 2 = 4(米)3.14 × 4 ² = 50.24(平方米)侧面积:25.12 × 4 = 100.48(平方米)表面积:50.24 + 100.48 = 150.72(平方米)水泥质量: 150.72 × 20 = 3014.4千克例题:在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?3.14 ×(0.8÷2)² × 2 × 60 = 60.288(立方米)(3)圆锥的体积要点:圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。
即V = 31sh 或者V = 31лr ²h 。
六年级数学圆柱和圆锥试题答案及解析

六年级数学圆柱和圆锥试题答案及解析1.(1分)如图,这支铅笔的圆柱部分长度是圆锥的3倍,圆柱的体积是圆锥体积的倍.【答案】9【解析】观察图形可知:圆柱部分与圆锥部分的底面积相等,由此设圆柱部分与圆锥的部分的底面积为S,圆锥部分的高是h,圆柱部分的高是3h,利用圆锥与圆柱的体积公式即可求出圆柱的体积是圆锥体积的几倍,由此即可解决问题.解:设圆柱部分与圆锥的部分的底面积为S,圆锥部分的高是h,圆柱部分的高是3h,所以圆锥部分的体积为:Sh,圆柱部分的体积为:S×3h=3Sh,则圆柱的体积是圆锥体积的3sh÷sh=9;答;圆柱的体积是圆锥体积的9倍.故答案为:9.点评:此题考查了圆柱与圆锥的体积公式的灵活应用.2.(9分)一个底面半径为5厘米,高为28厘米圆柱形水桶装满水,另一个圆锥形空水桶,它的上口周长为56.52厘米,现在把圆柱形水桶里的水往圆锥形水桶里倒,当圆锥形水桶装满时,圆柱形水桶里还剩下13厘米高的水,求圆锥形水桶的高(结果保留两位小数).【答案】13.89厘米.【解析】已知圆柱水桶的高是28厘米,现在把圆柱形水桶里的水往圆锥形水桶里倒,当圆锥形水桶装满时,圆柱形水桶里还剩下13厘米高的水,水面下降了28﹣13=15厘米,根据圆柱的体积公式:v=sh,求出圆柱水桶中减少的水的体积,也就是圆锥形水桶的容积.再根据圆锥的容积公式:v=sh,用圆锥的体积除以除以底面积,即可求出高.解:3.14×52×(28﹣13)÷[3.14×(56.52÷3.14÷2)2],=3.14×25×15[3.14×92],=1177.5×3÷254.34,=3532.5÷254.34,≈13.89(厘米),答:圆锥形水桶的高约是13.89厘米.点评:此题解答关键是理解圆柱水桶中减少的水的体积等于圆锥形水桶的容积,再根据圆锥的容积公式解答.3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱与圆锥试卷分析
一、计算错误
1、带小数的计算容易错,计算表面积和体积的时候都会用到3.14,致使计算繁琐,导致计算错误较多。
2、没有注意到题目中单位的不统一,导致计算错误。
措施:加强小数乘除法计算练习,特别是对于和3.14相乘的计算练习;强制养成读题习惯。
二、概念不清
1、圆柱中何时需要计算“两个底面”“一个底面”“没有底面”搞不清。
这个有些和生活经验有关,比如“通风管”。
2、极少数学生在应用的时候搞不清算的是表面积还是体积。
3、个别学生圆锥体积计算时没有乘三分之一。
三、等底等高的圆柱和圆锥的体积之间的关系。
1、前提:等底等高。
类似判断题:圆锥的体积等于圆柱体积的三分之一。
2、概念延伸。
(1)圆柱的体积是和它等底等高的圆锥体积的3倍。
(2)把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的2倍。
(3)把一个圆柱削成一个最大的圆锥,削去部分的体积是圆柱体积的三分之二。
(4)把一个圆柱削成一个最大的圆锥,圆锥的体积是削去部分体积的二分之一。
(5)把一个圆柱削成一个最大的圆锥,圆柱的体积是削去部分体积的二分之三。
(6)等底等高的圆锥和长方体之间的体积关系。
类似题目:
(1)一个圆柱的体积和它等底等高的圆锥的体积相差18立方分米,这个圆锥的体积是多少?
(2)把一个圆柱形的木块削成一个最大的圆锥,削去部分的质量是24g。
这个圆锥重多少克?
3、等体积等底的圆柱和圆锥的高之间的关系。
“圆锥的高是和它等体积等底的圆柱高的3倍。
”
这个要通过结合图让学生在大脑中建立两者之间的表象。
类似题目:
(1)一个圆柱与一个圆锥体积相等,底面积也相等。
已知圆柱的高是12厘米,圆锥的高是()。
(2)一个圆柱与一个圆锥体积相等,圆柱的底面积是圆锥底面积的2倍,那么圆柱的高是圆锥高的()。
4、将一个形状的铁块铸成另一个形状时,它们的质量和体积不变。
类似题目:
(1)将一块质量为156克的钢材铸成一个底面积是12平方厘米的圆锥形零件,这个零件的高是多少?(这种钢材每立方厘米质量是7.8克。
)
(2)将一块底面积36平方厘米、高5厘米的圆锥形钢块和一块棱长6厘米的正方体铁块合铸成一根圆钢,
圆钢的横截面是2.3平方厘米。
这块圆钢的长度是多少?
- 2 -。