高中物理奥赛方法 对称法
高中物理竞赛方法集锦对称法7

高中物理竞赛方法集锦对称法7方法简介由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中. 应用这种对称性它不仅能关心我们认识和探究物质世界的某些差不多规律,而且也能关心我们去求解某些具体的物理咨询题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理咨询题,能够幸免复杂的数学演算和推导,直截了当抓住咨询题的实质,出奇制胜,快速简便地求解咨询题.赛题精析例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度.解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运动轨迹与无墙壁阻挡时小球连续前进的轨迹相对称,如图7—1—甲所示,因此小球的运动可以转换为平抛运动处理, 成效上相当于小球从A ′点水平抛出所做的运动. 依照平抛运动的规律:⎪⎩⎪⎨⎧==2021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h代入后可解得:hg s y g x v 2320== 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ.解析:小球的运动是斜上抛和斜下抛等三段运动组成, 假设按顺序求解那么相当复杂,假如视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解.物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″关于B 墙对称,如图7—2—甲所示,因此有⎩⎨⎧==⎪⎩⎪⎨⎧-==0221sin cos 200y d x gt t v y t v x 落地时θθ图7—1代入可解得20202arcsin 2122sin v dg v dg ==θθ所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终〝盯〞住对方,它们同时起动,经多长时刻可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹差不多上一条复杂的曲线,但依照对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,因此只要求出顶点到中心运动的时刻即可.由题意作图7—3, 设顶点到中心的距离为s ,那么由条件得 a s 33=由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为v v v 2330cos ==' 由此可知三角形收缩到中心的时刻为 va v s t 32='= 此题也能够用递推法求解,读者可自己试解.例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分不放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v .解析:在水平面参考系中建立水平方向的x 轴和y 轴.由系统的对称性可知中心或者讲槽整体将仅在x 轴方向上运动。
物理解题技巧高中对称法

物理解题技巧高中对称法物理解题技巧高中自然界和自然科学中,普遍存在着优美和谐的对称现象.对称性就是事物在变化时存在的某种不变性.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物和像等等.一般情况下对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.利用对称性解题时有时能一眼看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称性解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.静力学问题解题的思路和方法确定研究对象:并将“对象”隔离出来-。
必要时应转换研究对象。
这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。
分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。
以受力图表示。
根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。
对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。
认识物体的平衡及平衡条件对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度为零,则称为平衡,欲使质点平衡须有∑F=0。
若将各力正交分解则有:∑FX=0,∑FY=0。
这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论:这三个力矢量组成封闭三角形。
任何两个力的合力必定与第三个力等值反向。
对物体受力的分析及步骤明确研究对象分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法”作图时力较大的力线亦相应长些每个力标出相应的符号(有力必有名),用英文字母表示用正交分解法解题列动力学方程受力不平衡时一些物体的受力特征:轻杆或弹簧对物体可以有压力或者拉力。
绳子或橡皮筋可受拉力不能受压力,同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。
高中物理模型法解题——对称法模型

高中物理模型法解题———对称法解题模型【模型概述】物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题.【知识链接】一、运动学相关知识(一)竖直上抛运动1.竖直上抛运动的特点①初速度竖直向上.②只受重力作用的匀变速直线运动.③若以初速度方向为正方向,则a=-g.2. 竖直上抛运动的两种处理方法①分步处理上升阶段为初速度不为零的匀减速直线运动,;下降阶段为自由落体运动。
②整体处理整体而言,竖直上抛运动为初速度不为零的匀减速直线运动,设初速度的方向为正向,则加速度为。
3.竖直上抛运动的对称性①上升的最大高度,上升到最大高度所需时间上,下降到抛出点时所需时间下。
下落过程是上升过程的逆过程,所以质点在通过同一高度位置时,上升速度与下落速度大小相等、方向相反;物体在通过同一段高度的过程中,上升时间与下落时间相等。
②v-t图象和h-t图象中的对称性,如下图所示:(二)带电粒子在匀强磁场中的运动1.带电粒子在匀强磁场中的运动的处理方法①圆心的确定方法方法一若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心,如图(a);方法二若已知粒子运动轨迹上的两点和其中某一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,中垂线与垂线的交点即为圆心,如图(b)。
② 半径的计算方法方法一 由物理方程求:半径R =mv qB ;方法二 由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定。
高考物理复习热点解析—对称法

高考物理复习热点解析—对称法由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题。
应用对称性去求解某些具体的物理问题的思维方法在物理学中称为物理解题中的对称法。
例题1.(多选)如图所示,立方体ABCD EFGH的四个顶点A、C、F、H处各固定着一个电荷量均为Q的正点电荷,M为AC连线的中点,N为CH连线的中点。
下列说法正确的是()A.B、D两点处的电势相同B.M、N两点处的电势相同C.B、D两点处的电场强度相同D.M、N两点处的电场强度相同【答案】AB【解析】AC.设正方体中心为O,根据几何关系可知三角形ACH和ACF为全等的等边三角形。
设A、C、H在D点产生的电场强度为E1,电势为φ1;A、C、F在B点处产生的电场强度为E2,电势为φ2。
根据对称性可知φ1等于φ2,E1沿OD方向,E2沿OB方向。
而F在D 点产生的电场强度方向沿OD方向,H在B点产生的电场强度沿OB方向,根据对称性以及电场的叠加可知B、D两点电场强度大小相同、方向不同。
而F在D点产生的电势与H在B点产生的电势相等,则根据电势的叠加可知B、D两点电势相等,故A正确,C错误;BD.根据对称性可知A、C两点在M产生的合场强为零,F、H两点在M产生的合场强沿OM 方向;H 、C 两点在N 产生的合场强为零,A 、F 在N 产生的合场强沿ON 方向,根据对称性以及电场的叠加可知M 、N 两点电场强度大小相同、方向不同。
而A 、C 在M 产生的电势与H 、C 在N 产生的电势相等,H 、F 在M 产生的电势又与A 、F 在N 产生的电势相等,根据电势的叠加可知M 、N 两点电势相等,故B 正确,D 错误。
故选AB 。
例题2.(多选)如图所示,一轻质弹簧下端系一质量为m 的书写式激光笔,组成一竖直悬挂的弹簧振子,在竖直平面内装有记录纸。
高中物理竞赛试题解题方法对称法3

高中物理竞赛试题解题方法:对称法针对训练1.从距地面高19.6m处的A点,以初速度为5.0m/s沿水平方向投出一小球. 在距A点5.0m处有一光滑墙,小球与墙发生弹性碰撞(即入射角等于反射角,入射速率等于反射率),弹回后掉到地面B处.求:B点离墙的水平距离为多少?2.如图7—17所示,在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q(与Q同号)的自由点电荷。
若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少?3.如图7—18所示是一个由电阻丝构成的平面正方形无穷网络,当各小段电阻丝的电阻均为R时,A、B两点之间的等效电阻为R/2,今将A,B之间的一小段电阻丝换成电阻为R′的另一端电阻丝,试问调换后A,B之间的等效电阻是多少?4.有一无限大平面导体网络,它由大小相同的正六角形网眼组成,如图7—19所示,所有六边形每边的电阻均为R0,求a,b两结点间的等效电阻。
5.如图7—20所示,某电路具有8个节点,每两个节点之间都连有一个阻值为2 的电阻,在此电路的任意两个节点之间加上10V 电压,求电路的总电流,各支路的电流以及电阻上消耗的总功率。
6.电路如图7—21所示,每两个节点间电阻的阻值为R ,求A 、B 间总电阻R AB 。
7.电路如图7—22所示,已知电阻阻值均为15Ω,求R AC ,R AB ,R AO 各为多少欧?8.将200个电阻连成如图7—23所示的电路,图中各P 点是各支路中连接两个电阻的导线上的点,所有导线的电阻都可忽略. 现将一电动势为ε,内阻为r 的电源接到任意两个P 点处,然后将任一个没接电源的支路在P 点处切断,发现流过电源的电流与没切断前一样,则这200个电阻R 1,R 2,…,R 100,r 1,r 2…,r 100应有下列的普遍关系:,100100332211r R r R r R r R ==== 这时图中AB 导线与CD 导线之间的电压等于 。
高中物理解题常用思维方法

高中物理解题常用思维方法高中物理解题常用思维方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果。
高中物理解题常用思维方法二、对称法对称性就是事物在变化时存在的某种不变性。
自然界和自然科学中,普遍存在着优美和谐的对称现象。
利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。
从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力。
用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。
高中物理解题常用思维方法三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点。
运用物理图象处理物理问题是识图能力和作图能力的综合体现。
它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效。
高中物理解题常用思维方法四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立。
求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径。
在分析弹力或摩擦力的有无及方向时,常利用该法。
高中物理解题常用思维方法五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件。
这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法。
高中物理对称法讲解教案

高中物理对称法讲解教案教学内容:对称法在物理中的应用
教学目标:
1. 了解对称法的基本概念和原理
2. 掌握对称法在物理中的具体应用
3. 能够运用对称法解决物理问题
教学重点:
1. 对称法的概念和原理
2. 对称法在物理中的应用
教学难点:
1. 如何正确理解和运用对称法
2. 如何将对称法应用到实际问题中
教学过程:
一、引入(5分钟)
1. 引出对称法在生活中的应用举例,引起学生的兴趣和思考
2. 提出本节课的学习目标和重点
二、讲解对称法的基本概念和原理(15分钟)
1. 定义对称法,介绍对称轴、对称平面等概念
2. 讲解对称法的基本原理和特点
三、对称法在物理中的应用(20分钟)
1. 以光学为例,讲解镜像对称和光的反射
2. 以电学为例,讲解电荷之间的对称性和电场的对称性
四、案例分析(15分钟)
1. 给出一个物理问题,要求学生根据对称法解答
2. 学生讨论解答并进行答案解析
五、课堂小结(5分钟)
1. 总结本节课的重点内容和学习收获
2. 强调对称法在物理中的重要性和应用
教学反思:
通过本节课的教学,学生能够理解对称法在物理中的应用,并能够灵活运用对称法解决物理问题。
同时,教师需要引导学生多进行例题训练,提高对称法的解题能力。
高中物理解题方法例话:8对称法

8对称法故事链接:1928年,英国物理学家狄拉克在解自由电子相对性波动方程时,由于开平方根而得出电子的能量有正负两个解,按照通常的观念,负能解通常被舍去,但是狄拉克为了保持数学上的对称美,将这个似乎没有意义的量描述的是带正电荷的电子,也就是电子的反粒子。
正电子预言不久后就被美国的另一位物理学家安德森发现。
这种科学的对称思维,使他后来提出了完全与众不同的反物质理论。
狄拉克也因此于1933年获得诺贝尔物理学奖。
其实对称是自然界广泛存在的一种现象,它显示出了物质世界的和谐美。
具有对称性的对象其对称部分的特征完全相同,一旦确定了一部分的特征,便可推出对称部分的特征,这种解决问题的方法称为对称法。
按照利用对称的种类可分为位置分布的对称、运动轨迹的对称和物理过程的对称。
下面分别举例说明。
(1) 位置分布的对称电场、磁场以及某些研究对象的位置分布都具有对称性,在对称的位置应具有相同的物理特征,巧妙利用位置分布的对称性可以方便的解决问题。
[例题1](2006年全国2理综)ab 是长为l 的均匀带电细杆,P 1、P 2是位于ab 所在直线上的两点,位置如图所示,ab 上电荷产生的静电场在P 1处的场强大小为E 1,在P 2处的场强大小为E 2,则以下说法正确的是( ) A .两处的电场方向相同,E 1>E 2 B .两处的电场方向相反,E 1>E 2 C .两处的电场方向相同,E 1<E 2 D .两处的电场方向相反,E 1<E 2解析:由对称性可知,P 1左端4l 的电荷和P 1右端4l的电荷在P 1 处产生的合场强为0,所以P 1处场强1E 是由杆右端2l的电荷产生。
P 2处场强2E 是由杆右端2l 的电荷和杆左端2l的电荷在P 2处产生合场强,又因为P 1、P 2两点又关于杆右端2l 对称,所以杆右端2l 的电荷在P 2处产生的场强大小也为1E ,假设杆左端2l的电荷在P 2处产生场强大小为E ',由叠加原理可知P 2处场强E E E '+=12,而P 1处场强大小为1E ,所以12E E >。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七、对称法方法简介由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。
应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。
利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。
赛题精析例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。
求小球抛出时的初速度。
解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A′点水平抛出所做的运动。
根据平抛运动的规律:2 x v t1y gt2=⎧⎪⎨=⎪⎩因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得:v0例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A和B ,间距为d ,一个小球以初速度v0从两墙正中间的O点斜向上抛出,与A和B各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。
解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。
物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有:020x v cos t 1y v sin t gt 2=θ⋅⎧⎪⎨=θ⋅-⎪⎩,落地时x 2d y 0=⎧⎨=⎩ 代入可解得:sin2θ =202gd v 所以,抛射角θ =12arcsin202gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物?解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。
由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得:a 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为:v ′= vcos30°由此可知三角形收缩到中心的时间为:t =s v '=2a 3v(此题也可以用递推法求解,读者可自己试解。
)例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R 。
槽内A 、B 两处分别放有一个质量也为m 的小球,AB间的距离为槽的直径。
不计一切摩擦。
现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度v0 。
解析:在水平面参考系中建立水平方向的x 轴和y 轴。
由系统的对称性可知中心或者说槽整体将仅在x 轴方向上运动。
设槽中心沿x 轴正方向运动的速度变为v 0 ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于如图7—4—甲所示的位置时,相对水平面的两个分速度为:v x = ωRsin θ + v 0 ①v y =-ωRcos θ ②B 球的运动与A 球的运动是对称的。
因系统在x 轴方向上动量守恒、机械能也守恒,因此:mv 0 + 2mv x = 2mv ③2×12m (2x v +2y v ) +12m 20v = 2×12mv 2 ④ 将①、②式代入③、④式得:3v 0 = 2v -2ωRsin θω2R 2 + 2ωRv 0sin θ +20v +1220v = v 2 由此解得:v 0 =23(1)v 当两球间距离为R 时,θ = 30°,代入可解得槽中心运动的速度为:v 0 =23(1)v 例5:用一轻质弹簧把两块质量各为M 和m 的木板连接起来,放在水平上,如图7—5所示,问必须在上面木板上施加多大的压力F ,才能使撤去此力后,上板跳起来恰好使下板离地?解析:此题可用能量守恒的观点求解,但过程较繁,而用弹簧形变的“对称性”求解就显得简洁明了。
若用拉力F 作用在m 上,欲使M 离地,拉力F 至少应为:F= (M+m)g根据弹簧的拉伸和压缩过程具有的对称性,故要产生上述效果,作用在m 上的向下的压力应为F = (M+m)g 。
例6:如图7—6所示,长为l 的两块相同的均匀长方形砖块A和B 叠放在一起,A 砖相对于B 砖伸出l 5,B 砖放在水平桌面上,砖的端面与桌面平行。
为保持两砖不翻倒,B 砖伸出桌面的最大长度是多少?解析:此题可用力矩平衡求解,但用对称法求解,会直观简洁。
把A 砖右端伸出B 端的l 5截去,补在B 砖的右端,则变成图7—6—甲所示的对称形状。
伸出最多时对称轴应恰好通过桌边。
所以:l-x = x +l 5解得B砖右端伸出桌面的最大长度为:x =25l 。
例7:如图7—7所示,OABC是一张水平放置的桌球台面。
取OA为x轴,OC为y轴,P是红球,坐标为(x ,y),Q是白球,坐标为(x1,y1)(图中未画出Q球在台面上的位置)。
已知OA = BC = 25dm ,AB = OC= 12dm 。
若P球的坐标为:x = 10dm ,y = 8dm处,问Q球的位置在什么范围内时,可使击出的Q球顺次与AB、BC、CO和OA四壁碰撞反弹,最后击中P球?解析:由于弹性碰撞反弹服从的规律与光线的反射定律相同,所以作P点对OA壁的镜像P1,P1对CO壁的镜像P2,P2对BC壁的镜像P3和P3对AB壁的镜像P4,则只需瞄准P4点击出Q球,Q球在AB壁上D点反弹后射向P3,又在BC壁上E点反弹后射向P2,依次类推,最后再经F ,G二点的反弹击中P点,如图7—7—甲所示。
但是,若反弹点E离B点太近,Q球从E点反弹后EP2线与CO的交点,可能不在CO壁的范围内而在CO的延长线上,这时Q球就无法击中CO壁(而击到OA壁上),不符合题目要求,所以,Q球能够最后按题目要求击中P球的条件是:反弹点D 、E 、F 、和G一定要在相应的台壁范围之内。
已知P点的坐标为(10 ,8),由此可知,各个镜像点的坐标分别为:P1(10,-8),P2(-10,-8),P3(-10,32),P4(60,32)设Q点的坐标为(x′,y′);直线QP4的方程为:Y-y′=32y60x'-'-(X-x′) ①D点在此直线上,X D = 25 ,由上式得:Y D =160x '-(800-32x ′+ 35y ′) ②直线DP 3的方程为:Y -Y D =-32y 60x '-'-(X -x D ) ③ E 点在此直线上,Y E = 12 ,由此式及②式得:x E = 25-132y '-(1-80 + 20x ′-35y ′) ④直线EP 2的方程为:Y -Y E =-32y 60x '-'-(X -x E ) F 点在此直线上,X F = 0 ,所以:Y F = 12-1060x '-(88-2x ′+ y ′) 最后,直线FP 1的方程为:Y -Y F =-32y 60x '-'-(X -x F ) ⑤ G 点在此直线上,Y G = 0 ,所以:X G =132y '-(-160 + 8x ′-10y ′) ⑥ 反弹点位于相应台壁上的条件为:D E F G 0Y 120X 250Y 120X 25⎫⎪⎪⎬⎪⎪⎭p p p p p p p p ⑦将③、④、⑤和⑥式代入⑦,除肯定满足无需讨论的不等式外,Q 球按题目要求击中P 球的条件成为:D EY 35y 20x 80X 35y 20x 80''-⎧⎨''-⎩p p :: F GY 5y 4x 80X 5y 4x 80''-⎧⎨''-⎩p p :: 上面共两个条件,作直线l 1 :35Y = 20X -80及l 2 :5Y = 4X -80如图7—7—乙所示,若Q 球位于l 2下方的三角形D 0AH 0内,即可同时满足⑧、⑨两式的条件,瞄准P 4击出,可按题目要求次序反弹后击中P 球,三角形D 0AH 0三个顶点的坐标如图7—7—乙所示。
例8:一无限长均匀带电细线弯成如图7—8所示的平面图形,其中AB 是半径为R 的半圆孤,AA ′平行于BB ′,试求圆心O 处的电场强度。
解析:如图7—8甲所示,左上1/4圆弧内的线元ΔL 1与右下直线上的线元ΔL 3具有角元Δθ对称关系。
ΔL 1电荷与ΔL 3电荷在O 点的场强ΔE 1与ΔE 3方向相反,若它们的大小也相等,则左上与右下线元电场强度成对抵消,可得圆心处场强为零。
设电荷线密度为常量λ ,因Δθ很小,ΔL 1电荷与ΔL 3电荷可看做点电荷,其带电量: q 1 = R Δθ⋅λ ,q 2 = ΔL 3⋅λ当Δθ很小时,有:q 2 =R cos cos ∆θ⋅λθ⋅θ又因为ΔE 1 = K 12q R ,ΔE 2 = K 22q r = K 2R cos ∆θ⋅λθ⋅22cos R θ= K 2R R ∆θλ,与ΔE 1的大小相同,且ΔE 1与ΔE 2方向相反。
所以圆心O 处的电场强度为零。
例9:如图7—9所示,半径为R 的半圆形绝缘线上、下1/4圆弧上分别均匀带电+q 和-q ,求圆心处O 的场强。
解析:因圆弧均匀带电,在圆弧上任取一个微小线元,由于带电线元很小,可以看成点电荷。
用点电荷场强公式表示它在圆心处的分场强,再应用叠加原理计算出合场强。
由对称性分别求出合场强的方向再求出其值。
在带正电的圆孤上取一微小线元,由于圆弧均匀带电,因而线密度λ =2q Rπ。
在带负电的圆弧上必定存在着一个与之对称的线元, 两者产生的场强如图7—9甲所示。
显然, 两者大小相等,其方向分别与x 轴的正、负方向成θ角,且在x 轴方向上分量相等。
由于很小,可以认为是点电荷,两线元在O 点的场强为ΔE = 2⋅2KR R ⋅∆θλsin θ =22K h R λ∆,方向沿y 轴的负方向,所以O 点的合场强应对ΔE 求和。