高中数学竞赛_数列【讲义】

合集下载

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

从简单情况考虑,就是一种以退为进的一种解题策略。

【苏教版】高中数学必修五第1课时:2.1《数列》课时讲义(江苏省启东中学)

【苏教版】高中数学必修五第1课时:2.1《数列》课时讲义(江苏省启东中学)

【苏教版】高中数学必修五第2章数列§2.1 数列的概念及其通项公式课时讲义【三维目标】:一、知识与技能1.通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;认识数列是反映自然规律的基本数学模型;2.了解数列的分类,理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式;3. 培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.二、过程与方法1.通过对具体例子的观察分析得出数列的概念,培养学生由特殊到一般的归纳能力;2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.3.通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);三、情感、态度与价值观1.体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。

2.在参与问题讨论并获得解决中,培养观察、归纳的思维品质,养成自主探索的学习习惯;并通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

【教学重点与难点】:重点:数列及其有关概念,通项公式及其应用。

难点:根据一些数列的前几项抽象、归纳数列的通项公式。

【学法与教学用具】:1. 学法:学生以阅读与思考的方式了解数列的概念;通过类比函数的思想了解数列的几种简单的表示方法;以观察的形式发现数列可能的通项公式。

2. 教学方法:启发引导式3. 教学用具:多媒体、实物投影仪、尺等.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1. 观察下列例子中的7列数有什么特点:(1)传说中棋盘上的麦粒数按放置的先后排成一列数:1,2,22,23,…,263(2)某种细胞,如果每个细胞每分钟分裂为2个,那么每过1分钟,1个细胞分裂的个数依次为1,2,4,8,16,…(3)π精确到0.01,0.001,0.0001…的不足近似值排成一列数:3.14,3.141,3.1415,3.14159,3.141592…(4)人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,则从出现那次算起,这颗彗星出现的年份依次为1740,1823,1906,1989,…(5)某剧场有10排座位,第一排有20个座位,后一排都比前一排多2个,则各排的座位数依次为:20,22,24,26,…,38(6)从1984年到今年,我国体育健儿共参加了6次奥运会,获得的金牌数依次排成一列数:15,5,16,16,28,32(7)"一尺之棰,日取其半,万世不竭"如果将"一尺之棰"视为1份,那么每日剩下的部分依次为1,12,14,18,116,... 这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗?思考问题,并理解顺序变化后对这列数字的影响.(组织学生观察这7组数据后,启发学生概括其特点,教师总结并给出数列确切定义)注意:由古印度关于国际象棋的传说、生物学中的细胞分裂问题及实际生活中的某些例子导入课题,既激活了课堂气氛,又让学生体会到数列在实际生活中有着广泛的应用,提高学生学习的兴趣。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛专题讲座竞赛中的数论问题

高中数学竞赛专题讲座竞赛中的数论问题

竞赛中的数论问题的思索方法一. 条件的增设对于一道数论命题,我们往往要首先解除字母取零值或字母取相等值等“平凡〞的状况,这样,利用字母的对称性等条件,往往可以就字母间的大小依次、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。

1. 大小依次条件及实数范围不同,假设整数x ,y 有大小依次x <y ,那么必有y ≥1,也可以写成,其中整数t ≥1。

例1. 〔22〕设m ,n 是不大于1981的自然数,1)(222=--m nm n ,试求22n m +的最大值。

解:易知当时,222=+n m 不是最大值。

于是不访设n >m ,而令1,n >u 1≥1,得-2(m -1mu 1)(22112=--u mu m 。

同理,又可令 u 1+ u 2,m >u 2≥1。

如此接着下去将得1= 1,而11+-+=i i i u u u ,i ≤k 。

故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故987,1597。

例 2. 〔匈牙利—1965〕怎样的整数a ,b ,c 满意不等式?233222c b ab c b a ++<+++解:假设干脆移项配方,得01)1()12(3)2(222<--+-+-c b b a 。

因为所求的都是整数,所以原不等式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12(3)2(222≤-+-+-c b b a ,从而只有1,2,1。

2. 整除性条件对于整数x ,y 而言,我们可以讨论其整除关系:假设,那么可令;假设x ∤y ,那么可令,0<r ≤1。

这里字母t ,r 都是整数。

进一步,假设a q |,b q |且a b >,那么q a b +≥。

结合高斯函数,设n 除以k ,余数为r ,那么有r k k n n +⎥⎦⎤⎢⎣⎡=。

还可以运用抽屉原理,为同余增设一些条件。

高中数学讲义:等比数列性质(含等差等比数列综合题)

高中数学讲义:等比数列性质(含等差等比数列综合题)

等⽐数列性质一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ¹,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,L 只是等差数列2、等比数列通项公式:11n n a a q-=×,也可以为:n mn m a a q-=×3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项(1)若b 为,a c 的等比中项,则有2a bb ac b c=Þ=(2)若{}n a 为等比数列,则n N *"Î,1n a +均为2,n n a a +的等比中项(3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+Û=4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na =当1q ¹时,则()111n n a q S q-=-可变形为:()1111111n n n a q a a S q qq q -==----,设11ak q =-,可得:n n S k q k=×-5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列(2)已知等比数列{}{},n n a b ,则有①数列{}n ka (k 为常数)为等比数列②数列{}na l (l 为常数)为等比数列,特别的,当1l =-时,即1n a ìüíýîþ为等比数列③数列{}n n a b 为等比数列④数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关:设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++L L ,则有:()()212212k m n mm m m k mkn n n k nn a q q q S a a a a q T a a a a a q q q -++++++++++++====++++++L L L L 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=-L L 2122332,k k k k k a a a S S +++++=-L L ,则232,,,k k k k k S S S S S --L 成等比数列7、等比数列的判定:(假设{}n a 不是常数列)(1)定义法(递推公式):()1n na q n N a *+=Î(2)通项公式:n n a k q =×(指数类函数)(3)前n 项和公式:n n S kq k=-注:若()n n S kq m m k =-¹,则{}n a 是从第二项开始成等比关系(4)等比中项:对于n N *"Î,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ìüíýîþ前n 项和n T 的关系()111n n a q S q-=-,因为1n a ìüíýîþ是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n n n n q a q q q T q a q q a q q-éùæö--êúç÷èøêú-ëû===---×()()1112111111n n n n n n a q a q q S a q T qq ----=×=--例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q ==答案:16例2:已知{}n a 为等比数列,且374,16a a =-=-,则5a =()A.64 B.64- C.8 D.8-思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==-×=-思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =-答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学 第二章 数列 2.1 数列名师讲义

高中数学 第二章 数列 2.1 数列名师讲义

2。

1数列2.1.1 数列预习课本P25~27,思考并完成以下问题(1)什么是数列?什么叫数列的通项公式?(2)数列的项与项数一样吗?(3)数列与函数有什么关系,数列通项公式与函数解析式有什么联系?(4)数列如何分类?分类的标准是什么?错误!1.数列的概念(1)数列:按照一定次序排列起来的一列数称为数列.(2)项:数列中的每一个数叫做这个数列的项.(3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,a n…简记为{a n}.[点睛](1)数列中的数是按一定顺序排列的.因此,如果组成两个数列的数相同而排列顺序不同,那么它们就是不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4是不同的数列.(2)在数列的定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.例如:1,-1,1,-1,1,…;2,2,2,….2.数列的通项公式如果数列的第n项a n与n之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.[点睛]同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.3.数列与函数的关系从映射、函数的观点看,数列可以看作是一个定义域为正整数集N+(或它的有限子集{1,2,3,…n})的函数,即当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式.数列作为一种特殊的函数,也可以用列表法和图象法表示.4.数列的分类(1)按项的个数分类:(2)按项的变化趋势分类:[小试身手]1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)数列1,1,1,…是无穷数列( )(2)数列1,2,3,4和数列1,2,4,3是同一个数列( )(3)有些数列没有通项公式( )解析:(1)正确.每项都为1的常数列,有无穷多项.(2)错误,虽然都是由1,2,3,4四个数构成的数列,但是两个数列中后两个数顺序不同,不是同一个数列.(3)正确,某些数列的第n项a n和n之间可以建立一个函数关系式,这个数列就有通项公式,否则,不能建立一个函数关系式,这个数列就没有通项公式.答案:(1)√(2)×(3)√2.在数列-1,0,错误!,错误!,…,错误!,…中,0。

高中数学竞赛专题讲座之二:数列

高中数学竞赛专题讲座之二:数列

高中数学竞赛专题讲座之二:数列一、选择题部分1.(2006年江苏)已知数列{}n a 的通项公式2245n a n n =-+,则{}n a 的最大项是(B )A .1aB .2aC .3aD .4a2.(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a =( )A .98B .99C .100D .101 3.(2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 (A ) A .2007 B .2008 C .2006 D .10044.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。

则满足不等 式|S n -n-6|<1251的最小整数n 是 ( )A .5B .6C .7D .8解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为-31的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)=311])31(1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1>250,∴满足条件的最小整数n=7,故选C 。

5.(集训试题)给定数列{x n },x 1=1,且x n+1=nn x x -+313,则∑=20051n nx= ( )A .1B .-1C .2+3D .-2+3解:x n+1=n n x x 33133-+,令x n =tan αn ,∴x n+1=tan(αn +6π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3,x 6=2-3, x 7=1,……,∴有∑===2005111n nx x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。

其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。

定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。

若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。

定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞→定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为qa -11(由极限的定义可得)。

定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。

竞赛常用定理定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。

定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。

二、方法与例题 1.不完全归纳法。

这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。

通常解题方式为:特殊→猜想→数学归纳法证明。

例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。

【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1=21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1=21,又a 1+a 2=22·a 2,所以a 2=231⨯,a 3=4311322⨯=-+1a a ,猜想)1(1+=n n a n (n ≥1).证明;1)当n =1时,a 1=121⨯,猜想正确。

2)假设当n ≤k 时猜想成立。

当n =k +1时,由归纳假设及题设,a 1+ a 1+…+a 1=[(k +1)2-1] a k +1,, 所以)1(1231121+⨯++⨯+⨯k k =k (k +2)a k +1, 即1113121211+-++-+-k k =k (k +2)a k +1,所以1+k k=k (k +2)a k +1,所以a k +1=.)2)(1(1++k k由数学归纳法可得猜想成立,所以.)1(1+=n n a n例3 设0<a <1,数列{a n }满足a n =1+a , a n -1=a +na 1,求证:对任意n ∈N +,有a n >1.【证明】 证明更强的结论:1<a n ≤1+a . 1)当n =1时,1<a 1=1+a ,①式成立;2)假设n =k 时,①式成立,即1<a n ≤1+a ,则当n =k +1时,有.11111111121=++>+++=++≥+=>++a a a a a a a a a a a kk由数学归纳法可得①式成立,所以原命题得证。

2.迭代法。

数列的通项a n 或前n 项和S n 中的n 通常是对任意n ∈N 成立,因此可将其中的n 换成n +1或n -1等,这种办法通常称迭代或递推。

例4 数列{a n }满足a n +pa n -1+qa n -2=0, n ≥3,q ≠0,求证:存在常数c ,使得121+++n n pa a ·a n +.02=+n n cq qa【证明】121+++n n pa a ·a n+1+221++=n n a qa (pa n +1+a n +2)+21+n qa =a n +2·(-qa n )+21+n qa =21221[)(+++=-n n n n a q a a a q +a n (pq n +1+qa n )]=q (2121n n n n qa a pa a ++++).若211222qa a pa a ++=0,则对任意n , n n n a pa a 121++++2n qa =0,取c =0即可.若211222qa a pa a ++≠0,则{n n n a pa a 121++++2n qa }是首项为211222qa a pa a ++,公式为q 的等比数列。

所以n n n a pa a 121++++2n qa =)(211222qa a pa a ++·q n . 取)(212122qa a pa a c ++-=·q1即可. 综上,结论成立。

例5 已知a 1=0, a n +1=5a n +1242+n a ,求证:a n 都是整数,n ∈N +. 【证明】 因为a 1=0, a 2=1,所以由题设知当n ≥1时a n +1>a n . 又由a n +1=5a n +1242+n a 移项、平方得.01102121=-+-++n n n n a a a a ①当n ≥2时,把①式中的n 换成n -1得01102112=-+---n n n n a a a a ,即.01102121=-+-++n n n n a a a a ②因为a n -1<a n +1,所以①式和②式说明a n -1, a n +1是方程x 2-10a n x +2n a -1=0的两个不等根。

由韦达定理得a n +1+ a n -1=10a n (n ≥2).再由a 1=0, a 2=1及③式可知,当n ∈N +时,a n 都是整数。

3.数列求和法。

数列求和法主要有倒写相加、裂项求和法、错项相消法等。

例6 已知a n =100241+n (n =1, 2, …),求S 99=a 1+a 2+…+a 99. 【解】 因为a n +a 100-n =100241+n +100100241+-n =10010010010010010021)44(2244422=++⨯++⨯--n n n n ,所以S 99=.29929921)(21101100991100=⨯=+∑=-n n n a a例7 求和:43213211⨯⨯+⨯⨯=n S +…+.)2)(1(1++n n n 【解】 一般地,)2)(1(22)2)(1(1++-+=++k k k kk k k k ⎪⎪⎭⎫ ⎝⎛++-+=)2)(1(1)1(121k k k k , 所以S n =∑=++nk k k k 1)2)(1(1⎥⎦⎤⎢⎣⎡++-+++⨯-⨯+⨯-⨯=)2)(1(1)1(143132132121121n n n n⎥⎦⎤⎢⎣⎡++-=)2)(1(12121n n .)2)(1(2141++-=n n 例8 已知数列{a n }满足a 1=a 2=1,a n +2=a n +1+a n , S n 为数列⎭⎬⎫⎩⎨⎧n n a 2的前n 项和,求证:S n <2。

【证明】 由递推公式可知,数列{a n }前几项为1,1,2,3,5,8,13。

因为n n n a S 228252322212165432+++++++= , ① 所以1543222523222121++++++=n n n a S 。

② 由①-②得12222222121212121+---⎪⎪⎭⎫ ⎝⎛++++=n nn n n a a S , 所以122412121+--+=n n n n a S S 。

又因为S n -2<S n 且12+n n a>0,所以412121+<n S S n , 所以2141<n S ,所以S n <2,得证。

4.特征方程法。

例9 已知数列{a n }满足a 1=3, a 2=6, a n +2=4n +1-4a n ,求a n . 【解】 由特征方程x 2=4x -4得x 1=x 2=2. 故设a n =(α+βn )·2n -1,其中⎩⎨⎧⨯+=+=2)2(63βαβα,所以α=3,β=0,所以a n =3·2n -1.例10 已知数列{a n }满足a 1=3, a 2=6, a n +2=2a n +1+3a n ,求通项a n . 【解】 由特征方程x 2=2x +3得x 1=3, x 2=-1,所以a n =α·3n+β·(-1)n,其中⎩⎨⎧+=-=βαβα9633,解得α=43,β43-=,所以11)1(3[41++-+=n n n a ·3]。

相关文档
最新文档