高中数学竞赛辅导讲义-第五章--数列【讲义】

合集下载

高中数学竞赛辅导讲座-数列(一)

高中数学竞赛辅导讲座-数列(一)

高中数学竞赛辅导讲座-数列(一)高中数学竞赛辅导讲座---数列一、学习目标数列是高中数学的重要内容之一,也是高考及高中数学联赛考查的重点。

而且往往还以解答题的形式出现,所以我们在复习时应给予重视。

近几年的数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。

二、知识要点(一)、数列的基础知识1.数列{an}的通项an与前n项的和Sn的关系它包括两个方面的问题:一是已知Sn求an,二是已知an求Sn; 1.1 已知Sn求an(n?1)?S1对于这类问题,可以用公式an=?.S?S(n?2)n?1?n1.2 已知an求Sn这类问题实际上就是数列求和的问题。

数列求和一般有三种方法:颠倒相加法、错位相减法和通项分解法。

?a?a2.递推数列:?1,解决这类问题时一般都要与两类特殊数列相联a?f(a)n?n?1系,设法转化为等差数列与等比数列的有关问题,然后解决。

(二)、等差数列与等比数列1.定义:数列{an}为等差数列?an+1-an=d?an+1-an=an-an-1;数列{bn}为等比数列?bn?1?q?bn?1?bn。

anbnbn?12.通项公式与前n项和公式:数列{an}为等差数列,则通项公式1(共16页)an=a1+(n-1)d, 前n项和Sn=n(a1?an)n(n?1)d=na1?.22(q?1)?na1?数列{an}为等比数列,则通项公式an=a1qn-1, 前n项和Sn=?a1(1?qn).(q?1)?1?q?3.性质:每连续m项的和若m+n=p+q,则am+an=ap+aq 仍组成等差数列,即 Sm,S2m-Sm,S3m-S2m组成等差数列每连续m项的和若m+n=p+q,则aman=apaq 仍组成等比数列,即Sm,S2m-Sm,S3m-S2m组成等比数列(4)函数的思想:等差数列可以看作是一个一次函数型的函数;等比数列可以看作是一个指数函数型的函数。

高考数学一轮复习 第五章 数列 5.4 数列求和课件.pptx

高考数学一轮复习 第五章 数列 5.4 数列求和课件.pptx
分组转化法求和的常见类型 1.若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求
{an}的前 n 项和. 2.通项公式为 an=cbnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}是等比 数列或等差数列,可采用分组求和法求和. 提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,
Sn=na12+an=_n_a_1_+__n_n_-2__1__d___.
(2)等比数列的前 n 项和公式: Sn=naa11-1-,aqqnq==1_a,_11_1-_-_q_q_n_,__q_≠__1_._ 2.倒序相加法 如果一个数列{an}的前 n 项中首末两端等“距离”的两项的和相等或等于同 一个常数,那么求这个数列的前 n 项和即可用倒序相加法,如等差数列的前 n 项 和公式即是用此法推导的.
1.必会结论 常用求和公式
前 n 个正整数之和 前 n 个正奇数之和
前 n 个正整数的平方和
前 n 个正整数的立方和
1+2+…+n=nn2+1 1+3+5+…+(2n-1)=n2
nn+12n+1 12+22+…+n2=________6_______
13+23+…+n3=nn+2 12
2.必知联系 (1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数 (字母)时,应对其公比是否为 1 进行讨论. (2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如 an,an+1 的式子应进行合并. (3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后 剩多少项.
(2)由(1)可得 bn=2n+n, 所以 b1+b2+b3+…+b10 =(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =211--2210+1+102×10 =(211-2)+55=211+53=2 101.

高中数学讲义 第五章 数列 (超级详细)

高中数学讲义 第五章 数列 (超级详细)
(2)这个数列的前 5 项是 2, 7, 10, 11, 10 ;(图象略)
(3)由函数 f (x) x2 8x 5 的单调性: (, 4) 是减区间, (4, ) 是增区间,
所以当 n 4 时, an 最小,即 a4 最小。
点评:该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解 决数列的问题有时非常方便。

2[(b1 b2 ... bn bn1) (n 1)] (n 1)bn1.
②;
②-①,得 2(bn1 1) (n 1)bn1 nbn , 即 (n 1)bn1 nbn 2 0, ③
∴ nbn2 (n 1)bn1 2 0. ④
③-④,得 nbn2 2nbn1 nbn 0, 即
数列的比较简单的数列进行化归与转化. 4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等. 5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.
第 1 课 数列的概念
【考点导读】 1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解 数列是一种特殊的函数; 2. 理解数列的通项公式的意义和一些基本量之间的关系;
∴ a1 an 60
(2)答案:2
因为前三项和为 12,∴a1+a2+a3=12,∴a2= S3 =4 3
又 a1·a2·a3=48, ∵a2=4,∴a1·a3=12,a1+a3=8, 把 a1,a3 作为方程的两根且 a1<a3, ∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选 B. 点评:本题考查了等差数列的通项公式及前 n 项和公式的运用和学生分析问题、解决问题的能力。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛讲义(免费)(完整资料).doc

高中数学竞赛讲义(免费)(完整资料).doc

【最新整理,下载后即可编辑】高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛辅导讲义 第五章 数列【讲义】

高中数学竞赛辅导讲义 第五章  数列【讲义】

第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。

其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。

定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。

若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛讲义(免费)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高考数学一轮复习 第五章 数列课件 湘教版


【解析】 方法一 由 a1=1,a2=5,an+2=an+1-an(n ∈N*)可得该数列为 1,5,4, 1,﹣1,﹣5,﹣4,1,5,4,…. 由此可得 a100=﹣1. 方法二 an+2=an+1-an,an+3=an+2-an+1, 两式相加可得 an+3=-an,an+6=an, ∴a100=a16×6+4=a4=﹣1. 【答案】﹣1
2n 1 an= 2n .
(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值的
按项与项 间的大小 关系分类
递增数列 递减数列 常数列 摆动数列
an+1 > an ( n∈N*) an+1 < an ( n∈N*) an+1 = an ( n∈N*) 从第二项起,有些项大于它的前一项,有些项小于它的前一项
3.数列与函数的关系 (1)从函数观点看,数列可以看成是以 正整数集N*(或N*的有限子集{1,2,3,…,n}) 为定义域的函数 an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一 列 函数值 . (2)数列同函数一样有 解析法 、 图象法 、 列表法 三种表示方法. 4.数列的通项公式
如果数列{an}的第 n 项 an 与 序号n 之间的关系可以用一个公式 an f n 来表
示,那么这个公式叫做这个数列的通项公式. 【思考探究】 一个数列的通项公式唯一吗?是否每个数列都有通项公式?
提示:不唯一,如数列-1,1, -1,1,…的通项公式可以是 an=(-1)n 或 1(1n(为n为正正偶奇数数).),有
A.3 B.4 C.5 D.6
【解析】 由 an+1<an,得 an+1-an=9-42n-11-4 2n=(9-2n)(8 11-2n)

2011全国高中数学竞赛讲义-数列、组合

§16排列,组合1.排列组合题的求解策略(1)排除:对有限条件的问题,先从总体考虑,再把不符合条件的所有情况排除,这是解决排列组合题的常用策略.(2)分类与分步有些问题的处理可分成若干类,用加法原理,要注意每两类的交集为空集,所有各类的并集是全集;有些问题的处理分成几个步骤,把各个步骤的方法数相乘,即得总的方法数,这是乘法原理.(3)对称思想:两类情形出现的机会均等,可用总数取半得每种情形的方法数.(4)插空:某些元素不能相邻或某些元素在特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入到排好的元素之间.(5)捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后与其它“普通元素”全排列,然后再“松绑”,将这些特殊元素在这些位置上全排列.(6)隔板模型:对于将不可辨的球装入可辨的盒子中,求装的方法数,常用隔板模型.如将12个完全相同的球排成一列,在它们之间形成的11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同的盒子中的方法数应为311C ,这也就是方程12=+++d c b a 的正整数解的个数.2.圆排列(1)由},,,,{321n a a a a A =的n 个元素中,每次取出r 个元素排在一个圆环上,叫做一个圆排列(或叫环状排列).(2)圆排列有三个特点:(i )无头无尾;(ii )按照同一方向转换后仍是同一排列;(iii )两个圆排列只有在元素不同或者元素虽然相同,但元素之间的顺序不同,才是不同的圆排列.(3)定理:在},,,,{321n a a a a A =的n 个元素中,每次取出r 个不同的元素进行圆排列,圆排列数为rP r n . 3.可重排列允许元素重复出现的排列,叫做有重复的排列.在m 个不同的元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序那么第一、第二、…、第n 位是的选取元素的方法都是m 种,所以从m 个不同的元素中,每次取出n 个元素的可重复的排列数为n m .4.不尽相异元素的全排列如果n 个元素中,有1p 个元素相同,又有2p 个元素相同,…,又有s p 个元素相同(n p p p s ≤+++ 21),这n 个元素全部取的排列叫做不尽相异的n 个元素的全排列,它的排列数是!!!!21s p p p n ⋅⋅⋅ 5.可重组合(1)从n 个元素,每次取出p 个元素,允许所取的元素重复出现p ,,2,1 次的组合叫从n 个元素取出p 个有重复的组合.(2)定理:从n 个元素每次取出p 个元素有重复的组合数为:r p n p n C H )1(-+=.例题讲解1.数1447,1005,1231有某些共同点,即每个数都是首位为1的四位数,且每个四位数中恰有两个数字相同,这样的四位数共有多少个?2.有多少个能被3整除而又含有数字6的五位数?3.有n 2个人参加收发电报培训,每两人结为一对互发互收,有多少种不同的结对方式?4.将1+n 个不同的小球放入n 个不同的盒子中,要使每个盒子都不空,共有多少种放法?5.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少个?6.用8个数字1,1,7,7,8,8,9,9可以组成不同的四位数有多少个?7.用E D C B A ,,,,五种颜色给正方体的各个面涂色,并使相邻面必须涂不同的颜色,共有多少种不同的涂色方式?8.某种产品有4只次品和6只正品(每只产品可区分),每次取一只测试,直到4只次品全部测出为止.求最后一只次品在第五次测试时被发现的不同情形有多少种?9.在平面上给出5个点,连结这些点的直线互不平行,互不重合,也互不垂直,过每点向其余四点的连线作垂线,求这此垂线的交点最多能有多少个?10.位政治家举行圆桌会议,两位互为政敌的政治家不愿相邻,其入坐方法有多少种?11.某城市有6条南北走向的街道,5条东西走向的街道.如果有人从城南北角(图A 点)走到东南角中B 点最短的走法有多少种?12.用4个1号球,3个2号球,2个3号球摇出一个9位的奖号,共有多少种可能的号码?13.将r 个相同的小球,放入n 个不同的盒子(n r ).(1)有多少种不同的放法?(2)如果不允许空盒应有多少种不同的放法?14.8个女孩和25个男孩围成一圈,任意两个女孩之间至少站着两个男孩.(只要把圆旋转一下就重合的排列认为是相同的)课后练习1.8次射击,命中3次,其中愉有2次连续命中的情形共有( )种(A )15 (B )30 (C )48 (D )602.在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了2场之后就退出了,这样,全部比赛只进行了50场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2,a 3,…,a n 或a 1, a 2, a 3,…,a n …。

其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。

定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。

若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。

定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.limA a n n =∞→ 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为qa -11(由极限的定义可得)。

定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。

竞赛常用定理定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。

定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。

二、方法与例题 1.不完全归纳法。

这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。

通常解题方式为:特殊→猜想→数学归纳法证明。

例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。

【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n .例2 已知数列{a n }满足a 1=21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1=21,又a 1+a 2=22·a 2,所以a 2=231⨯,a 3=4311322⨯=-+1a a ,猜想)1(1+=n n a n (n ≥1).证明;1)当n =1时,a 1=121⨯,猜想正确。

2)假设当n ≤k 时猜想成立。

当n =k +1时,由归纳假设及题设,a 1+ a 1+…+a 1=[(k +1)2-1] a k +1,,所以)1(1231121+⨯++⨯+⨯k k =k (k +2)a k +1, 即1113121211+-++-+-k k =k (k +2)a k +1, 所以1+k k=k (k +2)a k +1,所以a k +1=.)2)(1(1++k k 由数学归纳法可得猜想成立,所以.)1(1+=n n a n 例3 设0<a <1,数列{a n }满足a n =1+a , a n -1=a +na 1,求证:对任意n ∈N +,有a n >1.【证明】 证明更强的结论:1<a n ≤1+a . 1)当n =1时,1<a 1=1+a ,①式成立;2)假设n =k 时,①式成立,即1<a n ≤1+a ,则当n =k +1时,有.11111111121=++>+++=++≥+=>++a a a a a a a a a a a kk由数学归纳法可得①式成立,所以原命题得证。

2.迭代法。

数列的通项a n 或前n 项和S n 中的n 通常是对任意n ∈N 成立,因此可将其中的n 换成n +1或n -1等,这种办法通常称迭代或递推。

例4 数列{a n }满足a n +pa n -1+qa n -2=0, n ≥3,q ≠0,求证:存在常数c ,使得121+++n n pa a ·a n +.02=+n n cq qa【证明】121+++n n pa a ·a n+1+221++=n n a qa (pa n +1+a n +2)+21+n qa =a n +2·(-qa n )+21+n qa =21221[)(+++=-n n n n a q a a a q +a n (pq n +1+qa n )]=q (2121n n n n qa a pa a ++++).若211222qa a pa a ++=0,则对任意n , n n n a pa a 121++++2n qa =0,取c =0即可.若211222qa a pa a ++≠0,则{n n n a pa a 121++++2n qa }是首项为211222qa a pa a ++,公式为q 的等比数列。

所以n n n a pa a 121++++2n qa =)(211222qa a pa a ++·q n . 取)(212122qa a pa a c ++-=·q1即可. 综上,结论成立。

例5 已知a 1=0, a n +1=5a n +1242+na ,求证:a n 都是整数,n ∈N +. 【证明】 因为a 1=0, a 2=1,所以由题设知当n ≥1时a n +1>a n .又由a n +1=5a n +1242+na 移项、平方得 .01102121=-+-++n n n n a a a a ①当n ≥2时,把①式中的n 换成n -1得01102112=-+---n n n n a a a a ,即.01102121=-+-++n n n n a a a a ②因为a n -1<a n +1,所以①式和②式说明a n -1, a n +1是方程x 2-10a n x +2n a -1=0的两个不等根。

由韦达定理得a n +1+ a n -1=10a n (n ≥2). 再由a 1=0, a 2=1及③式可知,当n ∈N +时,a n 都是整数。

3.数列求和法。

数列求和法主要有倒写相加、裂项求和法、错项相消法等。

例6 已知a n =100241+n (n =1, 2, …),求S 99=a 1+a 2+…+a 99. 【解】 因为a n +a 100-n =100241+n +100100241+-n =10010010010010010021)44(2244422=++⨯++⨯--n n n n , 所以S 99=.29929921)(21101100991100=⨯=+∑=-n n n a a例7 求和:43213211⨯⨯+⨯⨯=n S +…+.)2)(1(1++n n n 【解】 一般地,)2)(1(22)2)(1(1++-+=++k k k kk k k k⎪⎪⎭⎫ ⎝⎛++-+=)2)(1(1)1(121k k k k , 所以S n =∑=++nk k k k 1)2)(1(1⎥⎦⎤⎢⎣⎡++-+++⨯-⨯+⨯-⨯=)2)(1(1)1(143132132121121n n n n⎥⎦⎤⎢⎣⎡++-=)2)(1(12121n n .)2)(1(2141++-=n n 例8 已知数列{a n }满足a 1=a 2=1,a n +2=a n +1+a n , S n 为数列⎭⎬⎫⎩⎨⎧n n a 2的前n 项和,求证:S n <2。

【证明】 由递推公式可知,数列{a n }前几项为1,1,2,3,5,8,13。

因为nn n a S 228252322212165432+++++++= , ① 所以1543222523222121++++++=n n n a S 。

② 由①-②得12222222121212121+---⎪⎪⎭⎫ ⎝⎛++++=n nn n n a a S , 所以122412121+--+=n nn n a S S 。

又因为S n -2<S n 且12+n na >0,所以412121+<n S S n , 所以2141<n S , 所以S n <2,得证。

4.特征方程法。

例9 已知数列{a n }满足a 1=3, a 2=6, a n +2=4n +1-4a n ,求a n . 【解】 由特征方程x 2=4x -4得x 1=x 2=2.故设a n =(α+βn )·2n -1,其中⎩⎨⎧⨯+=+=2)2(63βαβα,所以α=3,β=0, 所以a n =3·2n -1.例10 已知数列{a n }满足a 1=3, a 2=6, a n +2=2a n +1+3a n ,求通项a n . 【解】 由特征方程x 2=2x +3得x 1=3, x 2=-1,所以a n =α·3n +β·(-1)n ,其中⎩⎨⎧+=-=βαβα9633,解得α=43,β43-=, 所以11)1(3[41++-+=n n n a ·3]。

相关文档
最新文档