高中数学竞赛数列问题

合集下载

数列经典题目(竞赛专题)

数列经典题目(竞赛专题)
n+1 n
当an · an+1 为偶数时, 当an · an+1 为奇数时.
证明, 对每个 n ∈ N∗ , 都有 an ̸= 0. 13. (奥地利 − 波兰,1980) 设数列 {an } 满足 |ak+m − ak − am | p, q ∈ N∗ , 都有 ap aq 1 1 − < + . p q p q 14. (苏联莫斯科,1972) 将 0 和 1 之间所有分母不超过 n 的分数都写成既约形式, 再按递增顺序排成一 a c 列. 设 和 是其中任意两个相邻的既约分数, 证明 b d |bc − ad| = 1. 15. (波兰,1978) 对给定的 a1 ∈ R, 用下列方式定义数列 a1 , a2 , · · · : 对 n ∈ N∗ , ( ) 1 an − 1 , 当an ̸= 0时, an an+1 = 2 0, 当a ̸= 0时,
2), x1 = a, x2 = b, 记 Sn = x1 + x2 + · · · + xn , 则下列结 ) (B) x100 = −b, S100 = 2b − a; (D) x100 = −a, S100 = b − a . 1 时,xn+2 等于 xn xn+1 的个位数, 则 x1998 等于 . . . . ( (C) 6; (D) 8 . 2), 则数列的通项公式为 an = . )
的每一项都是整数, 其中 n ∈ N∗ . 并求所有使 an 被 3 整除的 n ∈ N∗ . 19. (捷克,1978) 证明, 数列 bn = ( √ )n ( √ )n 3+ 5 3− 5 − −2 2 2
的每一项都是自然数, 其中 n ∈ N∗ , 并且当 n 为偶数或奇数时分别具有 5m2 或 m2 的形式, 其中 m ∈ N∗ .

高中数学竞赛试题

高中数学竞赛试题

高中数学竞赛试题第一节:选择题1. 设函数$f(x)=3x^2-2x+1$,则$f(2)$的值是多少?A. 5B. 7C. 9D. 112. 已知等差数列$\{a_n\}$的首项为3,公差为4,求$a_{10}$的值是多少?3. 已知函数$g(x)=\frac{x-1}{x+2}$,则$g(0)$的值是多少?A. -1/2B. -1/3C. 0D. 1/24. 若数列$\{b_n\}$满足$b_1=2$,$b_2=4$,且$b_n=b_{n-1}+b_{n-2}$,则$b_3$的值是多少?5. 在等腰梯形$ABCD$中,底边$AB$平行于$CD$,且$AB=2CD$。

若$BC=3$,则$AD$的长度等于多少?第二节:计算题1. 计算$C(8,3)$的值。

2. 已知函数$f(x)=\frac{x^2-4}{x+2}$,求$f(-3)$的值。

3. 若$\triangle ABC$为等边三角形,且边长为2,求$\sin(A+B)$的值。

4. 已知函数$g(x)=\sqrt{x+1}$,求$g(3)-g(1)$的值。

5. 已知函数$h(x)=\frac{x^2-4}{x-2}$,求$h(2)$的值。

第三节:证明题证明:一切直角三角形的斜边上的正弦值等于斜边长与直角边长之比。

提示:根据正弦定理,$\sin(\angle C)=\frac{AB}{AC}$,其中$\angle C$为直角的对角,$AB$为直角边,$AC$为斜边。

证明过程略。

第四节:解答题1. 解方程组:$\begin{cases}2x+y=5 \\3x-2y=12 \\\end{cases}$2. 解不等式$2x-3>5$。

3. 求函数$f(x)=2x^3-3x^2+1$的极值点。

4. 已知函数$g(x)=\sqrt{x}$,求满足条件$g(x)=3$的解。

5. 某球队进行了10场比赛,胜利了7场。

求这个球队的胜率。

第五节:填空题1. $2\times (3+4)=$ ________2. 若$a+b=7$,$a-b=3$,则$a$的值为_______,$b$的值为_______。

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。

解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。

因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。

由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。

所以 \( a^2 + 5a + 6 = 0 \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。

将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。

解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。

将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。

试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。

高中数学竞赛数列专题

高中数学竞赛数列专题

高中数学竞赛数列专题(实用版)目录1.高中数学竞赛数列专题的重要性2.数列的基本概念和分类3.数列的性质和特点4.数列的解题方法与技巧5.典型例题解析6.参加高中数学竞赛的建议正文【高中数学竞赛数列专题的重要性】高中数学竞赛数列专题作为数学竞赛中的一个重要组成部分,对于提高学生的数学素养、培养学生的逻辑思维能力和解题技巧具有重要意义。

数列是数学中一个基本的研究对象,它与函数、极限、微积分等领域有着密切的联系,因此,掌握数列相关的知识对于高中生来说是十分必要的。

【数列的基本概念和分类】数列是一组按照一定顺序排列的数,其中每一个数称为这个数列的项。

数列可以按照项之间的关系分类,如等差数列、等比数列、斐波那契数列等。

等差数列是指数列中任意两项的差都相等的数列;等比数列是指数列中任意两项的比都相等的数列;斐波那契数列则是指数列的前两项为 1,从第三项开始,每一项都等于前两项的和。

【数列的性质和特点】数列具有许多重要的性质和特点,如公比、公差、首项、末项等。

这些性质和特点对于数列的求和、求通项、证明数学结论等方面有着重要的应用。

在解决数列问题时,我们需要灵活运用数列的性质和特点,以便快速准确地解决问题。

【数列的解题方法与技巧】解决数列问题有许多方法与技巧,如列举法、通项公式法、错位相减法、等比数列求和公式等。

在实际解题过程中,我们需要根据题目的特点选择合适的方法与技巧,以便迅速找到解题思路。

同时,我们还需要积累大量的解题经验,以便在遇到类似问题时迅速找到突破口。

【典型例题解析】例题:已知等差数列的前三项分别为 1, 3, 5,求该数列的第 10 项。

解:根据等差数列的性质,可知该数列的公差为 3-1=2。

利用等差数列的通项公式 an=a1+(n-1)d,其中 an 表示第 n 项,a1 表示首项,d 表示公差,n 表示项数。

将已知条件代入公式,得到 a10=1+(10-1)×2=19。

因此,该数列的第 10 项为 19。

高中数学竞赛数列专题

高中数学竞赛数列专题

高中数学竞赛数列专题摘要:一、引言1.高中数学竞赛的重要性2.数列专题在竞赛中的地位二、数列基本概念与性质1.等差数列2.等比数列3.斐波那契数列4.数列的极限与连续三、数列求和公式与应用1.等差数列求和公式2.等比数列求和公式3.求和公式的应用实例四、数列与函数的关系1.数列的通项公式与函数2.数列的前n项和与函数五、数列题型分类与解题策略1.判断数列性质题2.数列求和题3.数列递推式题4.数列与函数综合题5.解题策略总结六、高中数学竞赛数列真题解析1.真题举例2.解题过程与思路分析七、数列专题强化训练与建议1.推荐练习资料2.强化训练方法与时间安排3.提高数列能力的建议八、总结1.数列专题在高中数学竞赛中的重要性2.掌握数列基本概念与性质3.熟练运用求和公式和解题策略4.结合实际训练,提高数列水平正文:一、引言随着教育制度的不断发展,高中数学竞赛日益受到广泛关注。

在众多竞赛专题中,数列专题具有举足轻重的地位。

本文将从以下几个方面展开讨论,以帮助同学们更好地掌握数列知识,提高在数学竞赛中的竞争力。

二、数列基本概念与性质1.等差数列:等差数列是指一个数列,其中任意两个相邻的元素之差相等。

这一常量称为公差。

2.等比数列:等比数列是指一个数列,其中任意两个相邻的元素之比相等。

这一常量称为公比。

3.斐波那契数列:斐波那契数列是指这样一个数列:第一项和第二项均为1,从第三项开始,每一项等于前两项之和。

4.数列的极限与连续:数列极限是指当项数趋向无穷时,数列值的极限值。

数列连续性是指数列在某一区间内,任意两项之间的差值趋于0。

三、数列求和公式与应用1.等差数列求和公式:Sn = n/2 * (a1 + an),其中n为项数,a1为首项,an为末项。

2.等比数列求和公式:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数,a1为首项,q为公比。

3.求和公式的应用实例:利用求和公式计算等差数列或等比数列的前n项和。

高中数学竞赛题库及答案解析

高中数学竞赛题库及答案解析

高中数学竞赛题库及答案解析在高中数学的学习中,参加数学竞赛是提高自己数学水平的一个很好的途径。

为了帮助广大高中生更好地备战数学竞赛,我们整理了一套高中数学竞赛题库,并提供了相应的答案解析。

下面是题库的详细内容和解析。

第一部分:选择题1. 题目:已知等差数列$\{a_n\}$的前$n$项和为$S_n=\frac{n}{2}(2a_1+(n-1)d)$,其中$a_1=3$,$d=-2$,求该等差数列的第21项$a_{21}$的值。

解析:根据已知条件,代入公式$S_n=\frac{n}{2}(2a_1+(n-1)d)$,得到$S_{21}=\frac{21}{2}(2\cdot3+(21-1)\cdot(-2))$,计算可得$S_{21}=-105$。

由等差数列的前$n$项和公式可知$S_{21}=a_1+19d$,代入已知$a_1=3$和$d=-2$,解方程可得$a_{21}=-37$。

答案:$a_{21}=-37$。

2. 题目:已知函数$f(x)=x^3-2x^2+3x-4$,求$f(-1)$的值。

解析:将$x$的值代入函数$f(x)$中,得到$f(-1)=(-1)^3-2(-1)^2+3(-1)-4$,计算可得$f(-1)=-5$。

答案:$f(-1)=-5$。

第二部分:填空题1. 题目:已知$\sqrt{x^2+16}+x=4$,求$x$的值。

解析:移项得到$\sqrt{x^2+16}=4-x$,两边平方得到$x^2+16=(4-x)^2$。

展开计算可得$x^2+16=16-8x+x^2$,整理得到$8x=0$,解方程可得$x=0$。

答案:$x=0$。

2. 题目:已知函数$g(x)=\log_{10}(5x-2)$,求$g(3)$的值。

解析:将$x$的值代入函数$g(x)$中,得到$g(3)=\log_{10}(5\cdot3-2)$,计算可得$g(3)=\log_{10}13$。

答案:$g(3)=\log_{10}13$。

高中数学竞赛数列专题

高中数学竞赛数列专题

高中数学竞赛数列专题数列是高中数学竞赛中常见的重要题型,掌握数列的性质及解题方法对于参加数学竞赛至关重要。

本文将围绕高中数学竞赛数列专题展开讨论,包括数列的定义与性质、常见数列的特征、递推公式的应用、数列的求和与极限等方面的内容。

一、数列的定义与性质数列是按照一定规律排列的一系列数,常用字母表示,如$a_1, a_2, a_3, \ldots, a_n$。

数列的第一项记作$a_1$,第二项记作$a_2$,第$n$项记作$a_n$。

数列中的数字称为项,项之间的关系由递推关系式表示。

数列的性质包括有界性、单调性以及极限。

有界性是指数列的所有项都满足某个范围,可以是有上界、下界或者同时有上下界。

单调性是指数列的项按照一定的规律递增或递减。

而极限是指数列的项随着$n$的增大逐渐趋于某一个值。

二、常见数列的特征常见数列包括等差数列、等比数列、斐波那契数列等。

等差数列是指数列的相邻项之间的差值相等,记作$a_n=a_1+(n-1)d$。

其中,$a_n$表示第$n$项,$a_1$表示第一项,$d$表示公差。

等差数列的性质包括:通项公式、前$n$项和公式、末项公式等。

等比数列是指数列的相邻项之间的比值相等,记作$a_n=a_1 \cdotq^{(n-1)}$。

其中,$a_n$表示第$n$项,$a_1$表示第一项,$q$表示公比。

等比数列的性质包括:通项公式、前$n$项和公式、末项公式以及无穷项和公式等。

斐波那契数列是指数列中的每一项都是前两项之和的数列,记作$a_n=a_{n-1}+a_{n-2}$。

其中,$a_n$表示第$n$项,$a_{n-1}$表示前一项,$a_{n-2}$表示前两项。

斐波那契数列的性质包括:递推关系式、通项公式、性质应用等。

三、递推公式的应用递推公式是描述数列中项之间的关系的方程式。

通过解递推公式,可以确定数列中任意一项的值。

在数学竞赛中,递推公式的应用非常重要。

解递推公式可以使用递推法、代入法和特殊求和法等不同的方法。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛数列问题一、 高考数列知识及方法应用(见考纲) 二、 二阶高次递推关系1.因式分解降次。

例:正项数列{a n },满足12+=n n a S ,求a n (化异为同后高次)2.两边取对数降次。

例:正项数列{a n },a 1=1,且a n ·a n+12 = 36,求a n三、 线性递推数列的特征方程法 定理1:若数列{a n }的递推关系为a n+2=λ1a n+1+λ2a n ,则设特征方程x 2=λ1x+λ2,且此方程有相异两根x 1,x 2(x 1≠x 2),则必有a n =c 1x 1n +c 2x 2n,其中c 1,c 2由此数列已知前2项解得,即⎩⎨⎧+=+=222211222111x c x c a x c x c a 或由⎩⎨⎧+=+=22111210x c x c a c c a 得到。

(见训练及考试题)定理2:若方程x 2=λ1x+λ2有相等重根x 0,则有a n =(c 1+c 2n )x 0n ,其中c 1,c 2仍由定理1方程组解得。

例如.:1,已知.数列{}n a 满足)(,11221+++∈+===N n a a a a a n n n ,求数列{}n a 的通项公式2,.数列{}n a 中,设,2,1321===a a a 且)3(3211≥+=--+n a a a a n n n n ,求数列{}n a 的通项公式3,.数列}{n a 满足:.,236457,1210N n a a a a n n n ∈-+==+证明:(1)对任意n a N n ,∈为正整数;(2)求数列}{n a 的通项公式。

4,已知.数列{}n a 满足121,2,a a n N +==∈都有2144n n n a a a ++=-,求数列{}n a 的通项公式四、 特殊递推的不动点法 ( f (x )= x 的解称为f (x )的不动点 ) 定理1:若数列{a n }满足递推:a n+1=a ·a n +b (a ,b ∈R ), 则设x=ax+b ,得不动点10--=a bx 且数列递推化为:a n+1-x 0=a (a n -x 0),进而用构造法解得。

定理2:若数列{a n }满足递推:)(01≠-+⋅+⋅=+bc ad da c ba a a n n n ,则设dcx bax x ++=,得不动点x 1,x 2, 若x 1≠x 2,则原递推化为:)(21212111x a x a c x a c x a x a x a n n n n ----=--++,再由构造法解得。

若x1=x2=x0,即有唯一不动点x0时,原递推可化为:da cx a x a n n ++-=-+211001,再由构造法解得。

例如:1,在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),求该数列的通项a n2,已知.数列{}n a 满足:11381,23n n n a a a a ++==+,求该数列的通项a n 3,已知.数列{}n a 满足:1121,23n n n a a a a +--==+,求该数列的通项a n五、 递推构造法1.若数列递推满足a n+1=k 1a n +k 2·2n ,注意构造变形为(a n+1+A ·2n+1)= k 1(a n +A ·2n ),展开后与原递推相同,求出A 得值,再化为等比数列解决。

2.若数列递推满足a n+1=k 1a n +k 2n 2+k 3n ,注意构造变形为 (a n+1+A(n+1)2+B(n+1)+c )= k 1(a n +An 2+Bn+c ),展开后与原递推相同而求出A ,B ,C 的值,再化为等比数列解决。

3.若数列为a n+1=-3a n +2n - n 呢?例如:1,求所有a 0∈R ,使得由a n+1=2n -3a n (n ∈N )所确定得数列a 0,a 1,a 2,…是递增的。

2,某运动会开了n 天(1)n >,共发出m 枚奖牌:第一天发出1枚加上余下的17,第二天发出2枚加上余下的17;如此持续了(1)n -天,第n 天发出n 枚. 该运动会开了________天,共发了____________枚奖牌.后注:以上方法相辅相成,不可孤立理解,当条件不符合时不可随意应用。

例:若不知a 1,a 2的确定值,a n+2=2a n+1+3a n 都不可以用特征方程法。

望大家结合数列其他讲义及考题认真领会。

数列训练题1.(2006年广东卷)在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正三棱锥”形的展品,其中第一堆只有一层,就一个乒乓球;第2、3、4、…堆最底层(第一层)分别按图4所示方式固定摆放.从第一层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示) .2. ( 2006年重庆卷)在数列{a n }中,若 a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项 a n =_____.3.(2006年全国卷II )函数f (x )=∑i =119|x -n |的最小值为 ( )(A )190 (B )171 (C )90 (D )45 4.(2006年全国卷I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=A .120B .105C .90D .755.(2006年江西卷)已知等差数列{a n }的前n 项和为S n ,若1O a B u u u r =200OA a OC u u u r u u u r+,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( )A .100 B. 101 C.200 D.201 6.(2006年辽宁卷)在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于(A)122n +- (B) 3n (C) 2n (D)31n - 7.(2006年山东卷)已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,…(1) 证明数列{lg(1+a n )}是等比数列;(2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项;(3) 记b n =211++n n a a ,求{b n }数列的前项和S n ,并证明S n +132-n T =1.8.(2006年上海卷)已知有穷数列{n a }共有2k 项(整数k ≥2),首项1a =2.设该数列的前n 项和为n S ,且1+n a =n S a )1(-+2(n =1,2,┅,2k -1),其中常数a >1.(1)求证:数列{n a }是等比数列;(2)若a =2122-k ,数列{n b }满足n b =)(log 1212n a a a n⋅⋅⋅(n =1,2,┅,2k ),求数列{n b }的通项公式;(3)若(2)中的数列{n b }满足不等式|1b -23|+|2b -23|+┅+|12-k b -23|+|k b 2-23|≤4,求k 的值.9.(2006年全国卷II )设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,…. (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式.(只须写出即可)10. (2006年上海春卷)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能 得到什么样的结论? 11.(2006年广东卷)已知公比为)10(<<q q 的无穷等比数列}{n a 各项的和为9,无穷等比数列}{2n a 各项的和为581.(Ⅰ)求数列}{n a 的首项1a 和公比q ;(Ⅱ)对给定的),,3,2,1(n k k ⋅⋅⋅=,设)(k T 是首项为k a ,公差为12-k a 的等差数列.求数列)(k T 的前10项之和;(Ⅲ)设i b 为数列)(i T 的第i 项,n n b b b S +⋅⋅⋅++=21,求n S ,并求正整数)1(>m m ,使得m Sn n ∞→lim 存在且不等于零. 12.(2006年福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )证明:*122311...().232n n a a a n nn N a a a +-<+++<∈13.(2006年安徽卷)数列{}n a 的前n 项和为n S ,已知()211,1,1,2,2n n a S n a n n n ==--=⋅⋅⋅(Ⅰ)写出n S 与1n S -的递推关系式()2n ≥,并求n S 关于n 的表达式; (Ⅱ)设()()()1/,n n n n n S f x x b f p p R n+==∈,求数列{}n b 的前n 项和n T 14.(2006年全国卷I )设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =g g g(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn n T S =,1,2,3,n =g g g ,证明:132ni i T =<∑15.(2006年江西卷)已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求数列{a n }的通项公式;数列竞赛训练题1.数列{}n a 中,设1,01=>a a n 且6213=⋅+n n a a ,求数列{}n a 的通项公式.2.已知.数列{}n a 满足)2(11,21211≥-+==-n n a a a n n ,求数列{}n a 的通项公式3. 已知.数列{}n a 满足)(,11221+++∈+===N n a a a a a n n n ,求数列{}n a 的通项公式4. 已知.数列{}n a 满足1245,0211++==+nn n a a a a ,求数列{}n a 的通项公式5. 数列{}n a 中,设,121==a a 且)1(2212≥+-=++n a a a n n n n ,求数列{}n a 的通项公式6. 数列{}n a 中,设,2,1321===a a a 且)3(3211≥+=--+n a a a a n n n n ,求数列{}n a 的通项公 式7.数列{}n a 满足:)3(21≥-=--n a a a n n n ,如果前1492项的和是1985,而前1985项的和为1492,求该数列的前2001项之和.8. 已知.数列{}n a 满足1)1(1+++=n n n n a n ,求数列{}n a 的前n 项和.参考答案1. =)3(f 10,6)2)(1()(++=n n n n f2. a n =123n +-.3. C4. B 12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=。

相关文档
最新文档