全国一卷圆锥曲线高考题汇编含标准答案
全国卷高考数学圆锥曲线大题(带答案)

全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
2020高考—圆锥曲线(解答+答案)

2020年高考——圆锥曲线1.(20全国Ⅰ文21)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.2.(20全国Ⅰ理20)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.3.(20全国Ⅱ文19)(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.4.(20全国Ⅱ理19)(12分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.5.(20全国Ⅲ文21)(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.6.(20全国Ⅲ理20)(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.7.(20新高考Ⅰ22)(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.(20天津18)(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.9.(20浙江21)(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(20江苏18)(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.11.(20北京20)(本小题15分)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.参考答案:1.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).3.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.4.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.5.解:(1)由题设可得54=,得22516m =,所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52.6.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ 的距离为2,故11APQ △的面积为1522=.22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52.7.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++.整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q . 若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.8.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.9.(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32. (Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=, 所以点M 的纵坐标22M mt y m =-+. 将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=, 因此22022(2)p m x m+=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m,t =时,p.10.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -. 所以直线:3430.AB x y -+= 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解; 由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-. 代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.11.。
全国一卷圆锥曲线高考题汇编含答案

圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国Ⅰ卷)(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l过点B(1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B作AC 的平行线交AD于点E.(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C 1,直线l 交C1于M ,N 两点,过B且与l垂直的直线与圆A 交于P ,Q两点,求四边形M PN Q面积的取值范围.2、(2015全国Ⅰ卷)(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。
3、(2014全国Ⅰ卷)20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 3,抛物线E:22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P是E 上的动点,且位于第一象限,E 在点P处的切线l 与C 交与不同的两点A,B,线段AB 的中点为D,直线O D与过P且垂直于x 轴的直线交于点M. (i)求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P的坐标.5、(2015山东卷)(20) (本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F为圆心,以1为半径的圆相交,交点在椭圆C上. (Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆2222:144x yEa b+=,P为椭圆C上的任意一点,过点P的直线y kx m=+交椭圆E于A,B两点,射线PO交椭圆E于点Q.(ⅰ)求||||OQOP的值;(ⅱ)求ABQ∆面积最大值.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国Ⅰ卷)(5)已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )(A)(–1,3) (B)(–1,错误!) (C)(0,3)(D)(0,错误!)2、(2015全国Ⅰ卷)(5)已知M(x 0,y 0)是双曲线C :2212x y -=上的一点,F1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是()3 (B )((C)(3-,3) (D)()3、(2014全国Ⅰ卷)4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3CD .3m4、(2016山东卷)(13)已知双曲线E1:22221x y a b-=(a>0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD的中点为E 的两个焦点,且2|AB |=3|B C|,则E 的离心率是_______ .5、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .6、(2014山东卷)(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C2C 的渐近线方程为( )(A)0x = (0y ±= (C)20x y ±= (D)20x y ±=圆锥曲线部分高考试题汇编(抛物线部分)1、(2016全国Ⅰ卷)(10)以抛物线C 的顶点为圆心的圆交C 于A,B 两点,交C的准线于D ,E 两点.已知|AB |=DE |=C 的焦点到准线的距离为( )(A)2 (B )4 (C )6 (D )82、(2015全国Ⅰ卷)(20)(本小题满分12分)在直角坐标系xoy中,曲线C :y=24x 与直线y kx a =+(a >0)交与M ,N两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠O PN ?说明理由。
圆锥曲线一(有答案)

圆锥曲线(一)参考答案一、DAABC BCCAA DD二、13.(1,3)(3,1)m ∈-- 14. 2211510y x += 17.三、18. 22114480x y += 或11448022=+y x 19.(1) 利用定义法 ∴ 1422=+yx ,(2)112322=-xy 20. (1)2211612x y +=或2211612y x += (2)设长轴为2a ,焦距为2c ,则在2F OB ∆中,由23F OB π∠=得:c =,所以21F BF ∆的周长为2224a c a +==+,22,1a c b ∴==∴=故得:22141x y +=. 21. (1)21212||||||||1002PF PF PF PF +⎛⎫≤= ⎪⎝⎭(当且仅当12||||PF PF =时取等号), ()12max |||100PF PF ∴⋅=(2)12121||||sin 6023F PF S PF PF ∆=⋅=,12256||||3PF PF ∴⋅=①又22212122221212||||2||||4||||42||||cos60PF PFPF PF a PF PF c PF PF ⎧++⋅=⎨+-=⋅⎩2123||||4004PF PF c ⇒⋅=- ② 由①②得68c b =∴=()()()()()()()()2222222212211221223121322131290330123613011213,,,,913AB bx ay abcaa bxyy kxk x kxx yk kkx xkC x yD x yx xk--=⎧=⎪⎪==⎨=∴+==+⎧+++=⎨+-=⎩∴∆=-+>⎧+=-⎪⎪+⎨⎪=+⎩1直线方程为依题意可得:解得:椭圆的方程为假设存在这样的值.由得设则()()()()()()()()()()()()()()212121212121212122121222224111110121503 y y kx kx k x x k x xCE DE y yx xy y x xk x x k x xkkk⎪+++++⊥=-+++++∴+++++=而==要使以CD为直径的圆过点E-1,0,当且仅当时则即=7将2代入3整理得=67经验证=使得1成立67综上可知,存在=使得以CD为直径的圆过点E623、解:(Ⅰ)设椭圆的半焦距为c,依题意3c aa ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,AB =. (2)当AB 与x 轴不垂直时, 设直线AB 的方程为y kx m =+.=,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤. 当且仅当2219k k=,即k =时等号成立.当0k =时,AB =,综上所述max 2AB =. ∴当AB最大时,AOB △面积取最大值max 1222S AB =⨯⨯=.生2007年高考中的“圆锥曲线与方程”试题汇编大全三、解答题: 18.(2007山东文、理)(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.18.解:(1)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:31a c a c +=-=,,222213a cb ac ==∴=-=,,∴椭圆的标准方程为22143x y +=. (2)设1122()()A x y B x y ,,,.联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得 222(34)84(3)0k x mkx m +++-=,则22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+.因为以AB 为直径的圆过椭圆的右顶点(20)D ,, 1AD BD k k ∴=-,即1212122y y x x =---.1212122()40y y x x x x ∴+-++=.解得:12227km k m =-=-,,且均满足22340k m +->.当12m k =-时,l 的方程(2)y k x =-,直线过点(20),,与已知矛盾;当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.。
圆锥曲线高考真题专练(含答案)

(一)数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x=1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得222(41)8440k x kmx m+++-=由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
圆锥曲线高考真题专练(含答案),推荐文档

【解析】由已知得圆
的圆心为 ( -1 ,0), 半径 =1,圆 的圆心为 (1,0), 半径
=3.
设动圆 的圆心为 ( , ),半径为 R.
(Ⅰ)∵圆 与圆 外切且与圆 内切,∴ |PM|+|PN|=
=
=4,
由椭圆的定义可知,曲线 C是以 M, N为左右焦点,场半轴长为 2,短半轴长为
的椭圆 ( 左
由题设得 A( 1,0) , B(1,0) , | AB | 2 ,由椭圆定义可得点 E 的轨迹方程为:
x2 y2 1( y 0 ). 43
( II )当 l 与 x 轴不垂直时, 设 l 的方程为 y k( x 1)(k 0) ,M ( x1, y1) ,N ( x2 , y2 ) .
y k( x 1)
x02 3 p2
3p p
得: A(
3 p,
3p )
,直线
m:
y
2
2x p
x
3y
3p 0
2
3p 2
2
x2 2 py
x2 y
x y
3 x
3 p
3p p
切点 P(
,)
2p
p3
3
36
直线 n : y p
3 (x
3p )
3
x 3y
p0
63
3
6
坐标原点到 m, n 距离的比值为
3p : 3p 3。 26
已知 O 为坐标原点, F 为椭圆 C : x2 y2 1在 y 轴正半轴上的焦点, 过 F 且 2
则 x1
2, x2
2 ,直线 MA , MB 的斜率之和为 kMA kMB
y1
y2 .
x1 2 x2 2
(完整版)历年圆锥曲线高考题(带答案)

历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。
(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。
当时,求双曲线离心率4332≤≤λ的取值范围。
e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。
2020年高考数学全国1卷圆锥曲线

9 ⋅ 9y21
9y22
(x1 + 3)2 = (x2 − 3)2
因为 C, D 在椭圆 E 上,则
9y21 = 9 − x21 , 9y22 = 9 − x22
代入 (2) 式,得
9 ⋅ (9 − x21) 9 − x22 (x1 + 3)2 = (x2 − 3)2
化简得
4x1x2 − 15(x1 + x2) + 36 = 0
3
3
( ) 情形二 当直线 CD 的斜率不存在时,设为 x = m ,则此时 x1 = x2 = m, y1 = − y2 ,代入 (1) 式求得 m = 2 ,过点 2 , 0
3Hale Waihona Puke ( ) 综上,直线 CD 过定点 2 , 0 . Processing math: 100%
3y2
x1 + 3 = x2 − 3
情形一 当直线 CD 斜率存在时,设直线 CD 的方程为 y = kx + m ,联立
{y = kx + m x2 + 9y2 = 9
⟹
(1 + 9k2)x2 + 18kmx
+ 9m2 − 9
=
0
18km
9m2 − 9
则 x1 + x2 = − 1 + 9k2 , x1x2 = 1 + 9k2 ,将 (1) 式两边平方得
2020年高考数学全国 1卷圆锥曲线
x2
→→
已知 A, B 分别为椭圆 E: a2 + y2 = 1(a > 0) 的左、右顶点,G 为 E 的上顶点,AG ⋅ GB = 8 ,P 为直线 x = 6 上的动点,PA 与 E 的另一交点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高二数学专题学案
2、(2015 全国Ⅰ卷)(14)一个圆经过椭圆 x2 y2 1的三个顶点,且圆心在 x 轴上,则该圆的标准方程 16 4
为
。
3、(2014 全国Ⅰ卷)
20.(本小题满分
12
分)已知点
A (0,-2),椭圆
E
:
x2 a2
y2 b2
1(a b 0) 的离心率为
3 , F 是椭圆 2
的焦点,直线 AF 的斜率为 2 3 , O 为坐标原点. 3
(Ⅰ)求 E 的方程; (Ⅱ)设过点 A 的直线 l 与 E 相交于 P,Q 两点,当 OPQ 的面积最大时,求 l 的方程.
y2 b2
1(a 0, b 0) 的渐近线与抛物线
C2 : x2 2 py( p 0) 交于点 O, A, B ,若 OAB 的垂心为 C2 的焦点,则 C1 的离心率为
.
6、(2014
山东卷)(10)已知 a
b
,椭圆
C1
的方程为
x a
2 2
y2 b2
1,双曲线 C2 的方程为
x2 a2
高二数学专题学案
圆锥曲线部分高考试题汇编(椭圆部分) 1、(2016 全国Ⅰ卷)(20)(本小题满分 12 分)
设圆 x2 y2 2x 15 0 的圆心为 A,直线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B
作 AC 的平行线交 AD 于点 E.
(I)证明 EA EB 为定值,并写出点 E 的轨迹方程;
点为 D,直线 OD 与过 P 且垂直于 x 轴的直线交于点 M.
(i)求证:点 M 在定直线上;
(ii)直线 l 与 y 轴交于点 G,记
PFG 的面积为 S1 ,
PDM
的面积为 S2
,求
S1 S2
的最大值及取得最大值
时点 P 的坐标.
3
高二数学专题学案
5、(2015
山东卷)(20)
(本小题满分
4、(2016
山东卷)(13)已知双曲线
E1:
x2 a2
y2 b2
1(a>0,b>0),若矩形
ABCD
的四个顶点在
E
上,
AB,CD 的中点为 E 的两个焦点,且 2|AB|=3|BC|,则 E 的离心率是_______ .
5、(2015
山东卷)(15)平面直角坐标系
xOy
中,双曲线
C1
:
x2 a2
取值范围是(
)
(A)(–1,3)
(B)(–1, 3)
(C)(0,3)
(D)(0, 3)
2、(2015 全国Ⅰ卷)(5)已知 M(x0,y0)是双曲线 C: x2 y2 1上的一点,F1、F2 是 C 上的两个焦点, 2
若 MF1 • MF2 <0,则 y0 的取值范围是(
(A)(- 3 , 3 ) 33
y2 b2
1,C1
与 C2 的离心率之积为
3 2
,则
C2
的渐近线方程为(
)
(A) x 2 y 0 (B) 2x y 0 (C) x 2 y 0 (D) 2x y 0
5
高二数学专题学案
圆锥曲线部分高考试题汇编(抛物线部分) 1、(2016 全国Ⅰ卷)(10)以抛物线 C 的顶点为圆心的圆交 C 于 A,B 两点,交 C 的准线于 D,E 两点.已知
上的任意一点,过点
P
的直线
y
kx m 交椭圆
E
于
A,B 两
点,射线 PO 交椭圆 E 于点 Q.
(ⅰ)求 | OQ | 的值;(ⅱ)求 ABQ 面积最大值. | OP |
4
高二数学专题学案
圆锥曲线部分高考试题汇编(双曲线部分) 1、(2016 全国Ⅰ卷)(5)已知方程mx22+n–3my22–n=1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的
13 分)平面直角坐标系 xOy
中,已知椭圆 C
:
x2 a2
y2 b2
1(a
b
0)
的离心率为
ห้องสมุดไป่ตู้3 2
,左、右焦点分别是
F1 ,
F2
,以
F1
为圆心,以
3
为半径的圆与以
F2
为圆心,以
1
为半径的
圆相交,交点在椭圆 C 上. (Ⅰ)求椭圆 C 的方程;
(Ⅱ)设椭圆 E :
x2 4a2
y2 4b2
1,P
为椭圆 C
)
(B)(- 3 , 3 ) 66
(C)( 2 2 , 2 2 )
3
3
(D)( 2 3 , 2 3 )
3
3
3、(2014 全国Ⅰ卷)4. 已知 F 是双曲线 C : x2 my2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近
线的距离为(
)
A. 3
B .3
C . 3m
D . 3m
|AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为(
(A)2
(B)4
(C)6
2、(2015 全国Ⅰ卷)(20)(本小题满分 12 分)
) (D)8
在直角坐标系 xoy 中,曲线 C:y= x2 与直线 y kx a ( a >0)交与 M,N 两点, 4
(Ⅰ)当 k=0 时,分别求 C 在点 M 和 N 处的切线方程; (Ⅱ)y 轴上是否存在点 P,使得当 k 变动时,总有∠OPM=∠OPN?说明理由。
6
高二数学专题学案
3、(2014 全国Ⅰ卷)10. 已知抛物线 C : y2 8x 的焦点为 F ,准线为 l ,P 是 l 上一点,Q 是直线 PF 与
C 的一个焦点,若 FP 4FQ ,则| QF |=(
7
5
A.
B.
C .3
2
2
4、(2014 山东卷)(21)(本小题满分 14 分)
)
D .2
已知抛物线 C : y2 2 px( p 0) 的焦点为 F , A 为 C 上异于原点的任意一点,过点 A 的直线 l 交 C 于另
一点 B ,交 x 轴的正半轴于点 D ,且有| FA || FD | .当点 A 的横坐标为 3 时, ADF 为正三角形. (Ⅰ)求 C 的方程; (Ⅱ)若直线 l1 // l ,且 l1 和 C 有且只有一个公共点 E , (ⅰ)证明直线 AE 过定点,并求出定点坐标; (ⅱ) ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
2
高二数学专题学案
4、(2016 山东卷)(21)(本小题满分 14 分)
平面直角坐标系 xOy 中,椭圆
C: x2 a2
y2 b2
1a>b>0
的离心率是 3 ,抛物线 E: x2 2 y 的焦点 2
F 是 C 的一个顶点.
(I)求椭圆 C 的方程;
(II)设 P 是 E 上的动点,且位于第一象限,E 在点 P 处的切线 l 与 C 交与不同的两点 A,B,线段 AB 的中