7-2 离散时间信号与系统的Z域分析

合集下载

第七章离散时间信号与系统的Z域分析总结

第七章离散时间信号与系统的Z域分析总结
当 z > a 时,这是无穷递缩等比级数。
1 z X ( z) = 此时, = 1 − az −1 z − a
z > a 收敛域:
0
j Im[ z ]
a
*收敛域一定在模最大的极点 所在的圆外。
Re[ z ]
信号与系统
第7章 离散时间信号与系统的z域分析
13 /82
3.左边指数序列 x(n) = −b nu (−n − 1)
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原 分式的“部分分式”。
信号与系统
第7章 离散时间信号与系统的z域分析
19 /82
M X ( z ) 通常, 可表成有理分式形式: b z −i ∑ i B( z ) = i =0N X ( z) = A( z ) 1 + ∑ ai z −i
z −n < ∞
n1 ≤ n ≤ n2 ;
信号与系统
第7章 离散时间信号与系统的z域分析
7 /82
因此,当时,只要,则 n= z − n 1/ z n , ≥0 同样,当时,只要,则 n <= 0 z z ,
n −n
z≠0 z≠∞ z
z −n < ∞
−n
<∞
所以收敛域至少包含,也就是除 0< z <∞ “有限平面” z= (0, ∞) z 。 ∞外的开域,即所谓
9 /82
(3)左边序列
x(n), n ≤ n2 x ( n) = n > n2 0,
X ( z)
n = −∞
= x ( n) z ∑ ∑ x ( n) z
−n n = −∞
n2

数字信号处理知识点总结

数字信号处理知识点总结

数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。

连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。

模拟信号:是连续信号的特例。

时间和幅度均连续。

离散信号:时间上不连续,幅度连续。

常见离散信号——序列。

数字信号:幅度量化,时间和幅度均不连续。

(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。

注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。

信号与系统第8章 离散时间系统的z域分析

信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特

离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用

中北大学精品课程-7_离散时间信号与系统的z域分析

中北大学精品课程-7_离散时间信号与系统的z域分析

7 离散时间信号与系统的Z域分析
例 利用部分分式法,求 1 X ( z) , z 2 的z反变换。 1 1 (1 2 z )(1 0.5z )
1 z2 X ( z) 1 1 (1 2 z )(1 0.5 z ) ( z 2)( z 0.5) X ( z) z A1 A2 z ( z 2)( z 0.5) z 2 z 0.5
7 离散时间信号与系统的Z域分析
§ 7.2 Z反变换
7 离散时间信号与系统的Z域分析
7.2.1部分分式展开法 1.z变换式的一般形式
bi z i 1 ai z i
i 1 i 0 N M
B( z ) X ( z) A( z )
7 离散时间信号与系统的Z域分析
因此,X(z)可以展成以下部分分式形式
7 离散时间信号与系统的Z域分析
第7章 离散时间信号与系统的Z域分析
7.1 离散信号的Z变换 7.2 Z反变换 7.3 Z变换的基本性质和定理 7.4 Z变换与拉普拉斯变换傅里叶变换的关系 7.5 序列的傅里叶变换的定义和性质 7.6 利用Z变换求解差分方程 7.7 离散系统的系统函数和频率响应
7.8 离散系统的信号的流图
双边序列指n为任意值时,x(n)皆有值的序列,即左边序列 和右边序列之和。
X ( z)
n
x ( n) z x ( n) z
n n 0

n

n
x ( n) z
1
第一项为右边序列(因果)其收敛域为: z 第二项为左边序列,其收敛域为: 当Rx-<Rx+时,其收敛域为
*第一项为有限长序列,第二项为z的负幂级数,
7 离散时间信号与系统的Z域分析

7.离散时间信号与系统的z域分析

7.离散时间信号与系统的z域分析

第七章离散时间系统的Z域分析7.1 学习要求1.熟练掌握信号的Z域分析方法:Z变换的定义、收敛区及基本性质,能够应用长除法和部分分式分解法求Z反变换。

2.掌握序列的傅里叶变换的定义和基本性质,并了解Z变换与拉普拉斯变换、傅里叶变换的关系。

3.掌握离散系统响应的Z变换分析方法:深刻理解离散系统的系统函数的概念,掌握离散时间系统的时域和Z域框图与流图描述形式。

7.2 学习重点1.z变换,z反变换定义、基本性质、计算方法。

2.离散时间系统的z域分析。

3.离散时间系统的频率响应特性。

7.3知识结构7.4内容摘要7.4.1 Z变换1.定义∑∞-∞=-=n nz n x z X )()( 表示为:)()]([z X n x Z =。

2. 收敛域 (1) 有限长序列12(),()0,x n n n n x n n ≤≤⎧=⎨⎩其他当0,021>>n n 时,收敛条件为0>z ;当0,021<<n n 时,收敛条件为∞<z ;当0,021><n n 时,收敛条件为∞<<z 0。

(2) 右边序列11(),()0,x n n n x n n n ≥⎧=⎨<⎩当01>n 时,收敛域为1x R z >,1x R 为最小收敛半径;当01<n 时,收敛域为∞<<z R x 1。

(3) 左边序列2(),()0,x n n n x n n ≤⎧=⎨⎩其他 当02<n ,收敛域为2x R z <,2x R 为最大收敛半径; 当02>n ,收敛域为20x R z <<。

(4) 双边序列双边序列指n 为任意值时,)(n x 皆有值的序列,即左边序列和右边序列之和。

其z 变换:∑∑∑∞=--∞=--∞-∞=-+==1)()()()(n n nnn nzn x zn x zn x z X双边序列的收敛域为一环形区域21x x R z R <<。

离散时间信号与系统的Z域分析

离散时间信号与系统的Z域分析

《信号与系统》课程实验报告变换。

zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。

例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。

零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。

(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。

由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。

(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。

离散系统的Z域分析

离散系统的Z域分析
z
k
cos(
0
k
)
k
z
z2 z2 z cos 2z2 2z cos 0
0
1
2
..........
k
sin 0k
k
z
2z2
z 2
sin 0 z cos 0
1 2
.........
k k
k
z (z )2k kk Nhomakorabea1
五、ZT & DTFT
求和收敛
设f(k)
为因果序列、则
F (e j ) f k e jk
Z eS Ts e e Ts jTs e j
k
F (z) f (k)zk k 0
e Ts
Ts
2 s
S 域中的一点→ → Z 域中的一点;Z 域中的一点→ → S 域中的无穷个点。
S 1 Ln z 1 Ln(e j ) 1 Ln j
Ts
Ts
Ts
Ts
三、收敛域: F (z) f k zk
ak (k) bk (k 1) z z ∣a∣< |z|< |b|
za zb
jIm[z]
|b|
|a|
o
Re[z]
四、常用 z 变换
(k+1) ←→z; (k-1) ←→z-1;……
(k) ←→1 (k) ←→z/(z-1) ←→ - (- k-1)
零、极 点分布
k k z k k 1
F(z)
K1 e j z
z e j
K1 e j z
z e j
若z> , f(k)=2K1kcos(k+)(k),… …
(3) F(z)有重极点 推导记忆:

离散信号与系统的Z域分析

离散信号与系统的Z域分析
序列相加减(线性加权)后,所得序列z变换的ROC,有 可能比原序列z变换的ROC大。位移特性常用来分析单边 周期信号,单边周期信号总具有相似的形式。
8 离散信号与系统的 Z 域分析 p 16
例: F(z) = 1/(za) |z| a 求f [k]。 解:
1 F ( z) z 1 1 az
z 例: (3) u[k ] , z 3 z 3
k
类似于傅氏、拉氏变换的尺度变换特性。
1 1 s L f (at ) F ( j ) f (at ) F ( ), a a a a
F
8 离散信号与系统的 Z 域分析 p 18
a 0, a 0
例*:求aksin(0k) u[k] 的z变换及收敛域
1 cos 0 z 1 1 2 z 1 cos 0 z 2 sin 0 z 1 1 2 z 1 cos 0 z 2
五、单边z变换的主要性质
f [k ] F ( z), z R f
f1[k ] F1 ( z), z R f 1
1 2
sin 0 z 1 za 2 2 z 1 cos 0 z 2
8 离散信号与系统的 Z 域分析 p 19
五、单边z变换的主要性质
4. z域微分特性(时域线性加权)
dF ( z ) kf [k ] z dz
Z
Z Rf
m d m d F ( z) Z m m 或写成 : ( z ) F ( z ) k f [k ] ( z ) m dz dz
2 2
8 离散信号与系统的 Z 域分析 p 13
五、单边z变换的主要性质
2. 位移特性(记忆)
因果序列的位移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 0

因此,若能将 F ( z ) 在收敛域内展开为 z 的幂级数, 则级数的系数就是序列 f [k ] 。
4
1
六、Z反变换
部分分式法
B( z ) b0 b1 z 1 bm z m F ( z) A( z ) 1 a1 z 1 a n z n
多项式
按(1)(2) 情况展开
7
1 例 : F ( z) z 4, 求f [k ] 1 2 1 (1 2 z ) (1 4 z )
A B C 解: F ( z ) 1 1 2 1 2z (1 2 z ) 1 4 z 1
C (1 4z 1 )F ( z) z 4 4

2
(k 1)) u[k ]
由指数加权性质
f [k ] a cos(
k

2
k )u[k ]
10
六、Z反变换
留数法
1 k 1 f [k ] F ( z ) z dz c 2 πj

i 1
n
Байду номын сангаас
Re s[ F ( z ) z k 1 ]
z pi
若F(z)z k1在z = pi处有一阶极点,则该极点的留数为
k 1
] z 0.5 =[1+(-0.5)k]u[k]
12
1) Z变换与拉普拉斯变换的关系。
2) 双、单边Z变换的定义与适用范围:
双边适用于离散系统综合设计
单边大多用于离散系统的分析
3) Z域分析与其他域分析方法相同, Z变换 的性质类似于其他变换。但位移特性, 单、双边变换明显不同。


z u ,
i 1,l
6
六、Z反变换
部分分式法
3. m>n
F ( z)
m n
B( z ) b0 b1 z 1 bm z m F ( z) A( z ) 1 a1 z 1 a n z n

i 1
ki z i
B1 ( z 1 ) A( z 1 )
Re s[ F ( z ) z k 1 ] ( z z i ) F ( z ) z k 1
z pi
z zi
若F(z)z k1在z = p处有n 阶极点,则该极点的留数为
n 1 n 1 d ( z p ) F ( z) k 1 Re s[ F ( z ) z ] n 1 z p (n 1)! dz z p
Z
sin( 0 (k 1))u[k ]
sin 0 1 2 z 1 cos 0 z 2
9
z2 例:F ( z ) 2 , z a, 求f [k ] 2 z a
1 F ( z) 1 ( z / a) 2
f1[k ] sin(
解:
1 F1 ( z ) 1 z 2
2. m<n,分母多项式在z=u处有l 阶重极点
F ( z)
i 1 nl
ri 1 pi z
1

i 1
l
qi (1 uz 1 ) i
1 d l i 1 l qi ( 1 uz ) F ( z) l i 1 l i (u ) (l i )! d( z )
1. m<n,分母多项式无重根
F ( z)
i 1 n
ri 1 pi z 1
各部分分式的系数为
ri (1 pi z 1 ) F ( z )
z pi
5
六、Z反变换
部分分式法
B( z ) b0 b1 z 1 bm z m F ( z) A( z ) 1 a1 z 1 a n z n
z 2
2
f [k ] [2 2k (k 1)2k 4 4k ]u[k ]
8
z2 例:F ( z ) 2 , z a, 求f [k ] 2 z a
解:
F(z)有一对共轭复根,复根时部分分式展开, 可以直接利用
Z sin( 0 k )u[k ]
sin 0 z 1 1 2 z 1 cos 0 z 2
z 1
z 1
1
Res[F ( z) z k 1 ]z 0.5 ( z 0.5)F ( z) z k 1
2 z 0.5 k z z 1
z 0.5
(0.5) k
f [k ] Res[ F ( z ) z
k 1
] z 1 Res[ F ( z ) z
B (1 2z 1 ) 2 F ( z) z2 1
1 2 ( 1 2 z ) 1 2 1 F ( z )(1 2 z ) A(1 2 z ) B C 1 1 4z
1 d 1 2 A [ F ( z )( 1 2 z ) ] 1 (2) dz
11
2 z 2 0.5 z , z 1 ,用留数法求f[k]。 例:F ( z ) 2 z 0.5 z 0.5
解:
F(z)z k1在z=1, z=0.5有两个一阶极点,其留数为
Res[F ( z) z
k 1
]z 1 ( z 1)F ( z) z
k 1
z 1
2 z 0. 5 k z z 0. 5
离散时间信号与系统的Z域分析
离散时间信号的Z域分析 离散时间系统的Z域分析 离散时间系统函数与系统特性 离散时间系统的模拟
1
离散时间信号的z域分析
理想取样信号的拉普拉斯变换 z变换定义 单边z变换及其收敛域 常用单边序列的z变换 单边z变换的性质 单边z反变换
2
六、Z反变换
1 k 1 f [k ] F ( z ) z dz c 2 πj
i
C为F(z) 的ROC中的一闭合曲线。
Re s{F ( z) z k 1}z zi zi为F(z)zk1在C中的极点
计算方法:
幂级数展开和长除法 部分分式展开 留数计算法
3
六、Z反变换
计算方法: 幂级数展开和长除法
幂级数展开和长除法 由单边 z 变换的定义有
F ( z ) f [k ]z k f [0] f [1]z 1 f [2]z 2
相关文档
最新文档