结构化学第5章例题与习题
结构化学第5章例题与习题

H2 C
CH 2
得 x1= - 3 , x2= x3= 0, x4= 3 , E1= + 3 , E2=E3=, E4= - 3,
以 x1= - 3 代入久期方程可得 Ψ1= (1/ 2)1+( 1/ 6)(2+3+4) x = 0 代入久期方程可得 c2+ c3+ c4= 0, c1= 0 ,
A
例4. 试比较CO2,CO和丙酮中碳-氧键键长大小次序,并 说明理由。 [解]: 三个分子中碳-氧键长大小次序为:
丙酮>CO2>CO
丙酮分子中的碳 - 氧键为一般双键,键长最长。 CO2分子 中除形成σ键外还形成两个离域π键。虽然碳-氧键键级
也为2,但由于离域 π键的生成使键能较大,键长较短,
但比一般三键要长。在 CO 分子中,形成一个 σ 键、一 个 π 键和一个 π 配键,键级为 3,因而碳 - 氧键键长最短。
习题5. 用前线轨道理论分析在加热或光照条件下,环己烯 和丁二烯一起进行加成反应的规律。
[解]:环己烯与丁二烯的加成反应和乙烯与丁二烯的加成反 应类似。在基态时,环己烯的π型HOMO与丁二烯的π型 LUMO对称性匹配,而环己烯的π型LUMO与丁二烯的π型 HOMO对称性也匹配。因此,在加热条件下,两者即可发 生加成反应:
1 (1 2 2 3 ) 2 6 1 ( ) 3 1 3 2
3
三个分子轨道的轮廓图示于下图中(各轨道的相对大小只是近 似的)。 + +
+ -
+ -
+ -
+ -
+ -
+
C3H3•分子轨道轮廓图
(2) C3H3•中有3个π电子,基态时有2个在ψ1上,一个在ψ2上。 所以π键键级为: 1 1 1 2 1 P12 P23 2 ( )0 3 3 3 6 6 1 1 1 1 5 P31 2 ( ) 0 6 3 3 6 6 (3) 各C原子的自由价
江元生《结构化学》课后习题答案

第一章 量子理论1. 说明⎥⎦⎤⎢⎣⎡-=) (2cos ),(0t x a t x a νλπ及⎥⎦⎤⎢⎣⎡-=) (2sin ),(0t x a t x a νλπ都是波动方程22222),(1),(t t x a c x t x a ∂∂=∂∂的解。
提示:将),(t x a 代入方程式两端,经过运算后,视其是否相同。
解:利用三角函数的微分公式)cos()sin(ax a ax x=∂∂和)sin()cos(ax a ax x -=∂∂,将⎥⎦⎤⎢⎣⎡-=) (2c o s ),(0t x a t x a νλπ代入方程:⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡--∂∂=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∂∂∂∂=⎥⎦⎤⎢⎣⎡-∂∂=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 2000022t x a t x x a t x x x a t x a x νλπλπνλπλπνλπνλπ左边 ()⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-∂∂=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∂∂∂∂=⎥⎦⎤⎢⎣⎡-∂∂=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 122020200222t x c a t x x c a t x t t c a t x a t c νλππννλππννλπνλπ右边 对于电磁波νλ=c ,所以⎥⎦⎤⎢⎣⎡-=) (2cos ),(0t x a t x a νλπ是波动方程的一个解。
对于⎥⎦⎤⎢⎣⎡-=) (2sin ),(0t x a t x a νλπ,可以通过类似的计算而加以证明:⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡-∂∂=) (2sin 2) (2sin 20022t x a t x a x νλπλπνλπ左边()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-∂∂=) (2sin 2) (2sin 12200222t x c a t x a t c νλππννλπ右边2. 试根据Planck 黑体辐射公式,推证Stefan 定律:4 T I σ=,给出σ的表示式,并计算它的数值。
北师大_结构化学课后习题答案Word版

北师大 结构化学 课后习题 第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。
物质波的波动性是和微粒行为的统计性联系在一起的。
对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。
对一个粒子而言,通过晶体到达底片的位置不能准确预测。
若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为 12=ψ⎰τd 。
表示波函数具有归一性。
2 如何理解合格波函数的基本条件? 参考答案合格波函数的基本条件是单值,连续和平方可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。
3 如何理解态叠加原理? 参考答案在经典理论中,一个波可由若干个波叠加组成。
这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。
而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有自己的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量子力学可以计算出测量的平均值。
4 测不准原理的根源是什么? 参考答案根源就在于微观粒子的波粒二象性。
结构化学第5章例题与习题

+
丁二烯
+ -
+
前线轨道叠加图
+ -
+
LUMO
-
+ +
+ +
HOMO
-
环己烯
+
+
-
-
-
+
HOMO
LUMO
环己烯和丁二烯前线轨道叠加图
习计算题π6.键键用级HM和O法C原解子环的丙自烯由C3价H3。• 的离域π键分子轨道波函数并
[解]: (1)C3H3• 的骨架如下图所示:
H
按分子骨架列出久期行列式:
+ CO + - - + (5σ)2
-
(2π)0
+
H2 +
- (σ﹡1s)0
+ (σ1s)2
图(a)CO和H2的前线轨道轮廓图
由图可见,当CO分子的HOMO和H2分子的LUMO接近时, 彼此对称性不匹配;当CO分子的LUMO和H2分子的HOMO接近 时,彼此对称性也不匹配。因此,尽管在热力学上CO加H2 (生 成烃或含氧化合物)反应能够进行,但实际上,在非催化条件下,
│1 x 0 0 │
│1 0 x 0 │= 0 ,
│1 0 0 x │
H2C
CH2
得 x1= - 3 , x2= x3= 0, x4= 3 ,
C
E1= + 3 , E2=E3=, E4= - 3, 以 x1= - 3代入久期方程可得
CH2
Ψ1= (1/ 2)1+( 1/ 6)(2+3+4)
若用亲核试剂与其反应,则反应位在:------ ( A )
结构化学习题5..

x 1 1
1 x 1
1 1 0 x
展开,得:
x 3x 2 0
3
解之,得:
x1 x2 1, x3 2 c1 c2 c3 0
将x=1代入久期方程,得:
再结合归一化条件,还是无法求出c1,c2,c3的值。因此,必须 采取对称性来进行处理。
当关于如图所示镜面对称时,有:c1=c1,c2=c3
1 这样: c 2 c 3 c1 2
根据归一化条件,得: c12 1 c12 1 c12 1 4 4
c1 2 1 2 , c2 c3 3 2 3
当关于如图所示镜面反对称时,有:c1=0,c2=-c3 根据归一化条件,得:
2 2c2 1
c 1 0 , c 2 c 3
2
3
4
解:
2 2 ρ1 2 0.37172 1 0.6015 1 0.6015 1.00
P12 2 0.3717 0.6015 1 0.6015 0.3717 1 0.6015 0.3717 0.447
P23 2 0.6015 0.6015 1 0.3717 0.3717 1 0.3717 0.3717 0.724
NH 2
N 为不等性 sp 3 杂化 V 型 S 为不等性 sp 3 杂化 V 型 P 为不等性 sp 3 杂化 三角锥型 O 为不等性 sp 2 杂化 V 型 N 为等性 sp 杂化 S 为等性 sp 3 杂化 直线型 正四面体
H2S PCl3 O3
N 3
2 SO4
SO32
S 为不等性 sp 3 杂化 三角锥型
E1 α 2β, E2 E3 α β
结构化学模块五

《结构化学》模块五 习题5001NF 3和NH 3分子中, 键角∠FNF 比∠HNH 要 (a ) , 这是因为(b )。
5002写出下列分子的结构式(标明单键和多重键等键型)和立体构型:(1) Al 2Cl 6 ,(2) HN 3 ,(3) Fe(CO)3(η4- C 4H 4) ,(4) XeOF 4 ,(5) XeF 45003NH 3和PH 3分子键角值大者为___________________分子。
5004用价电子对互斥理论推断: PF 4+的构型为_________________, 中心原子采用的杂化轨道为_____________________: XeF 4的构型为___________________,中心原子采用的杂化轨道为________________________。
5005写出下述分子中中心原子的杂化方式及分子的几何构型:HgCl 2_________________: Co(CO)4-__________________:BF 3___________________: Ni(CN)42-__________________。
5006sp 2(s ,p x ,p y )等性杂化轨道中,若1ψ和x 轴平行,2ψ和y 轴成30°,1ψ,2ψ,3ψ互成120°。
请写出满足正交归一化条件的三个杂化轨道表达式:1ψ______________________________:2ψ______________________________:3ψ______________________________。
5007O 3的键角为116.8°,若用杂化轨道ψ=c 1s 2ψ+c 2p 2ψ描述中心O 原子的成键轨道,试按键角与轨道成分关系式cos θ=-c 12/c 22,计算:(1) 成键杂化轨道中c 1和c 2值;(2) ψ2s和ψ2p轨道在杂化轨道ψ中所占的比重。
王顺荣编高教版社结构化学习题答案第5章

因为 2 , 3 与 x 轴夹角相同,对称,则: c22 c32 ( p x 对 2 , 3 的贡献相同,且为负)
c23 c33 ( p y 对 2 , 3 的贡献符号相反)
再利用 px 的单位轨道贡献
2 3 2 3 C 22 C32 1
正振动的模式
6.核磁共振和电子自旋磁共振发生的条件是什么?它们含有那些结构信息? 答: (1)核磁共振发生的条件:①原子核必须具有核磁性质,即必须是磁性核② 需要有外加磁场, 磁性核在外加磁场作用下发生核自旋能级的分裂,产生不同能 量的核自旋能级, 才能吸收能量发生跃迁③只有那些能量与核自旋能级能量相同 的电磁辐射才能被共振吸收。 电子自旋磁共振需要满足类似上述三个条件才能发 生,但电子本身存在固有的自旋运动。 (2) 核磁共振条件随核外化学环境变化而移动的现象为化学位移,其包含了 有关结构的信息。因化学位移的大小是由核外电子云密度决定的。就 1H-NMR 来 说,分子中影响 1H 核外电子密度的所有因素都将影响化学位移。①最重要的因 素是相邻的、具有较大电负性的原子或基团的诱导效应。②反磁各向异性效应。 ③核的自旋-自旋耦合效应。由高分辨率的共振仪测得的 NMR 共振峰通常具有精 细结构,为多重峰。在 1H-NMR 谱中,共振峰的面积与此类质子数目成正比。对 于电子自旋磁共振, 化合物的 g 因子即包含了有关未成对电子的信息,也包含了 有关化学键的信息,可用于鉴别、分析未知样品的分子结构。主要用以用以研究 自由基的结构和存在、 过渡金属离子及稀土离子的电子结构和配位环境、催化剂 活性中心位置等。
4 =
即: 1 =0.5 s +0.866 px
2 =0.5 s -0.288 px +0.817 py
结构化学答案 Chapter5

第五章 多原子分子1. 试给出等键长弯曲构型分子H 3的分子轨道和能级图; 随着键角的增大(线形化), 能级图会产生什么变化? 根据能级图, 你认为稳定的实体是H 3, 还是H 3+或H 3-?解: 与水分子相同, H 3 分子属于点群C 2v , 参加成建的原子轨道涉及三个H 原子的1s 轨道容易验证, 中间的H 原子的1s 轨道属于恒等表示A 1, 而边上的两个H 原子的1s 轨道可重新组合成分别属于A 1和 B 2的两个基函数:)11(211b a a s s +=φ )11(212b a b s s -=φ21b a E E φφ<二中间原子的1s 轨道能量介于两者之间.按照对称性原理, 属于A 1的中间原子的1s 轨道与2b φ之间无相互作用, 但与1a φ有作用. 得到两个A 1对称性的分子轨道1a 1, 2a 1. 从能级图中可以看出, B 2对称性分子轨道的能量介于两个A 1对称性的分子轨道之间.当键角增大时, 1s a 和1s b 的重叠减小, 1a φ和2b φ能量差减小, 导致B 2对称性分子轨道的能量降低.由能级图可知, B 2对称性分子轨道为HOMO 轨道, 在H 3分子中, 其上填充有一个电子, 为不稳定电子结构, H 3+才是稳定的结构.2. 若H 4具有BH 3的几何构型, 请给出分子轨道和能级图、基组态及多重度(自旋单态、三态等), 由此判断它的稳定性如何?解: 与BH 3分子相同, H 4 分子属于点群D 3h , 由于所有原子都在同一个平面内, σh 是一个平庸的对称操作, 可以直接考虑在其子群D 3下讨这一体系. 参加成建的原子轨道涉及四个H 原子的1s 轨道容易验证, 中间的H 原子的1s 轨道属于恒等表示A 1, 周围的三个H 原子的1s 轨道可重新组合成分别属于A 1和E 的两个基函数:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛c b a e e a y x 616162212103131311 按照对称性原理, 属于A 1的中间原子的1s 轨道与e x , e y 轨道之间无相互作用, 但与上述a 1轨道有作用. 得到两个A 1对称性的分子轨道1a 1, 2a 1.能级图如下:HH 43H基组态为 (1a 1)2(e x )1(e y )1, 多重度为3, 为不稳定电子构型, 倾向于失去两个电子而成为H 42+.3.若H 4具有正四面体构型, 请给出分子轨道和能级图、基组态及多重度; 你认为稳定的实体是H 4, H 4+, H 42+, H 4-, H 42-中的哪一个?解: 若H 4具有正四面体构型, 则属于T d 对称性, 四个1s 轨道重新组合成一个a 1轨道和三个t 2轨道. 若按如图所示的坐标, 容易得到所有分子轨道:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛d c b a t t t a z y x 212121212121212121212121212121212221 能级图如下:基组态为 (a 1)2(t 2)2, 多重度为3, 为不稳定电子构型, 倾向于失去两个电子而成为H 42+.4. 对CH 4, 若选择一个三重轴(C -H)为z 轴, xz 平面上有两个H, 原点在C 上, 试造出分子轨道和能级图.解: 若选择一个三重轴(C -H)为z 轴, xz 平面上有两个H, 原点在C 上, 原子坐标如图所示为碳原子坐标为(0, 0, 0), 四个氢原子坐标为a(0, 0, 1), b(322, 0, -31),c(-32,36,-31), d(-32,-36,-31). 四个H 原子在组合成a 1轨道时仍然取全对称组合, 在组合成t 2轨道时, 参照第114页NH 3群轨道的构造方法, 每一原子的轨道系数各取其对应的坐标. 例如, 在构造t 2x 时,各原子轨道的系数为坐标的x 分量.d c b t x 32323222--=, 归一化后为,d c b t x 6161622--=.同理可得 t 2y , t 2z 的群轨道. 归结为1t 24HH 4⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛d c b at t t a z y x 1211211211232121006161620212121212221 上述群轨道分别与C 原子的2s , 2p x , 2p y , 2p z 组合成分子轨道. 能级图如下:5. 根据题二与题三的结果, 画出Walsh 相关图,讨论H 4的几何构型(C 3v 与T d )与电子数的关系.解: 在画出Walsh 图之前, 我们先对两种结构的分子轨道的能量逐一加以比较,1a 1: 在C 3v 构型中, 周围三个H 原子的距离较远,重叠较之T d 构型要小, 故T d 构型1a 1轨道能量较低.C 3v 下的1e 和2a 1相当于T d 下的t 2轨道在子群下的分裂的结果. 显然, 1e 的能量低于t 2的能量2a 1的能量高于t 2的能量. 据此可画出Walsh 图:由上述相关图可知, H 4+, H 4取C 3v 构型, 其余取T d 构型.6. 请补充画出AH 2能级-键角相关图5.13中未画出的两条相关线: 3σg -4a 1与2σu -2b 2,预测H 2O 的激发组态(2a 1)2(1b 2)2(3a 1)2(1b 1)1(4a 1)1与(2a 1)2(1b 2)2(3a 1)2(1b 1)1(2b 2)1的几何构型:线性还是弯曲?(提示:根据反键轨道4a 1与2b 2的位相, 可以推知E 3σg (线形)>E 4a 1(弯曲), E 2σu <E 2b 2).解: 3σg , 2σu 轨道的示意图分别为:4H2t 2CCH41a 1C 3vTd显然, 当分子采取弯曲构型时, 对于3σg 轨道, 两个同位相的氢原子相互靠近, 使轨道能量下降,故E 3σg (线形)>E 4a1(弯曲);而对于2σu 轨道, 两个反位相的氢原子相互靠近, 使轨道能量升高, 故E 2σu <E 2b2. 据此可补充画出AH 2能级-键角相关图5.13中未画出的两条相关线.由上述能级相关图容易判断, H 2O 的两个激发组态的构型为: (1b 1)1(4a 1)1取弯曲结构, (1b 1)1(2b 2)1取线形结构.7. 对于CH 4, 当一个C -H 键不断缩短,直至H 与C 成为联合原子N,就得到了NH 3, 请给出CH 4与NH 3的能级相关图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
21
23
1.07
0.33 1.33 0.33
0.83 0.57
0.83 0.83 0.57
❖
P12=P13=P14=2×(1/ 2 )×(1/ 6 ) =1/ 3
❖ 中心C原子的成键度 N= 3×1/ 3 =1.732
习题1. 已知烯丙基阳离子的三个分子轨道为:
ψ1
1 2
φ1
2 2
φ2
1 2
φ3
ψ2
2 2
φ1
2 2
φ3
ψ3
1 2
φ1
2 2
φ2
1 2
φ3
问亲电反应发生在哪个原子上:-------------- ( B )
11 1
2
1
P P 2 ( ) 0
12
23
33 6
6
3
11 1 1
5
P 2 ( ) 0
31
33 6 6
6
(3) 各C原子的自由价
F F 1.732 P P 1.73 0.33 0.83 0.57
1
3
12
13
F 1.732 P P 1.73 0.33 0.33 1.07
分子
XeF4
BP(价电子对数) 4
LP(孤电子对数) 2
配位原子数(σ电子对) 4
几何构型
正方形
XeO4 8 0 4
四面体
XeO3 6 1 3
三角锥
XeF2 2 3 2
直线形
XeOF4 6 1 5
四棱锥
例2:画出下列久期行列式对应的共轭分子碳原子骨架:
x011
0x01 0
10x0 110x
C-C-C-C 31 4 2
+ (σ1s)2
图(a)CO和H2的前线轨道轮廓图
由图可见,当CO分子的HOMO和H2分子的LUMO接近时, 彼此对称性不匹配;当CO分子的LUMO和H2分子的HOMO接近 时,彼此对称性也不匹配。因此,尽管在热力学上CO加H2 (生 成烃或含氧化合物)反应能够进行,但实际上,在非催化条件下,
该反应难以发生。
习题4. 用前线轨道理论分析CO加H2 反应,说明只有使用催化 剂该反应才能顺利进行。
[解]:基态CO分子的HOMO和LUMO分别为5σ和 2π,基态H2 分子的HOMO和LUMO分别σ1s和σ﹡1s。它们的轮廓图示于图 5.30(a)。
+ CO + - - + (5σ)2
-
(2π)0
+
H2 +
- (σ﹡1s)0
x10010 1x1000 01x100
0 001x10 1001x1 00001x
6
5
4
1
32
例3. 已知丁二烯的四个分子轨道为:
ψ1 Aφ1 Bφ2 Bφ3 Aφ4 ψ2 Bφ1 Aφ2 Aφ3 Bφ4 ψ3 Bφ1 Aφ2 Aφ3 Bφ4 ψ4 Aφ1 Bφ2 Bφ3 Aφ4
例5:在三次甲基甲烷分子中, 中心C原子与邻近三个次甲基 组成大键。试证明中心C原子的键级为1.732。
❖ 采用HMO法, 中心C原子编号定为1, 得久期行列式
❖
│x 1 1 1 │
❖
│1 x 0 0 │
❖
│1 0 x 0 │= 0 ,
❖
│1 0 0 x │
H2C
CH2
❖ 得 x1= - 3 , x2= x3= 0, x4= 3 ,
x11 1 x 10 11x
将行列式展开得:
x3-3x+2=(x-1)(x2+x-2)=0
C2
C1 H
C3 H
解得:x1=-2,x2=1,x3=1 将x值代入x=(α-E)/β,得: E1=α+2β,E2=α-β,E3=α-β
将E1=α+2β代入久期方程, 得:2c1β-c2β-c3β= 0
c1β-2c2β+ c3β= 0 c1β+c2β-2c3β= 0
丙酮分子中的碳-氧键为一般双键,键长最长。CO2分子 中除形成σ键外还形成两个离域π键。虽然碳-氧键键级 也为2,但由于离域π键的生成使键能较大,键长较短, 但比一般三键要长。在CO分子中,形成一个σ键、一 个π键和一个π配键,键级为3,因而碳-氧键键长最短。
丙 酮 、 CO2 和 CO 分 子 中 碳 - 氧 键 键 长 分 别 为 121pm , 116pm和113pm。
解之,得:c1= c2=c3 根据归一化条件,有:
c2 c2 c2 1
1
2
3
由此求得: c1= c2=c3= 1/ 3
ψ1= 1/ 3(φ1+φ2+φ3)
将E2=E3=α-β代入久期方程, 得: c1β+c2β+c3β=0
c1β+c2β+c3β=0
c1β+c2β+c3β=0 即: c1+c2+c3=0
1
3
波函数为:ψ= 1/ (2 φ1-φ3) 所以,C3H3• 的离域π键分子轨道为:
1
2
1 ( )
31
2
3
1 ( 2 )
61
2
3
1 ( )
3
21
3
三个分子轨道的轮廓图示于下图中(各轨道的相对大小只是近
似的)。
+
-
-
+
+
+
+
++
-
-
-
-
-
-
+
C3H3•分子轨道轮廓图
(2) C3H3•中有3个π电子,基态时有2个在ψ1上,一个在ψ2上。 所以π键键级为:
则其第一激发态的键级P12,P23为何者? A
P12
P23
(A) 2AB
2B2
(B) 4AB
2(A2+B2)
(C) 4AB
2(B2-A2)
(D) 0
2(B2+A2)
(E) 2AB
B2+A2
例4. 试比较CO2,CO和丙酮中碳-氧键键长大小次序,并 说明理由。
[解]: 三个分子中碳-氧键长大小次序为: 丙酮>CO2>CO
Ψ1=0.2451+0.5232+0.429(3+6)+0.385(4+5) Ψ2=0.5(1+2)-0.5(4+5) Ψ3=0.602(3-6)+0.372(4-5)
若用亲核试剂与其反应,则反应位在:------ ( A )
(A) 1 (B) 2 (C) 3,6 (D) 4,5 (E) 都可能
亲核反应发生在电荷密度最小处
C CO
.+ .-
O
-
+
H2
-
+
e
Ni
.- +
+-
图(b)CO和H2的在Ni催化剂上轨道叠加和电子转移情况
若使用某种过度金属催化剂,则该反应在不太高的温 度下即可进行。以金属Ni为例,Ni原子的d轨道与H2分子 的LUMO对称性匹配,可互相叠加, Ni原子的d电子转移 到分子的LUMO上,使之成为有电子的分子轨道,该轨道 可与CO分子的LUMO叠加,电子转移到CO分子的LUMO 上。这样,CO加H2反应就可顺利进行。轨道叠加及电子 转移情况示于图5.30(b)中。
(A) 1 (B) 2 (C) 3 (D) 1,3 (E) 1,2,3
习题2. 求烯丙基阳离子(CH2CHCH2)+的电荷密度、键级、自由 价和分子图。
1.025 ↑ 0.707 ↑
CH2──── CH ──── CH2
0.5
1.0
0.5
习题3. 已知富烯的三个能量最低的轨道为:
C
❖ E1= + 3 , E2=E3=, E4= - 3, ❖ 以 x1= - 3代入久期方程可得
CH2
❖
Ψ1= (1/ 2)1+( 1/ 6)(2+3+4)
❖ x = 0 代入久期方程可得 c2+ c3+ c4= 0, c1= 0 ,
❖ c1= 0, 意味着在Ψ2和Ψ3中, 中心C原子的原子轨道没有参加, 中心C原子的键 级决定于Ψ1, 其值为:
Ni 原子的d电子向H2分子的LUMO转移的过程即H2分 子的吸附,解离而被活化的过程,它是CO加H2反应的关 键中间步骤。
习题5. 用前线轨道理论分析在加热或光照条件下,环己烯 和丁二烯一起进行加成反应的规律。 [解]:环己烯与丁二烯的加成反应和乙烯与丁二烯的加成反 应类似。在基态时,环己烯的π型HOMO与丁二烯的π型 LUMO对称性匹配,而环己烯的π型LUMO与丁二烯的π型 HOMO对称性也匹配。因此,在加热条件下,两者即可发 生加成反应:
利用分子的镜面对称性,可简化计算工作:若考虑分子对过
C2的镜面对称,则有:c1= c3 c2=-2c1
根据归一化条件可得: c c 1/ 6,c 2/ 6
1
3
2
波函数为: ψ2= 1/ 6(φ1-2φ2+φ3)
若考虑反对称,则 c1= -c3 ,c2=0
根据归一化条件得: c 1/ 2,c 1/ 2
例1. 利用价电子对互斥理论说明下列分子的形状: XeF4,XeO4,XeO3,XeF2,XeOF4。
[解]:根据价电子对互斥理论,根据中心原子A的价电子数和成键 情况,确定其成键电子对BP数目(每形成一个BP, 原子A贡献一 个价电子, 另一个价电子由原子B贡献) 及孤电子对LP数目的总 和. 根据电子对尽量远离的原则,确定分子构型.
△
+
丁二烯