高考中概率与统计问题的热点题型
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
【新高考数学专题】概率统计常考的六种题型总结

概率统计常考的六种题型总结题型一概率统计的交汇例1.甲、乙两人的各科成绩如茎叶图所示,则下列说法正确的是()A.甲、乙两人的各科成绩的平均分相同B.甲成绩的中位数是83,乙成绩的中位数是85C.甲各科成绩比乙各科成绩稳定D.甲成绩的众数是89,乙成绩的众数是87【答案】ABC【解析】对于选项A,甲成绩的平均数1743 =(687477838384899293)=99x⨯++++++++甲,乙成绩的平均数1743(646674768587989895)99x=⨯++++++++=乙,所以选项A是正确的;对于选项B,由茎叶图知甲成绩的中位数是83,乙成绩的中位数是85,故选项B正确;对于选项C,由茎叶图知甲的数据相对集中,乙的数据相对分散,故甲的各科成绩比乙的各科成绩稳定,故选项C正确;对于选项D,甲成绩的众数是83,乙成绩的众数是98,故选项D错误.故选ABC.练习1.(多选)以下对各事件发生的概率判断正确的是().A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是1 3B.每个大于2的偶数都可以表示为两个素数的和,例如835=+,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为1 15C.将一个质地均匀的正方体骰子(每个面上分别写有数字l,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是5 36D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是12【答案】BCD【解析】对于A ,画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P (甲获胜)13=,P (乙获胜)13=,故玩一局甲不输的概率是23,故A 错误; 对于B ,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有2与3,2与5,2与7,2与11,2与13,3与5,3与7,3与11,3与13,5与7,5与11,5与13,7与11,7与13,11与13共15种结果,其中和等于14的只有一组3与11,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B 正确; 对于C ,基本事件总共有6636⨯=种情况,其中点数之和是6的有15(,),24(,),33(,),42(,),51(,),共5种情况,则所求概率是536,故C 正确; 对于D ,记三件正品为1A ,2A ,3A ,一件次品为B ,任取两件产品的所有可能为12A A ,13A A ,1A B ,23A A ,2A B ,3A B ,共6种,其中两件都是正品的有12A A ,13A A ,23A A ,共3种,则所求概率为3162P ==,故D 正确.故选BCD.练习2.在某次高中学科知识竞赛中,对4000名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为)[4050,,)[5060,,)[6070,,)[7080,,)[8090,,[90]100,,60分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中正确的是( )A .成绩在)[7080,的考生人数最多 B .不及格的考生人数为1000 C .考生竞赛成绩的平均分约为70.5分 D .考生竞赛成绩的中位数为75分【答案】ABC【解析】由频率分布直方图可得,成绩在[7080,)的频率最高,因此考生人数最多,故A 正确;成绩在[4060,)的频率为0.01100.015100.25⨯+⨯=,因此,不及格的人数为40000.251000⨯=,故B正确;考生竞赛成绩的平均分约为450.1550.15650.2750.3850.15950.170.5⨯+⨯+⨯+⨯+⨯+⨯=,故C 正确;因为成绩在[4070,)的频率为0.45,在[7080,)的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误. 故选:ABC.高中数学资料共享群(734924357)题型二 解答题与数列的交汇例2.某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。
高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
18版:[专题探究课六] 高考中概率与统计问题的热点题型(创新设计)
![18版:[专题探究课六] 高考中概率与统计问题的热点题型(创新设计)](https://img.taocdn.com/s3/m/9b4ac35fa9114431b90d6c85ec3a87c240288add.png)
解 依题意,这 4 个人中,每个人去参加甲游戏的概率为13,去 参加乙游戏的概率为23. 设“这 4 个人中恰有 i 人去参加甲游戏”为事件 Ai(i=0,1,2, 3,4).则 P(Ai)=Ci413i234-i. (1)这 4 个人中恰有 2 人去参加甲游戏的概率 P(A2)=C24132232=287.
P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=881.10 分
故 X 的分布列为
X2
3
4
5
P
5 9
2 9
10
8
81 81
11分
E(X)=2×59+3×29+4×1801+5×881=28214.12 分
❶得步骤分:这是得分点的步骤,有则给分,无则没分,步步 为“赢”,求得满分. 如第(1)问,引进字母表示事件,用文字叙述正确,得2分; 把事件拆分成A=A1A2+B1A2A3+A1B2A3A4,就得2分,计算 概率值正确,得1分.第(2)问求出X的四个值的概率,每对一 个得1分;列出随机变量X的分布列得1分.
满分解答 解 用 A 表示“甲在 4 局以内(含 4 局)赢得比赛”, Ak 表示“第 k 局甲获胜”,Bk 表示“第 k 局乙获胜”,则 P(Ak) =23,P(Bk)=13,k=1,2,3,4,5.2 分 (1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4) =P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)· P(A3)P(A4) =232+13×232+23×13×232=5861.5 分
【例 2】 (满分 12 分)甲乙两人进行围棋比赛,约定先连胜两 局者直接赢得比赛,若赛完 5 局仍未出现连胜,则判定获胜 局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概 率为13,各局比赛结果相互独立. (1)求甲在 4 局以内(含 4 局)赢得比赛的概率; (2)记 X 为比赛决出胜负时的总局数,求 X 的分布列和均值 (数学期望).
高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练高考文科数学概率与统计题型归纳与训练近年来,随着高考评价重点的转变,我国高考数学概率与统计所占的比重越来越大,也极大地影响了学生的试题解答,特别是对文科类学生而言。
因此,归纳与训练概率与统计的题型对提升高考成绩非常有效。
一、高考概率与统计试题类型1、概率题:(1)概率概念题:要求判断某事件的可能性大小、求概率大小、比较概率大小,以及用中文描述概率大小等概念性问题。
(2)条件概率及贝叶斯公式:求两事件同时发生的条件概率,用贝叶斯公式求解概率问题。
(3)随机变量和概率分布:讨论正态分布、泊松分布等随机变量的概率分布。
2、统计学题:(1)数据的勘误析:把调查所得原始数据准确地归类编单,以便找出这些数据中蕴含的结论。
(2)图表分析:分析调查对象之间的关系,从折线图、饼形图、柱形图等图表中获取相应的数据。
二、概率与统计的训练方法1、理论思考训练:多看有关概率、统计的权威论文和教材,把基本概念牢牢掌握,把常见的概率公式及统计公式及推导式脱口而出。
2、示范练习:对常考的知识点补充示范练习,可以通过复现例题和大量习题来熟悉该知识点,从而深入理解,提高解题能力。
3、联系模拟考试:利用模拟考试把学过的知识点和技巧联系起来,在试题中能够驾轻就熟地掌握各试题技巧,大大提升实力。
4、强化记忆:记忆知识点、公式要选择相应的方法,通过反复记忆和熟习,把重点内容融会贯通,熟练记忆几个重点的式子和结论有助于考试的取得好成绩。
总之,学习概率与统计,除了要用心去理解之外,还需要不断的训练,把一些重点的知识点、公式强化记忆,加深理解,才能在考试中取得较好的成绩。
高考概率与统计常见题型与解法

高考概率与统计常见题型与解法题型一几类基本概型之间的综合在高考解答题中,常常是将等可能事件、互斥事件、相互独立事件等多种事件交汇在一起进行考查,主要考查综合计算方法和能力.此类问题一般都同时涉及几类事件,它们相互交织在一起,难度较大,因此在解答此类题时,在透彻理解各类事件的基础上,准确把题中所涉及的事件进行分解,明确所求问题所包含的所属的事件类型.特别是要注意挖掘题目中的隐含条件.1、等可能事件的概率在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都m。
这就是等相等。
如果事件A包含的结果有m 个,那么P(A)=n可能事件的判断方法及其概率的计算公式。
高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。
例题1(2010湖南)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)(Ⅰ)求x,y ; (Ⅱ)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。
解 (Ⅰ)由题意可得2183654x y ==所以1,3x y ==, (Ⅱ)记从高校B 中抽取的2人为12,b b ,从高校C 中抽取的3人为123,,C C C 则从高校B 、C 抽取的5人中选2人作专题发言的基本事件有(12,b b ),(11,b c ),(12,b c ),(23,b c ),(21,b c ),(22,b c ),(23,b c ),12(,)C C ,13(,)C C ,23(,)C C 共10种,设选中的2人都来自高校C 的事件为X ,则X 包含的基本事件有12(,)C C ,13(,)C C ,23(,)C C 共3种,因此3()10p X =故选中的2人都来自高校C 的概率为310变式1(2010江苏)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。
高考数学概率统计题型归纳

高考数学概率统计题型归纳高考数学中的概率统计是一个重要的考点,其题型多样,涵盖了众多知识点。
为了帮助同学们更好地应对高考中的概率统计题目,下面对常见的题型进行归纳和分析。
一、古典概型古典概型是概率统计中最基本的题型之一。
其特点是试验中所有可能的结果有限,且每个结果出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解决这类问题的关键是要准确计算基本事件的总数和所求事件包含的基本事件数。
在上述例子中,基本事件的总数可以通过组合数计算,即从 8 个球中取出 2 个球的组合数;所求事件包含的基本事件数为从 5 个红球中取出 2 个球的组合数。
然后用所求事件包含的基本事件数除以基本事件的总数,即可得到所求概率。
二、几何概型几何概型与古典概型的区别在于试验的结果是无限的。
通常会涉及到长度、面积、体积等几何度量。
比如,在区间0, 5上随机取一个数,求这个数小于 2 的概率。
解决几何概型问题时,需要确定几何区域的度量,并计算出所求事件对应的几何区域的度量,最后用所求事件对应的几何区域的度量除以总的几何区域的度量,得到概率。
三、相互独立事件与条件概率相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。
例如,甲、乙两人分别独立射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求两人都击中目标的概率。
条件概率则是在已知某个事件发生的条件下,求另一个事件发生的概率。
比如,已知某班级男生占 60%,女生占 40%,男生中优秀的比例为30%,女生中优秀的比例为 20%,现从班级中随机抽取一名学生为优秀,求这名学生是男生的概率。
对于相互独立事件,其概率的计算使用乘法公式;对于条件概率,使用条件概率公式进行计算。
四、离散型随机变量离散型随机变量是指取值可以一一列出的随机变量。
常见的离散型随机变量有二项分布、超几何分布等。
二项分布是指在 n 次独立重复试验中,某事件发生的次数 X 服从二项分布。
高中数学概率与统计的常见题型解析

高中数学概率与统计的常见题型解析概率与统计是高中数学中的一门重要课程,也是学生们普遍感觉较难的一部分内容。
在考试中,概率与统计题型占比较大,因此对于这部分知识的掌握至关重要。
本文将结合常见的概率与统计题型,进行解析和说明,帮助高中学生和他们的父母更好地理解和应对这些题目。
一、事件概率计算题事件概率计算题是概率与统计中的基础题型,也是最常见的题型之一。
这类题目要求计算某个事件发生的概率。
例如:【例题】已知一副扑克牌中有52张牌,其中红心牌有13张。
从中随机抽取一张牌,求抽到红心牌的概率。
解析:这是一个典型的事件概率计算题。
根据题目所给的信息,我们知道红心牌有13张,总共有52张牌,因此红心牌的概率为13/52,即1/4。
这类题目的考点在于理解概率的定义,并且能够根据题目给出的条件计算出事件发生的概率。
在解题过程中,可以通过简化分数、约分等方法,使计算更加简便。
二、排列组合题排列组合题是概率与统计中的另一类常见题型,也是较为复杂的题目之一。
这类题目要求计算事件的排列或组合方式。
例如:【例题】某班有10个学生,要从中选出3个学生组成一支篮球队,求不考虑位置的情况下,有多少种不同的组合方式。
解析:这是一个排列组合题。
我们需要从10个学生中选出3个学生,不考虑位置的情况下,即选出的学生是无序的。
根据组合的定义,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)进行计算。
代入题目的数据,即C(10,3) = 10!/(3!(10-3)!)=120种不同的组合方式。
这类题目的考点在于理解排列和组合的概念,并且能够根据题目给出的条件进行计算。
在解题过程中,可以使用排列组合公式简化计算,同时注意分子和分母的阶乘运算。
三、事件独立性题事件独立性题是概率与统计中的另一个重要题型,也是较为复杂的题目之一。
这类题目要求判断多个事件之间是否独立。
例如:【例题】甲、乙、丙三个人独立地进行一项考试,他们的及格率分别为0.8、0.9和0.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考中概率与统计问题的热点题型
1.(优质试题·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
(1)
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(3)求续保人本年度的平均保费与基本保费的比值.
解(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.20+0.20+0.10+0.05=0.55.
(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.10+0.05=0.15.
又P(AB)=P(B),
故P(B|A)=P(AB)
P(A)
=
P(B)
P(A)
=
0.15
0.55=
3
11.
因此所求概率为3 11.
(3)记续保人本年度的保费为X,则X的分布列为
E(X)=×0.20+1.75a×0.10+2a×0.05=1.23a.
因此续保人本年度的平均保费与基本保费的比值为1.23.
2.(优质试题·贵州模拟)为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:
(1)试判断能否有
与性别有关;
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d
)
层抽样的方法,随机选出6人组成宣传小组.现从这6人中随机抽取2人到校外宣传,求到校外宣传的同学中男生人数X 的分布列和数学期望.
解 (1)因为K 2=120×(15×40-35×30)
2
50×70×45×75
≈2.057,
且2.057<2.706.
所以没有90%的把握认为测试成绩优秀与否与性别有关. (2)用分层抽样的方法抽取时抽取比例是645=2
15, 则抽取女生30×215=4人,抽取男生15×2
15=2人. 依题意,X 可能的取值为0,1,2. P (X =0)=C 24
C 26
=615=25;
P (X =1)=C 14C 12
C 26
=815;
P (X =2)=C 22
C 26=115.
X 的分布列为:
X 的数学期望E (X )=0×25+1×815+2×115=2
3.
3.(优质试题·武汉调研)某公司准备将1 000万元资金投入到市环
保工程建设中,现有甲、乙两个建设项目选择.若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如下表所示:
且ξ1的期望E (ξ1)=ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p (0<p <1)和1-p .若乙项目产品价格一年内调整次数X (次)与ξ2的关系如下表所示:
(1)求m ,n 的值; (2)求ξ2的分布列;
(3)若E (ξ1)<E (ξ2),则选择投资乙项目,求此时p 的取值范围. 解
(1)由题意得⎩⎪⎨⎪⎧m +0.4+n =1,
110m +120×0.4+170n =120,
解得m =0.5,n =0.1.
(2)ξ2的可能取值为41.2,117.6,204, P (ξ2=41.2)=(1-p )[1-(1-p )]=p (1-p ),
P (ξ2=117.6)=p [1-(1-p )]+(1-p )(1-p )=p 2+(1-p )2, P (ξ2=204)=p (1-p ), 所以ξ2的分布列为
E (ξ2)=41.2p (1-p )+117.6[p 2+(1-p )2]+204p (1-p )=-10p 2+10p +117.6,
由E (ξ1)<E (ξ2),得120<-10p 2+10p +117.6, 解得0.4<p <0.6,
即当选择投资乙项目时,p 的取值范围是(0.4,0.6).
4.(优质试题·长沙测试)某中学为丰富教职工生活,国庆节举办教职工趣味投篮比赛,有A ,B 两个定点投篮位置,在A 点投中一球得2分,在B 点投中一球得3分.规则是:每人投篮三次按先A 后B 再A 的顺序各投篮一次,教师甲在A 和B 点投中的概率分别是12和1
3,且在A ,B 两点投中与否相互独立.
(1)若教师甲投篮三次,求教师甲投篮得分X 的分布列和数学期望; (2)若教师乙与教师甲在A ,B 投中的概率相同,两人按规则各投三次,求甲胜乙的概率.
解 (1)根据题意知X 的可能取值为0,2,3,4,5,7,
P (X =0)=⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭
⎪⎫1-13=16,
P (X =2)=C 1
2×12
×⎝
⎛⎭
⎪⎫1-13×⎝
⎛⎭⎪⎫1-12=13
,
P (X =3)=⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭
⎪⎫1-12=1
12,
P (X =4)=12×⎝ ⎛
⎭⎪⎫1-13×12=16,
P (X =5)=C 1
2×12
×⎝
⎛⎭⎪⎫1-12×13=16
,
P (X =7)=12×13×12=1
12, ∴教师甲投篮得分X 的分布列为
E (X )=0×16+2×13+3×112+4×16+5×16+7×1
12=3.
(2)教师甲胜教师乙包括:甲得2分,3分,4分,5分,7分五种情形.这五种情形之间彼此互斥,因此,所求事件的概率为 P =13×16+112×⎝ ⎛⎭⎪⎫16+13+16×⎝ ⎛⎭⎪⎫16+13+112+16×⎝ ⎛⎭
⎪⎫16+13+112+16+112×
⎝
⎛⎭⎪⎫1-112=19
48.
5.(优质试题·广州调研)如图,李先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有L 1,L 2两条路线,L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为1
2;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,3
5.
(1)若走L 1路线,求最多遇到1次红灯的概率; (2)若走L 2路线,求遇到红灯次数X 的数学期望;
(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.
解 (1)设“走L 1路线最多遇到1次红灯”为事件A ,包括没有遇到红灯和只遇到红灯一次两种情况,所以
P (A )=C 03⎝ ⎛⎭
⎪
⎫123
+C 1
3×12×⎝ ⎛⎭⎪
⎫122
=12,
所以走L 1路线,最多遇到1次红灯的概率为1
2. (2)依题意,X 的可能取值为0,1,2.
P (X =0)=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭
⎪⎫1-35=1
10,
P (X =1)=34×⎝ ⎛
⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-34×35=920,
P (X =2)=34×35=9
20. 所以随机变量X 的分布列为
所以E (X )=110×0+920×1+920×2=27
20.
(3)设选择L 1路线遇到红灯次数为Y ,则随机变量Y 服从二项分布,即
Y ~B ⎝ ⎛⎭
⎪⎫
3,12,。