三角形单元测试卷
第十一章-三角形》单元测试卷含答案(共5套)

第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间:120分钟满分:120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2、3、6.B。
2、4、6C。
2、2、4.D。
6、6、62.如图,图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°,则它的边数是() A。
7.B。
8.C。
9.D。
104.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠XXX于点D,那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形,具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6,第三边的长为奇数,则第三边的长为9.8.若n边形内角和为900°,则边数n为10.9.将一副三角板按如图所示的方式叠放,则∠α的度数为30°。
10.如图,在△ABC中,∠ACB=90°,∠A=20°。
若将XXX沿CD所在直线折叠,使点B落在AC边上的点E处,则∠XXX的度数是70°。
11.如图,在△ABC中,E、D、F分别是AD、BF、CE的中点。
若△DEF的面积是1cm²,则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时,我们称此三角形为“希望三角形”,其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为27°。
八年级上册数学《三角形》单元综合检测(含答案)

(1)作出符合本题的几何图形;
(2)求证:BE∥DF.
参考答案
一、选择题(共24分)
1.以下列各组线段为边,能组成三角形的是().
A.2Cm,3Cm,5CmB.5Cm,6Cm,10Cm
C.1Cm,1Cm,3CmD.3Cm,4Cm,9Cm
[点睛]本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.
2.以长为13Cm、10Cm、5Cm、7Cm的四条线段中的三条线段为边,可以画出三角形的个数是( )
A.1个B.2个C.3个D.4个
[答案]C
[解析]
解:能够构成三角形三边的组合有13Cm、10Cm、5Cm和13Cm、10Cm、7Cm和10Cm、5Cm、7Cm共3种,故选C.
人教版八年级上册《三角形》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(共24分)
1.以下列各组线段为边,能组成三角形的是().
A.2Cm,3Cm,5CmB.5Cm,6Cm,10Cm
C.1Cm,1Cm,3CmD.3Cm,4Cm,9Cm
2.以长为13Cm、10Cm、5Cm、7Cm的四条线段中的三条线段为边,可以画出三角形的个数是( )
[答案]45
[解析]
试题解析:
是 的一个外角.
故答案
点睛:三角形的一个外角等于与它不相邻的两个内角的和.
14.如图,△A B C中,∠A= 40°,∠B= 72°,CE平分∠A C B,C D⊥A B于D,DF⊥CE,则∠C DF =_________度.
[答案]74°
[解析]
人教版八年级上《第十一章三角形》单元测试卷(含答案解析)

秋八年级上学期第十一章三角形单元测试卷数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.(4分)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG3.(4分)下列物品不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架 D.放缩尺4.(4分)边长为1、2、3、4、5、6的木棍各一根.随意组成三角形,共有()种取法.A.20 B.15 C.10 D.75.(4分)在△ABC中,6∠A=3∠B=2∠C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定6.(4分)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°7.(4分)如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A.9°B.18°C.27°D.36°8.(4分)如图所示,设M表示平行四边形,N表示矩形,P表示菱形,Q表示正方形,则下列四个图形中,能表示它们之间关系的是()A B C D9.(4分)如图为二环四边形,它的内角和∠A+∠B+∠C+∠D+∠A1+∠B1+∠C1+∠D1度数为()A.360°B.540°C.720°D.900°10.(4分)如图,已知四边形ABCD中,AB∥DC,连接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为()A.115°B.110°C.105°D.100°评卷人得分二.填空题(共4小题,满分20分,每小题5分)11.(5分)三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.13.(5分)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=.14.(5分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.评卷人得分三.解答题(共9小题,满分90分)15.(8分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.16.(8分)如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.17.(8分)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.18.(8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.19.(10分)已知三角形的两边a=3,b=7,第三边是c.(1)第三边c的取值范围是.(2)若第三边c的长为偶数,则c的值为.(3)若a<b<c,则c的取值范围是.20.(10分)如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥()∴∠1=()又∵∠1=∠2(已知)∴()∴DG∥AB()21.(12分)已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数①求c的长;②判断△ABC的形状.22.(12分)如图,在△ABC中,∠ABC=40°,∠ACB=80°,AD是BC边上的高,AE平分∠BAC.(1)求∠BAE的度数;(2)求∠DAE的度数.23.(14分)如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:正多边形的边数3456 (18)∠α的度数……(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.秋八年级上学期第十一章三角形单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.【点评】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,利用三角形的稳定性进行解答.【解答】解:放缩尺是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.【点评】本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形. 4.【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:从长为1、2、3、4、5、6的木棍中,任意取3根,则有20种取法, 其中能组成三角形的有7种: 2、3、4; 2、4、5; 2、5、6; 3、4、5; 3、5、6; 3、4、6; 4、5、6; 故选:D .【点评】本题主要考查了三角形三边关系的运用,正确利用三边关系:两条较短的边的和大于最长的边是解决本题的关键. 5.【分析】设∠C=x ,则∠B=32x ,∠A=31x ,再根据三角形内角和定理列方程求出x 的值即可.【解答】解:∵在△ABC 中,6∠A=3∠B=2∠C , ∴设∠C=x ,则∠B=32x ,∠A=31x , ∵∠A +∠B +∠C=180°,即x +32x +31x=180°,解得x=90°,∴∠A=30°,∠B=60°,∠C=90°. ∴△ABC 是直角三角形, 故选:B .【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.6.【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.【点评】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.7.【分析】根据直角三角形的两个角互余即可求解.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.故选:B.【点评】本题主要考查了直角三角形的性质,两锐角互余.8.【分析】根据正方形、平行四边形、菱形和矩形的定义进行解答即可.【解答】解:∵四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形,∴正方形应是N 的一部分,也是P 的一部分, ∵矩形形、正方形、菱形都属于平行四边形,∴它们之间的关系是:.故选:A .【点评】本题考查的是正方形、平行四边形、菱形和矩形的定义,熟练掌握这些多边形的定义与性质是解答此题的关键. 9.【分析】AA 1之间添加两条边,可得B 1+∠C 1+∠D 1=∠EAD +∠AEA 1+∠EA 1B 1,再根据边形的内角和公式即可求解.【解答】解:如图,AA 1之间添加两条边,可得B 1+∠C 1+∠D 1=∠EAD +∠AEA 1+∠EA 1B 1则∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1=∠EAB +∠B +∠C +∠D +∠DA 1E +∠E=720°; 故选:C .【点评】考查了多边形内角和定理:(n ﹣2)•180° (n ≥3)且n 为整数). 10.【分析】依据四边形BCDE 的内角和,可得∠BCD +∠CBE=160°,再根据∠EBC 和∠DCB 的角平分线相交于点F ,可得∠BCF +∠CBF=21×160°=80°,进而得出△BCF 中,∠F=180°﹣80°=100°.【解答】解:∵BE ⊥AD , ∴∠BED=90°, 又∵∠ADC=110°,∴四边形BCDE 中,∠BCD +∠CBE=360°﹣90°﹣110°=160°,又∵∠EBC 和∠DCB 的角平分线相交于点F ,∴∠BCF +∠CBF=21×160°=80°, ∴△BCF 中,∠F=180°﹣80°=100°,故选:D .【点评】本题主要考查了四边形内角和以及三角形内角和定理的运用,解决问题的关键是掌握四边形内角和为360°.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a 的取值范围.【解答】解:∵三角形的三边长分别为3,2a ﹣1,4,∴4﹣3<2a ﹣1<4+3,即1<a <4.故答案为:1<a <4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.12.【分析】分两种情况讨论:①Rt △ABC 中,CD ⊥AB ,CD=21AB=25;②Rt △ABC 中,AC=21BC ,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+358或5+52.【解答】解:如图所示,Rt △ABC 中,CD ⊥AB ,CD=21AB=25,设BC=a ,AC=b ,则,解得a +b=52,或a +b=﹣52(舍去),∴△AB 长度周长为52+5;如图所示,Rt △ABC 中,AC=21BC ,设BC=a ,AC=b ,则解得∴△AB 长度周长为35+5;综上所述,该三角形的周长为5+35或5+52.故答案为:5+35或5+52.【点评】本题主要考查了三角形的高线以及勾股定理的运用,解决问题给的关键是利用勾股定理进行推算.13.【分析】先根据角平分线的定义得到∠OBC=21∠ABC ,∠OCB=21∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB=180°,则∠BOC=180°﹣21(∠ABC +∠ACB ),由于∠ABC +∠ACB=180°﹣∠A ,所以∠BOC=90°+21∠A ,然后把∠BOC=110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC=21∠ABC ,∠OCB=21∠ACB , 而∠BOC +∠OBC +∠OCB=180°, ∴∠BOC=180°﹣(∠OBC +∠OCB )=180°﹣21(∠ABC +∠ACB ), ∵∠A +∠ABC +∠ACB=180°,∴∠ABC +∠ACB=180°﹣∠A ,∴∠BOC=180°﹣21(180°﹣∠A )=90°+21∠A , 而∠BOC=110°, ∴90°+21∠A=110° ∴∠A=40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.14.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC=()518025⨯-=108°,△ABC 是等腰三角形, ∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n ﹣2).三.解答题(共9小题,满分90分)15.【分析】过点A 作EF ∥BC ,利用EF ∥BC ,可得∠1=∠B ,∠2=∠C ,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC +∠B +∠C=180°.【解答】证明:过点A 作EF ∥BC ,∵EF ∥BC ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【点评】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.【分析】根据等角对等边得出∠ABD=∠A,再利用平行线的性质得出∠DBC=∠BCE,进而利用三角形的内角和解答即可.【解答】解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BCE=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.【点评】此题考查三角形的内角和问题,关键是根据等角对等边得出∠ABD=∠A.17.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.18.【分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【解答】解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.19.【分析】(1)根据第三边的取值范围是大于两边之差,而小于两边之和求解;(2)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,再根据c 为偶数解答即可.;(3)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,根据a<b <c即可得c的取值范围.【解答】解:(1)根据三角形三边关系可得4<c<10,(2)根据三角形三边关系可得4<c<10,因为第三边c的长为偶数,所以c取6或8;(3)根据三角形三边关系可得4<c<10,∵a<b<c,∴7<c<10.,故答案为:4<c<10;6或8;7<c<10.【点评】此题考查了三角形的三边关系,注意第三边的条件.20.【分析】根据三角形内角和定理以及平行线的性质即可求出答案.【解答】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG∥AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;【点评】本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.21.【分析】(1)利用三角形三边关系进而得出c的取值范围,进而得出答案;(2)①根据偶数的定义,以及x的取值范围即可求解;②利用等腰三角形的判定方法得出即可.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.【点评】此题主要考查了等腰三角形的判定和三角形三边关系,得出c 的取值范围是解题关键.22.【分析】(1)由∠ABC 、∠ACB 的度数结合三角形内角和定理,可求出∠BAC 的度数,再根据角平分线的性质可求出∠BAE 的度数;(2)利用三角形的外角性质可求出∠AEB 的度数,结合∠ADE=90°即可求出∠DAE 的度数.【解答】解:(1)∵∠ABC=40°,∠ACB=80°,∴∠BAC=180°﹣∠ABC ﹣∠ACB=60°.∵AE 平分∠BAC ,∴∠BAE=21∠BAC=30°. (2)∵∠CAE=∠BAE=30°,∠ACB=80°,∴∠AEB=∠CAE +∠ACB=110°,∵AD 是BC 边上的高,∴∠ADE=90°,∴∠DAE=∠AEB ﹣∠ADE=20°.【点评】本题考查了三角形的外角性质、角平分线的性质以及三角形内角和定理,解题的关键是:(1)利用三角形内角和定理求出∠BAC 的度数;(2)牢记三角形的一个外角等于和它不相邻的两个内角的和.23.【分析】(1)根据多边形内角和公式求出多边形的内角和,再根据三角形内角和定理求出即可;(2)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可;(3)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可.【解答】解:(1)填表如下: 正多边形的边数3 4 5 6 …… 18 ∠α的度数 60° 45° 36° 30° …… 10°故答案为:60°,45°,36°,30°,10°;(2)存在一个正n 边形,使其中的∠α=20°, 理由是:根据题意得:⎪⎭⎫ ⎝⎛n 180=20°, 解得:n=9,即当多边形是正九边形,能使其中的∠α=20°;(3)不存在,理由如下:假设存在正 n 边形使得∠α=21°,得⎪⎭⎫ ⎝⎛==∠n 18021α, 解得:748=n ,又 n 是正整数, 所以不存在正 n 边形使得∠α=21°.【点评】本题考查了多边形的内角与外角和等腰三角形的性质,能求出多边形的一个内角的度数是解此题的关键,注意:多边形的内角和=(n ﹣2)×180°.。
八年级上册数学《三角形》单元测试题附答案

[点睛]考查三角形的角平分线、中线和高,三角形,三角形内角和定理,多边形内角与外角,比较基础,难度不大.
9.如图,在四边形A B C D中,∠A B C与∠B C D的平分线的交点E恰好在A D边上,则∠BEC=( )
A.∠A+∠D﹣45°B. (∠A+∠D)+45°
C. 180°﹣(∠A+∠D)D. ∠A+ ∠D
14.一个八边形的所有内角都相等,它的每一个外角等于_____度.
15.如图所示,△A B C中,点D,E分别是A C,B D上的点,且∠A=65°,∠A B D=∠D CE=30°,则∠BEC的度数是________.
16.如图,在△A B C中,∠A B C=100°,∠A C B的平分线交A B边于点E,在A C边取点D,使∠C B D=20°,连接DE,则∠CED的大小=_____(度).
故选B.
[点睛]考查三角形的内角和定理,掌握三角形的内角和等于180°是解题的关键.
3.如图,BE、CF是△A B C的角平分线,∠A=50°,BE、CF相交于D,则∠B D C的度数是( )
A. 115°B. 110°C. 100°D. 90°
[答案]A
[解析]
[分析]
由于∠A=50°,根据三角形的内角和定理,得∠A B C与∠A C B的度数和,再由角平分线的定义,得∠D B C+∠D C B的度数,进而求出∠B D C的度数.
C. 180°﹣(∠A+∠D)D. ∠A+ ∠D
10.如图,∠A B C=∠A C B,A D、B D、C D分别平分△A B C的外角∠EA C、内角∠A B C、外角∠A CF,以下结论:
①A D∥B C;②∠B D C= ∠B A C;③∠A D C=90°-∠A B D; ④B D平分∠A D C;
四年级数学《三角形》单元测试卷

四年级数学《三角形》测试卷一一、姓名: 成绩:填空题(每空1分, 共10分)1.一个三角形一个内角的度数是108°, 这个三角形是()三角形;一个三角形三条边的长度分别为7厘米, 8厘米, 7厘米, 这个三角形是()三角形。
2、一个三角形两个内角的度数分别为35°, 67°, 另一个内角的度数是()°, 这是一个()三角形。
3.等腰三角形的一个角是75°, 另两个角分别是()、()或()、()二、 4.在一个直角三角形中, 一个锐角是75°, 另一个锐角是()。
5.一个等腰三角形的一条腰长5厘米, 底边长4厘米, 围成这个等腰至少需要()厘米长的绳子。
6.在一个三角形中, 两个内角的和等于另一个内角, 那么它是一个()三角形。
判断题(每题2分, 共10分)1.等边三角形都是锐角三角形。
()2.有两个角是锐角的三角形一定是锐角三角形。
()3.三条长度分别是2cm,3cm,5cm的线段, 可以围成一个三角形。
()4.等腰三角形的底角只能是锐角。
()5.一个直角三角形中, 有一个角是45。
, 这个三角形一定是等腰三角形。
()三、选择题(每题2分, 共12分)1.有一个角是120。
的三角形, 这个三角形一定是()A.钝角B.直角C.锐角D.不好判断2.有两个角是锐角的三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.不好判断3.两个完全一样的三角形, 可以拼成一个正方形。
()A.锐角B.直角C.等腰直角4.一个三角形中至少有()个锐角。
A.1 B.2 C.35.一个三角形的三个内角都不小于60°, 这个三角形一定是()三角形。
A.等边 B.直角 C.钝角6.一个三角形中, 一个内角的度数等于另外两个内角的和的2倍, 这个三角形是()三角形。
A.锐角 B.直角 C.钝角四、画画, 算算, 填填1.按要求在每个图形中画一条线段。
第十一章《三角形》单元测试卷

第十一章《三角形》单元测试卷在数学的广袤天地中,三角形是一个基础而重要的图形。
它不仅存在于我们的日常生活中,更是构建众多数学理论和实际应用的基石。
为了深入了解大家对三角形相关知识的掌握程度,我们精心设计了这份单元测试卷。
一、选择题(每题 3 分,共 30 分)1、以下长度的三条线段,能组成三角形的是()A 1cm,2cm,3cmB 2cm,3cm,4cmC 3cm,4cm,7cmD 5cm,6cm,12cm【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,对选项进行逐一分析:A 1 + 2 = 3,不能组成三角形;B 2 + 3>4,能组成三角形;C 3 + 4 = 7,不能组成三角形;D 5 + 6<12,不能组成三角形。
答案:B2、一个三角形的三个内角的度数之比为 1∶2∶3,则这个三角形是()A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形【解析】设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以 x + 2x + 3x = 180°,解得 x = 30°,则 2x = 60°,3x = 90°,所以这个三角形是直角三角形。
答案:B3、下列说法正确的是()A 三角形的角平分线是射线B 三角形的三条高都在三角形内部C 三角形的中线是连接三角形顶点和它对边中点的线段D 三角形的外角大于任何一个内角【解析】A 三角形的角平分线是线段,不是射线,故 A 错误;B 钝角三角形的高有两条在三角形外部,故 B 错误;C 三角形的中线是连接三角形顶点和它对边中点的线段,故 C 正确;D 三角形的外角大于任何一个与它不相邻的内角,故 D 错误。
答案:C4、若一个多边形的内角和等于 1080°,则这个多边形的边数是()A 6B 7C 8D 9【解析】设这个多边形的边数为 n,根据多边形内角和公式:(n 2)×180°= 1080°,解得 n = 8。
《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章三角形》单元测试卷(一)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知三条线段的长是:①2,3,4;②3,4,5;③3,3,5;④6,6,10.其中可构成等腰三角形的有( )A.1个 B.2个 C.3个 D.4个2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A.15 B.16 C.18 D.193.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD 的度数为( )A.40° B.45° C.50° D.55°第3题图, 第4题图4.如图,在△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于( ) A.80° B.120° C.100° D.150°5.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( ) A.40° B.60° C.80° D.90°6.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A=12∠B=13∠CC.∠A∶∠B∶∠C=1∶2∶3 D.∠A=2∠B=3∠C7.一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为( )A.8 B.9 C.10 D.128.若一个多边形的每个外角都等于60°,则它的内角和等于( ) A.180° B.720° C.1080° D.540°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)第9题图) 第10题图10.如图是D,E,F,G四点在△ABC边上的位置图,根据图中的符号和数据,则x+y的值为( )A.110 B.120 C.160 D.165二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.12.在△ABC中,∠C比∠A+∠B还大30°,则∠C的外角为________度,这个三角形是________三角形.,第11题图) ,第13题图)13.如图,在△ABC中,已知∠BAC=50°,∠C=60°,AD是高,BE是∠ABC 的平分线,AD,BE交于点F,则∠BEC=________.14.已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.15.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.第15题图 ,第16题图16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF =90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=________.17.如果一个多边形的边数增加1倍,它的内角和就为2160°,那么原来那个多边形是______边形.18.上午9时,一艘船从A处出发以20海里/时的速度向正北航行,11时到达B处,若在A处测得灯塔C在北偏西34°,且∠ACB=32∠BAC,则灯塔C应在B处的________.三、解答题(共66分)19.(9分)如图,已知AD,AE分别是△ABC的高和中线,AB=6 cm,AC=8 cm,BC=10 cm,∠CAB=90°,求:(1)△ABC的面积;(2)AD的长;(3)△ACE和△ABE的周长的差.20.(9分)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.21.(10分)如图,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度数.22.(9分)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数;(2)求这个多边形的边数.23.(9分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?24.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.则BE与DF有何位置关系?试说明理由.25.(10分)如图,∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?请说明理由.参考答案1.B 2.D 3.A 4.C 5.A 6.D 7.C 8.B 9.B 10.B 11.6 12.75;钝角13.85°14.3a-b-c 15.360°16.25°17.七18.北偏西85°19.(1)24 cm2(2)4.8 cm (3)2 cm20.由题中条件可知:|a-4|≥0,(b-9)2≥0,又|a-4|+(b-9)2=0,∴|a-4|=0,(b-9)2=0,即a=4,b=9.若a为腰长,则另一腰长为4,∵4+4<9,∴不符合三角形三边关系.若b为腰长,则这个等腰三角形的周长为9+9+4=22.综上所述,这个等腰三角形的周长为22 21.∵∠A+∠ACB=90°,∴∠ACB =90°-10°=80°,∴∠DCE=80°,又∵∠DCE=∠A+∠ADC=80°,∴∠ADC =80°-10°=70°,∴∠EDF=70°,∴∠DEA=∠EDF-∠A=70°-10°=60°,∴∠FEG=60°,∴∠F=∠FEG-∠A=60°-10°=50°22.(1)∵26 20÷180=14……100,∴误加的外角为100°(2)设这个多边形的边数为n.由①知n-2=14,∴n=16,∴这个多边形的边数为1623.在△AOB中,∠QBO=180°-∠A-∠O=180°-28°-100°=52°.即∠QBO应等于52°才能确保BQ与AP在同一条直线上24.BE∥DF.理由如下:在四边形ABCD中,∠A+∠C+∠ABC+∠ADC=360°,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又∵∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∵∠4+∠5=90°,∴∠2=∠5,∴BE∥DF25.不变化.∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=12∠OAB,∠EBA=12∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=12∠YBA-12∠OAB=12(∠Y BA-∠OAB),∵∠YBA-∠OAB=90°,∴∠C=12×90°=45°《第十一章三角形》单元测试卷(二)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为(D )A.3 B.4 C.5 D.6,第3题图,第6题图2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形 B.锐角三角形 C.直角三角形 D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF 等于( A )=2,则S△ABCA.16 B.14 C.12 D.10,第7题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形 B.八边形 C.九边形 D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°第9题图 ,第10题图10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图)12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB =2∠B,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠ACD=2x°=36°20.(8分)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =18°,求∠C 的度数.解:∵∠BAD =90°-∠B =20°,∴∠BAE =∠BAD +∠DAE =38°.∵AE 是角平分线,∴∠CAE =∠BAE =38°,∴∠DAC =∠DAE +∠CAE =56°,∴∠C =90°-∠DAC =34°21.(9分)已知等腰三角形的周长为18 cm ,其中两边之差为3 cm ,求三角形的各边长.解:设腰长为x cm ,底边长为y cm ,则⎩⎨⎧2x +y =18,x -y =3,或⎩⎨⎧2x +y =18,y -x =3,解得⎩⎨⎧x =7,y =4,或⎩⎨⎧x =5,y =8,经检验均能构成三角形,即三角形的三边长是7 cm ,7 cm ,4 cm 或5 cm ,5 cm ,8 cm22.(9分)如图,小明从点O 出发,前进5 m 后向右转15°,再前进5 m 后又向右转15°……这样一直走下去,直到他第一次回到出发点O 为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m ),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =10 cm ,BC =8 cm ,AC =6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC =12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB =__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD 内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°《第十一章三角形》单元测试卷(三)一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上) 10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________. 12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE =__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是_____ _____边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD 和BC 相交于点O ,AB∥CD,∠AOC=95°,∠B=50°,求∠A 和∠D.21.(本题满分12分)如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求∠C 的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________; (2)图②中草坪的面积为__________; (3)图③中草坪的面积为__________;(4)如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B 中较短两边之和大于第三边,能组成三角形.132.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A 与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.20.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等).21.解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC-∠DBA=82°-57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.22.答案:(1)12πR2(2)πR2 (3)32πR2(4)n-22πR2点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.《第十一章三角形》单元测试卷(四)答题时间:90 满分:100分班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.3.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为______.4.如图,已知AB∥CD,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC =°.6.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可).8.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为.9.如图,△ABC中,BD平分∠ABC,CD平分∠ACE,请你写出∠A与∠D的关系:.10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为.11.在△ABC中,∠A=55°,高BE、CF交于点O,则∠BOC=______.12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A=50°,∠ACD=40°,∠ABE=28°,则∠CFE 的度数为______. 14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”).二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9三、解答题(共60分)19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD 中,∠A=∠D ,∠B=∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB=AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?CBACBA25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______. (2)小明绝对不会走③,因为③路程最长,即AC+BC >AD+DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A+∠B+∠C+∠D+∠E=180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.图1图2图3DCBA(1)如图,请根据下列图形,填写表中空格:(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案: (B 卷) 一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A=2∠D 10.130° 11.55或125 12.360 13.62 14.否二、选择题15.C 16.C 17.B 18.C 三、解答题 19.36011⎛⎫⎪⎝⎭20.AD BC∥21.56 22.三边长为16,16,22或20,20,14 23.略 24.六边形 25.只要量得∠B +∠C=150°,∠C +∠D=160°,则模板即为合格 26.(1)两点之间,线段最短;(2)略 27.结论都成立,理由略 28.(1)60°,90°,108°,120°,(2)180n n-°;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.《第十一章三角形》单元测试卷(五)时间:120分钟满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A.5,6,10 B.5,6,11C.3,4,8 D.4a,4a,8a(a>0)2.下列说法错误的是( )A.一个三角形中至少有一个角不小于60°B.三角形的角平分线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A.60° B.70° C.80° D.90°4.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短5.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是( )A.9 B.14 C.16 D.不能确定6.在△ABC中,已知∠A=4∠B=104°,则∠C的度数是( )A.50° B.45° C.40° D.30°7.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于( ) A.60° B.70° C.50° D.40°8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=12∠C;④∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个 C.3个 D.4个9.一个正多边形的边长为2,每个外角为45°,则这个多边形的周长是( ) A.8 B.12 C.16 D.1810.长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有( )A.3个 B.4个 C.5个 D.6个11.墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是( )A.1260° B.1080°C.900° D.720°12.一个三角形的三个外角之比为3∶4∶5,则这个三角形内角之比是( ) A.5∶4∶3 B.4∶3∶2C.3∶2∶1 D.5∶3∶113.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=( )A.12° B.18° C.24° D.30°14.若a,b,c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是( )A.60° B.65° C.55° D.50°16.如图①,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图②.则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.将一副三角板按如图所示的方式叠放,则∠α的度数为 .18.如图,在△ABC中,已知点D,E分别为AC,BD的中点,且S△BDC=2cm2,则S= .阴影19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A 1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为°.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.21.(9分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.22.(9分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.(9分)如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E,∠A=60°,∠BDC=100°,求△BDE各内角的度数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(11分)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).26.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.A 2.D 3.C 4.B 5.A 6.A 7.B 8.C 9.C 10.A11.C 12.C 13.C 14.B15.A 解析:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD +∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选A.16.C 解析:∵∠C=100°,∴AB>AC.如图,取BC的中点E,则BE=CE,∴AB +BE>AC+CE,由三角形三边关系得AC+BC>AB,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.17.75°18.1cm219.76 6 解析:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°-7°=83°,∴∠A=∠1-∠AOB=76°.如图,当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB=83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB=76°-7°=69°,∴∠9=∠8-∠AOB=69°-7°=62°=90°-2×14°,由以上规律可知,∠A=90°-n·14°,当n=6时,∠A取得最小值,最小度数为6°.20.解:(1)AB(2分) (2)CD(4分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(6分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)21.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(9分)22.解:由三角形的外角性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(9分)23.解:∵∠BDC是△ABD的一个外角,∠A=60°,∠BDC=100°,∴∠ABD=∠BDC-∠A=40°.(4分)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵ED∥BC,∴∠BDE=∠CBD=∠ABD=40°,(7分)∴∠BED=180°-40°-40°=100°.(9分)24.解:设AB=x cm,BC=y cm,则AD=CD=12x cm.有以下两种情况:(1)当AB+AD=12cm,BC+CD=15cm时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系.(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm , 符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分) 25.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°,∠CAD =90°-∠C =90°-70°=20°,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°-∠B -∠C .∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(7分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(9分)(3)∵∠C -∠B =α,∴由(2)中可知∠DAE =12(∠C -∠B )=12α.(11分)26.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n ·(180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n .(12分)《第十一章 三角形》单元测试卷(六)(满分:100分 时间:60分钟)一、选择题(每小题3分,共30分)1、下列长度的各组线段中,能组成三角形的是( )A .1,1,2B .3,7,11C .6,8,9D .3,3,62、下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线3、下列命题中,假命题是( )A .如果|a|=a ,则a ≥0B .如果,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( )A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形5、三角形的一个外角大于相邻的一个内角,则它是( )A.直角三角形B.锐角三角形C.钝角三角形D.不能确定6、下列命题中正确的是( )A .三角形可分为斜三角形、直角三角形和锐角三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形外角一定是钝角D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60°7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )A .3:2:1B .5:4:3C .3:4:5D .1:2:38、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( )A .-6<a<-3B .-5<a<-2C .-2<a<5D .a<-5或a>29、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2图9 图1010、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( )A .10°B .18°C .20°D .30°二、填空题(每小题4分,共20分)11、 已知三角形的周长为15cm ,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是 .12、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .13、如图13,∠A =70°,∠B =30°,∠C =20°,则∠BOC= . F EC图13 图14 图1514、如图14,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF= .15、如图15,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .三、解答题(第16题6分,第17题8分,第18-21题每题9分,共50分)16、写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果a+b=0,那么a=0,b=0.(2)等角的余角相等.(3)如果一个数的平方是9,那么这个数是3.17、完成以下证明,并在括号内填写理由:已知:如图所示,∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2(),所以AB∥___(). 所以∠A=∠4().又因为∠A=∠3(),所以∠3=_ _().所以AC∥DE().18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm 的两个部分,求三角形各边的长.。
八年级上册数学《三角形》单元测试卷附答案

[答案]B
[解析]
分析]
根据三角形的内角和等于180°求出∠A DE+∠AED,再根据翻折变换的性质可得∠A′DE=∠A DE,∠A′ED=∠AED,然后利用平角等于180°列式计算即可得解.
[详解]解:∵∠A=70°,
∴∠A DE+∠AED=180°-70°=110°,
详解:∵∠A=60°,∠B=80°,
∴∠A D C+∠B C D=360°-60°=80°=220°,
∴∠1+∠2=360°-(∠A D C+∠B C D)
=360°-220°=140°.
故选C.
点睛:本题主要考查了四边形的内角和定理,以及邻补角的定义.熟练掌握四边形的内角和等于360°是解答本题的关键.
13.锐角三角形 三条高的交点位于它的_______,钝角三角形的三条高的交点位于它的_____,直角三角形的三条高的交点位于它的______.
14.若一个六边形的各条边都相等,当边长为3Cm时,它的周长为__________Cm.
15.如图,胶州湾大桥是一座斜拉式大桥,斜拉式大桥多采用三角形结构,使其不易变形,这种做法的依据是__.
5.如图,在△A B C中,∠A=60度,点D,E分别在A B,A C上,则∠1+∠2的大小为( )度.
A.140B.190C.320D.240
[答案]D
[解析]
分析:根据三角形的外角性质可得∠1=∠A+∠A DE,∠2=∠A+∠AED,再根据已知和三角形内角和等于180°即可求解.
详解:∵∠1=∠A+∠A DE,∠2=∠A+∠AED
7.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形单元测试卷
一、选择题(共8小题,每小题3分,满分24分)
1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( )
A .6个
B .5个
C .4个
D .3个
2.已知一个三角形三个内角度数之比为1:5:6,则其最大角度数为( )
A .60°
B .75°
C .90°
D .120°
3.如图1,在ABC ∆中,AD 平分BAC ∠且与BC 相交于点D ,∠B = 40°,∠BAD = 30°,则C ∠的度数是( )
A .70°
B .80°
C .100°
D .110° 4.如图2,已知∠A=∠30°∠BEF=105°∠B=20°,则∠D=( )
A .25°
B .35°
C .45°
D .30°
5.能把一个三角形的面积等分的三角形中的线段是 ( ) A .中线 B .高线 C .角平分线 D .某边的中垂线 6从某多边形的一个顶点引出的所有对角线把这个多边形分成了6个三角形,则此多边形的形状是( ) A . 六边形 B . 七边形 C . 八边形 D . 九边形
A
B
C D 图1
C
A
F
B
D
E
图2
7.下列各组长度的线段为边,能构成三角形的是( ) A . 7cm 、
5cm 、 12cm B . 6cm 、
8cm 、15cm C . 8cm 、
4cm 、3cm D . 4cm 、
6cm 、5cm
8 四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的外角为120°,则∠C 的度数为( ) A . 36° B . 60°
C .
90° D . 120°
二、填空题(共6小题,每小题4分,满分24分)
9.在△ABC 中,∠A+∠B=90°,∠C=3∠B ,则∠A= ,∠B= , ∠C= .
10.一个多边形的每一个外角都等于24°,那么这个多边形的边数是 _________ .
11.已知a 、b 、c 是三角形的三边长,化简:|a ﹣b+c|+|a ﹣b ﹣c|= _________ .
12.在下列条件中:①∠A+∠B=∠C ,②∠A :∠B :∠C=1:2:3,③∠A=90°﹣∠B ,④∠A=∠B=∠C 中,能确定△ABC 是直角三角形的条件有 _________ (填序号)
13.如图3,在△ABC 中,∠ABC=90°,∠A=50°,BD ∥AC ,则∠CBD 的度数是 °.
14.工人师傅在安装木制门框时,为防止变形常常像图4中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.
三、解答题(共5小题,满分52分)
15.(8分)如图,直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F ,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF 的度数.
图
4
A
C
B
D
图3
16.(8分)已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF 和∠BHC的度数.
E 17.(8分)如图12,在△ABC中,∠A=40°,
A
D是BC延长线上一点,∠ABC的平分线与∠ACD的平分线交于E,求∠E的度数.
18(8分)如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.(1)如果∠B+∠C=120°,则∠AED的度数= _________ ;(直接写出计算结果,不必写出推理过程)
(2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,并说明理由.
19.(8分)如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°证法1:如图2,延长BC经过点D,过点C画CE∥BA
∵BA∥CE(作图所知)
∴∠A=∠1,∠B=∠2(两直线平行,内错角、同位角相等)
又∵∠BCD﹦∠BCA﹢∠1﹢∠2﹦180°(平角的定义)
∴∠A﹢∠B﹢∠ACB﹦180°(等量代换)
如图3,过BC上任一点F,画FH∥CA,FG∥BA,这种添加辅助线的方法能证明∠A﹢∠B﹢∠C﹦180°吗?请你试一试.
20(12分)如图,AD为△ABC的中线,BE为△ABD的中线,
(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是_________ 度.(2)在△ADC中过点C作AD边上的高CH.
(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.。