浙教版八年级上第2章特殊三角形单元测试题及答案

合集下载

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中错误的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a 2=b 2﹣c2,那么△ABC是直角三角形且∠C=90° C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形 D.如果a 2:b 2:c 2=9:16:25,那么△ABC是直角三角形2、三角形内有一点到三角形三边的距离相等,则这个点一定是三角形的()A.三条高的交点B.三条角平分线的交点C.三边中线的交点D.三边垂直平分线的交点3、下列航空公司的标志中,是轴对称图形的是()A. B. C. D.4、正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A. B.2 C.2 D.25、如下图,△ABC中,点D在AC上,且AB=AD,∠ABC=∠C+30°,则∠CBD等于()A.15°B.18°C.20°D.22.5°6、在长、宽、高分别为12 cm、4 cm、3 cm的木箱中,放一根木棒,能放进去的木棒的最大长度为( )A.5 cmB.12 cmC.13 cmD. cm7、若阿光以四种不同的方式连接正六边形ABCDEF的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形()A. B. C. D.8、中,已知,,,则的长是().A.7B.13或C.13D.9、知等腰三角形的一个底角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.50°或70°10、如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是()A.2B.1C. -1D. -211、下列判断正确的是()A.有一直角边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等12、如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AFB≌△ADC;②△ABD为等腰三角形;③∠ADC=120°;④BE2+DC2=DE2,其中正确的有( )个A.4B.3C.2D.113、下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个14、如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8B.9.5C.10D.11.515、等腰三角形两边长分别为5 cm和11 cm则该等腰三角形的周长为( )A.21 cmB.21 cm 或27 cmC.25 cmD.27 cm二、填空题(共10题,共计30分)16、如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=________.17、如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若点D到AB的距离是5,则CD=________.18、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为________°.19、如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=________.20、如图,在四边形ABCD中,AD∥BC,∠A=Rt∠,AD=2cm,AB=4cm,BC=6cm,点E是CD中点,过点B画射线BF交CD于点F,交AD延长线于点G,且∠GBE=∠CBE,则线段DG 的长为________ cm.21、已知Rt△ABC的两直角边不相等,如果要画一个三角形与Rt△ABC全等,且使所画三角形两条直角边与Rt△ABC的两条直角边分别在同一条直线上(Rt△ABC本身不算),那么满足上述条件的三角形最多能画出________个.22、如图,ABC中,AB=AC=4,以AC为斜边作Rt ADC,使∠ADC=90°,∠CAD=∠CAB=30°,E、F分别是BC、AC的中点,则ED=________.23、若等腰三角形的两条边长分别为和,则等腰三角形的周长为________.24、在平面直角坐标系中,有A、B的坐标分别为(﹣1,1)、(3,1),AB=AC,且△ABC的面积为6,则顶点C的坐标为________.25、在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO 为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y= 上,则k值可以是________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图所示,将一个长方形纸片ABCD沿对角线AC折叠.点B落在E点,AE交DC于F 点,已知AB=8cm,BC=4cm.求折叠后重合部分的面积.28、已知一个等腰三角形的两边分别是不等式组的整数解,求这个等腰三角形的周长.29、如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.30、已知:如图,在△BAC中,AB=AC,,D,E分别为AB,AC边上的点,且DE∥BC,求证: △ADE是等腰三角形.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、A6、C7、D8、D9、B10、C11、C12、C13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

浙教版八年级上《第2章特殊三角形》单元测试(3)含答案解析

浙教版八年级上《第2章特殊三角形》单元测试(3)含答案解析

《第2章特殊三角形》一、选择题1.下列图形不是轴对称图形的是()A.线段B.等腰三角形C.角D.有一个内角为60°的直角三角形2.下列命题的逆命题正确的是()A.全等三角形的面积相等 B.全等三角形的周长相等C.等腰三角形的两个底角相等 D.直角都相等3.等腰三角形两边长为3和6,则周长为()A.12 B.15 C.12或15 D.无法确定4.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是()A.6 B.8 C.4 D.125.有一个角是36°的等腰三角形,其它两个角的度数是()A.36°,108°B.36°,72°C.72°,72°D.36°,108°或72°,72°6.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,BD=5cm,则点D 到AB的距离是()A .5cmB .4cmC .3cmD .2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,C .1,1,D .1,2,8.如图,△ABC 的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形9.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .6410.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE .下列结论中,正确的结论有( )①CE=BD;②△ADC 是等腰直角三角形;③∠ADB=∠AEB ;④S 四边形BCDE =BD •CE ;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个二、填空题11.命题“角平分线上的点到角的两边的距离相等”的逆命题是.12.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= .13.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC= .14.如图,直线上有三个正方形a,b.c,若a,c的面积分别为5和12,则b的面积为.15.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE 的长度为.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.17.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为.18.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD ⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为.19.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为.20.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射线BC上一动点D,从点B出发,以厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).三、解答题(共50分)21.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.23.现在给出两个三角形,请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形.要求:在图(1)、(2)上分割:标出分割后的三角形的各内角的度数.24.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=∠B,∠C=50°.求∠BAC的度数.25.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.26.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= °.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.《第2章特殊三角形》参考答案与试题解析一、选择题1.下列图形不是轴对称图形的是()A.线段B.等腰三角形C.角D.有一个内角为60°的直角三角形【考点】轴对称图形.【分析】根据轴对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、不是轴对称图形,符合题意.故选:D.【点评】本题考查了中心对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列命题的逆命题正确的是()A.全等三角形的面积相等 B.全等三角形的周长相等C.等腰三角形的两个底角相等 D.直角都相等【考点】命题与定理.【分析】先写出各命题的逆命题,然后根据全等三角形的判定、等腰三角形的判定定理和直角的定义分别对各逆命题进行判断.【解答】解:A、全等三角形的面积相等的逆命题为面积相等的三角形为全等三角形,所以A选项错误;B、全等三角形的周长相等的逆命题为周长相等的三角形为全等三角形,所以B选项错误;C 、等腰三角形的两个底角相等的逆命题为有两个角相等的三角形为等腰三角形,所以C 选项正确;D 、直角都相等的逆命题为相等的角为直角,所以D 选项错误.故选C .【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.3.等腰三角形两边长为3和6,则周长为( )A .12B .15C .12或15D .无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:∵三角形中任意两边之和大于第三边∴当另一边为3时3+3=6不符,∴另一边必须为6,∴周长为3+6+6=15.故选B .【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键4.如图,在△ABC 中,AB=AC=5,BC=6,AD 是BC 边上的中线,点E 、F 、M 、N 是AD 上的四点,则图中阴影部分的总面积是( )A .6B .8C .4D .12【考点】轴对称的性质;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质得出AD ⊥BC ,根据勾股定理求出AD 的长,再根据同底等高的三角形面积相等可知S △EFC =S △EFB ,S △MNC =S △MNB ,故可得出S 阴影=S △ABD ,由此即可得出结论.【解答】解:∵在△ABC 中,AB=AC=5,BC=6,AD 是BC 边上的中线,∴BD=BC=3,AD ⊥BC ,∴BD===4,∵同底等高的三角形面积相等,∴S △EFC =S △EFB ,S △MNC =S △MNB ,∴S 阴影=S △ABD =BD •AD=×3×4=6.故选A .【点评】本题考查的是轴对称的性质,熟知同底等高的三角形面积相等是解答此题的关键.5.有一个角是36°的等腰三角形,其它两个角的度数是( )A .36°,108°B .36°,72°C .72°,72°D .36°,108°或72°,72°【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为等腰三角形的一个内角为36°,没明确是底角还是顶角,所以有两种情况,需要分类讨论.【解答】解:①当36°为顶角时,其它两角都为×(180°﹣36°)=72°;②当36°为底角时,其它两角分别为36°,108°.故选D .【点评】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪个角是底角哪个角是顶角时,应分类讨论.6.如图,在Rt △ABC 中,∠C=90°,∠ABC 的平分线BD 交AC 于点D .若BC=4cm ,BD=5cm ,则点D 到AB 的距离是( )A.5cm B.4cm C.3cm D.2cm【考点】角平分线的性质;勾股定理.【分析】先根据勾股定理求出CD的长,再过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:∵Rt△BCD中,BC=4cm,BD=5cm,∴CD===3cm,过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选C.【点评】本题主要考查角平分线的性质,根据题意作出辅助线是正确解答本题的关键.7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,【考点】解直角三角形.【专题】新定义.【分析】A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【解答】解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.【点评】考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.8.如图,△ABC的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】先根据勾股定理求出△ABC各边的长,再根据勾股定理的逆定理判断出△ABC的形状即可.【解答】解:由图形可知:AB==2,AC==,BC==5,∵AB2+AC2=(2)2+()2=25,BC2=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.故选B.【点评】本题考查的是勾股定理及其逆定理,比较简单.9.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .64【考点】等边三角形的性质;含30度角的直角三角形.【专题】压轴题;规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.【解答】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A 4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.10.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD 交CE于点G,连结BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个【考点】三角形综合题.【分析】根据等腰直角三角形的性质可得AB=AC,AD=AE,然后求出∠BAD=∠CAE,再利用“边角边”证明△ABD和△ACE全等,根据全等三角形对应边相等可得CE=BD,判断①正确;根据全等三角形对应角相等可得∠ABD=∠ACE,从而求出∠BCG+∠CBG=∠ACB+∠ABC=90°,再求出∠BGC=90°,从而得到BD⊥CE,根据四边形的面积判断出④正确;根据勾股定理表示出BC2+DE2,BE2+CD2,得到⑤正确;再求出AE∥CD时,∠ADC=90°,判断出②错误;∠AEC与∠BAE不一定相等判断出③错误.【解答】解:∵,△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAE=∠DAE+∠CAD=90°+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,故①正确;∠ABD=∠ACE,∴∠BCG+∠CBG=∠ACB+∠ABC=90°,在△BCG中,∠BGC=180°﹣(∠BCG+∠CBG)=180°﹣90°=90°,∴BD⊥CE,∴S=BD•CE,故④正确;四边形BCDE由勾股定理,在Rt△BCG中,BC2=BG2+CG2,在Rt△DEG中,DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2,在Rt△BGE中,BE2=BG2+EG2,在Rt△CDG中,CD2=CG2+DG2,∴BE2+CD2=BG2+CG2+DG2+EG2,∴BC2+DE2=BE2+CD2,故⑤正确;只有AE∥CD时,∠AEC=∠DCE,∠ADC=∠ADB+∠BDC=90°,无法说明AE∥CD,故②错误;∵△ABD≌△ACE,∴∠ADB=∠AEC,∵∠AEC与∠AEB相等无法证明,∴∠ADB=∠AEB不一定成立,故③错误;综上所述,正确的结论有①④⑤共3个.故选C【点评】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.二、填空题11.命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.【考点】命题与定理.【分析】把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.【解答】解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.【点评】根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.12.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= 3 .【考点】等腰三角形的性质.【专题】探究型.【分析】直接根据等腰三角形“三线合一”的性质进行解答即可.【解答】解:∵△ABC中,AB=AC,BC=6,AD⊥BC于D,∴BD=BC=×6=3.故答案为:3.【点评】本题考查的是等腰三角形的性质,即等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.13.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC= 40°.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得△ACD是等腰三角形,然后根据等边对等角以及三角形的外角的性质求解.【解答】解:∵D是斜边AB的中线,∴CD==AD,∴∠DCA=∠A=20°,∴∠BDC=∠DCA+∠A=20°+20°=40°.故答案是:40°.【点评】本题考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质,理解直角三角形的性质是关键.14.如图,直线上有三个正方形a,b.c,若a,c的面积分别为5和12,则b的面积为17 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】运用正方形边长相等,结合全等三角形和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb =Sa+Sc=12+5=17.故答案为:17.【点评】此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.15.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE 的长度为3.【考点】旋转的性质;等边三角形的判定与性质.【专题】几何图形问题.【分析】首先,利用等边三角形的性质求得AD=3;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD.【解答】解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=ABcos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠CAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案为:3.【点评】本题考查了旋转的性质、等边三角形的性质.旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.【点评】本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.17.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为3cm .【考点】翻折变换(折叠问题).【分析】如图,根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8cm;∠B=∠C=90°;由题意得:AF=AD=10cm,EF=DE=λcm,EC=(8﹣λ)cm;由勾股定理得:BF2=102﹣82,∴BF=6cm,∴CF=10﹣6=4cm;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3cm.故答案为:3cm.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD ⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为 4 .【考点】全等三角形的判定与性质;等腰直角三角形.【分析】求出∠ADB=∠AEC,∠DBA=∠CAE,根据AAS证△ABD≌△CAE,推出BD=AE,AD=CE求出AE 和AD即可.【解答】解:∵BD⊥AE,CE⊥AE,∠BA C=90°,∴∠ADB=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAE=90°,∴∠DBA=∠CAE,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵CE=2,BD=6,∴AE=6,AD=2,∴DE=AE﹣AD=4,故答案为:4.【点评】本题考查了全等三角形的性质和判定,等腰直角三角形,关键是求出AE=BD,CE=AD.19.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为2﹣2 .【考点】旋转的性质.【分析】求出∠C′AE=30°,推出AE=2C′E,AC′=C′E,根据阴影部分面积为得出×C′E ×C′E=2,求出C′E=2,即可求出C′B′,即可求出答案.【解答】解:∵将Rt△ACB绕点A逆时针旋转15°得到Rt△AB′C′,∴△ACB≌△AC′B′,∴AC=AC′,CB=C′B′,∠CAB=∠C′AB′,∵在Rt△ABC中,∠C=90°,AC=BC,∴∠CAB=45°,∵∠CAC′=15°,∴∠C′AE=30°,∴AE=2C′E,AC′=C′E,∵阴影部分面积为,∴×C′E×C′E=2,C′E=2,∴AC=BC=C′B′=C′E=2,∴B′E=2﹣2,故答案为:2﹣2.【点评】本题考查了旋转的性质,含30度角的直角三角形性质,勾股定理,等腰三角形的性质的应用,主要考查学生的推理和计算能力.20.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射线BC上一动点D,从点B出发,以厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).【考点】等腰三角形的判定.【专题】分类讨论.【分析】当△BCD为等腰三角形时应分当D是顶角顶点,当B是顶角顶点,当A是顶角的顶点三种情况进行讨论,利用勾股定理求得BD的长,从而求解.【解答】解:①如图1,当AD=BD时,在Rt△ACD中,根据勾股定理得到:AD2=AC2+CD2,即BD2=(8﹣BD)2+42,解得,BD=5(cm),则t==(秒);②如图2,当AB=BD时.在Rt△ABC中,根据勾股定理得到:AB===4,则t==4(秒);③如图3,当AD=AB时,BD=2BC=16,则t==(秒);综上所述,t的值可以是:;故答案是:【点评】本题考查了等腰三角形的判定.注意要分类讨论,以防漏解.三、解答题(共50分)21.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.【考点】作图—基本作图;线段垂直平分线的性质;勾股定理的应用.【分析】(1)根据题意可知MN是线段AC的垂直平分线,由此可得出结论;(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.【解答】解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.【点评】本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【考点】等边三角形的判定与性质;含30度角的直角三角形.【专题】几何图形问题.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.23.现在给出两个三角形,请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形.要求:在图(1)、(2)上分割:标出分割后的三角形的各内角的度数.【考点】作图—应用与设计作图.【分析】(1)将图中75°的角分成35°和40°的两个角,则可将图1分割成两个等腰三角形;(2)作其中一个底角的角平分线即可.【解答】解:如图所示:【点评】此题主要考查学生对等腰三角形的判定与性质的理解和掌握.主要利用两角相等来求证三角形是等腰三角形.因此作底角的平分线即可.24.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=∠B,∠C=50°.求∠BAC的度数.【考点】等腰三角形的性质.【分析】设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.根据等腰三角形的性质得到∠BAD=∠BDA=50°+x°,根据三角形的内角和列方程即可得到结论.【解答】解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∴∠BAD=∠BDA=50°+x°,∵∠B+∠BAD+∠BDA=180°,即2x+50+x+50+x=180,解得x=20.∴∠BAD=∠BDA=50°+20°=70°,∴∠BAC=∠BAD+∠DAC=70°+20°=90°.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.25.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.【考点】勾股定理;轴对称的性质.【分析】(1)由于∠ADC=∠EDC=90°,∠DCE=∠ACD,根据等腰三角形的判定方法得到△ACE为等腰三角形,则AC=CE,由点F是点C关于AE的对称点,根据对称的性质得到AD垂直平分FC,则AF=AC,则CE=AF;(2)在Rt△ACD中,根据勾股定理得到:AC==2,所以CD=AC,故∠DAC=30°;同理可得∠DAF=30°,所以∠BAF=90°﹣∠B﹣∠DAF=40°.【解答】(1)证明:∵AD是△ABC的高,∴∠ADC=∠EDC=90°,∠DCE=∠ACD,∴△ACE为等腰三角形,又∵点F是点C关于AE的对称点,∴AF=AC,∴CE=AF;(2)解:在Rt△ACD中,CD=1,AD=,根据勾股定理得到:AC==2,∴CD=AC,∴∠DAC=30°.同理可得∠DAF=30°,在Rt△ABD中,∠B=20°,∴∠BAF=90°﹣∠B﹣∠DAF=40°.【点评】本题考查了勾股定理,轴对称的性质.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= 90°°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.【考点】作图—复杂作图;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先用等式的性质得出∠CAE=∠BAD,进而得出△ABD≌△ACE,有∠B=∠ACE,最后用等式的性质即可得出结论;(2)①由(1)的结论即可得出α+β=180°;②同(1)的方法即可得出结论.【解答】解:(1)∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD和△ACE中,∴△ABD≌△ACE(SAS);∴∠B=∠ACE;∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°﹣∠BAC=90°;故答案为90°;(2)①由(1)中可知β=180°﹣α,∴α、β存在的数量关系为α+β=180°;②当点D在射线BC上时,如图1,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACB+∠ACE=∠ACB+∠ABD=180°﹣∠BAC=180°﹣α,∴α+β=180°;当点D在射线BC的反向延长线上时,如图2,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACE﹣∠ACB=∠ABD﹣∠ACB=∠BAC=α,∴α=β.【点评】此题是作图﹣﹣﹣复杂作图,主要考查了等式的性质,全等三角形的判定,解本题的关键是得出△ABD≌△ACE.。

浙教版八年级上册数学第二章《特殊三角形》测试卷含答案

浙教版八年级上册数学第二章《特殊三角形》测试卷含答案

浙教版八年级上册数学第二章《特殊三角形》测试卷含答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浙教版八年级上册数学第二章《特殊三角形》测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图形中是轴对称图形的是()A. B. C. D.2.已知等腰三角形的一边长为3,另一边长为6,则这个等腰三角形的周长为()A. 12B. 12或15 C. 15 D. 93.在中,,,则BC边上的高为()A. 12B. 10C. 9D. 84.若等腰三角形一个外角等于100 ,则它的顶角度数为()A. 20°B. 80°C. 20°或80° D. 50°或80°5.如图△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D 交AC于点E,那么下列结论中正确的是()①△BDF和△CEF都是等腰三角形②DE=BD+CE③△ADE的周长等于AB和AC的和④BF=CFA. ①②③④B. ①②③C. ①②D. ①6.如图,将绕点A按逆时针方向旋转100°,得到,若点在线段BC 的延长线上,则的大小为()A. 70°B. 80°C. 84°D. 86°(第5题)(第6题)(第7题)(第9题)7.如图,正方形A,B,C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为( )A. 4B. 15C. 16D. 188.以下列长度的线段不能围成直角三角形的是()A. 5,12, 13B.C. ,3,4 D. 2,3,49.如图由于台风的影响,一棵树在离地面处折断,折断后树干上部分与地面成30度的夹角,折断前长度是()A. B. C.D. .10.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE 的长是()A. 7B. 5C. 3D. 2(第10题)(第11题)11.“三等分角”大约是在公元前五世纪由古希腊人提出来的。

浙教版数学八年级上册第二章特殊三角形最新单元检测题附参考答案

浙教版数学八年级上册第二章特殊三角形最新单元检测题附参考答案

第二章特殊三角形单元检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B. 36°C. 45°D. 70°3.如图,在△ABC中,AB=AC,∠A =36°,AB的垂直平分线DE交AC于点D,交AB于点E.下列结论:①BD平分∠ABC;②AD=BD=BC;③△BCD的周长等于AB+BC;④D是AC的中点.其中正确的是()A.①②③B.②③④C.①②④D.①③④4.等腰三角形有两条边长为4 cm和9 cm,则该三角形的周长是( )A.17 cmB.22 cmC.17 cm或22 cmD.18 cm5.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AD=AE,则∠EDC的度数为()A.15°B.25°C.30°D.50°6.等边△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°7.如图,在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°8.下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以222c b a =+(a ,b ,c 分别为∠A ,∠B ,∠C 的对边)D.在Rt △ABC 中,∠B =90°,所以222c b a =+(a ,b ,c 分别为∠A ,∠B ,∠C 的对边) 9.如图,在△ABC 中,∠ACB =90°,AC =40,CB =9,点M 、N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为( )A.6B.7C.8D.910.已知一个直角三角形的周长是4+26,斜边上的中线长为2,则这个三角形的面积为( )A.5B.2C. 45D.1 二、填空题(每小题3分,共24分)11. 在△ABC 中,AB =AC ,∠A +∠B =115°,则∠A = ,∠B = .12.若点D 为△ABC 的边BC 上一点,且AD =BD ,AB =AC =CD ,则∠BAC =____________. 13.已知△ABC 中,DE 垂直平分AC ,与AC 边交于点E ,与BC 边交于点D ,∠C =15°, ∠BAD =60°,则△ABC 是________三角形.14.等腰三角形的底边长为,顶角是底角的4倍,则腰上的高是_________.15.若等腰三角形一腰上的高与另一腰的夹角为45°,则这个等腰三角形的底角为 . 16.已知等边三角形的高为23,则它的边长为________.17.如图,已知∠BAC =130°,AB =AC ,AC 的垂直平分线交BC 于点D ,则∠ADB =______度.18.如图,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,∠BAE =∠DEC =60°,AB =CE =3,则AD =_________. 三、解答题(共46分)19.(6分)如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出剪裁的痕迹.20.(6分)如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC •于点D ,求证:•BC =3AD .21.(6分)如图,在△ABC 中,AC =BC ,∠C =90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E .(1)若CD =1 cm ,求AC 的长;(2)求证:AB =AC +CD .22.(7分)如图,在四边形ABCD 中,BC >BA ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠C =180°.第21题图 第20题图第22题图CB23.(7分)如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.第23题图24.(7分)如图,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC为边作等边△DCE,点B、E在C、D的同侧,若AB=2,求BE的长.第24题图25.(7分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图(1),当点D在线段BC上时,如果∠BAC=90°,则∠BCE= 度.(2)设∠BAC=α,∠BCE=β.①如图(2),当点D在线段BC上移动时,则α、β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,则α、β之间有怎样的数量关系?请直接写出你的结论.第25题图参考答案一、选择题1、B;2、B3.A解析:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵DE垂直平分AB,∴DA=DB,∴∠ABD=∠A=36°.∴∠DBC=36°,∠BDC=72°,∴BD平分∠ABC,AD=BD=BC,①②正确;△BCD的周长=BC+BD+CD=BC+AD+CD=BC+AC=BC+AB,③正确.∵BD>CD,∴AD>CD,故④错误.4.B解析:4+9+9=22(cm).5.B 解析:∠AED =∠EDC +∠C ,∠ADC =∠B +∠BAD ,∵ AD =AE ,∴ ∠AED =∠ADE .∵ AB =AC ,∴ ∠B =∠C ,∴ ∠B +∠BAD =∠EDC +∠C +∠EDC ,即∠BAD =2∠EDC . ∵ ∠BAD =50°,∴ ∠EDC =25°,故选B .6.C 解析:∠IBC =∠ICB =30°,所以∠BIC =180°-30°-30°=120°.7.C 解析:∵ △ABC 是等边三角形,∴ ∠ABD =∠C ,AB =BC .又∵ BD =CE ,∴ △ABD ≌△BCE .∴ ∠BAD =∠CBE .∵ ∠ABE +∠EBC =60°, ∴ ∠ABE +∠BAD =60°,∴ ∠APE =∠ABE +∠BAD =60°,故选C .8.C 解析:A .不确定三角形是否为直角三角形,且c 是否为斜边,故A 选项错误;B .不确定第三边是否为斜边,故B 选项错误;C .∠C =90°,所以其对边为斜边,故C 选项正确; D .∠B =90°,所以,故D 选项错误.9.C 解析:因为Rt △ABC 中,AC =40,BC =9,所以由勾股定理得AB =41.因为BN =BC =9,AM =AC =40,所以MN =AM +BN AB =40+941=8.10.B 解析:设此直角三角形为△ABC ,其中∠C =90°,BC =a ,AC =b ,因为直角三角形斜边的长等于斜边上中线长的2倍,所以AB =4.又因为△ABC 的周长是624+, 所以62=+b a .平方得24)(2=+b a ,即24222=++ab b a . 由勾股定理知16222==+c b a ,所以221,4==ab ab . 二、填空题11、005065,; 12、108013.直角 解析:如图,∵ DE 垂直平分AC ,∴ AD =CD . 又∠C =15°,∴ ∠C =∠DAC =15°,∠ADB =∠C +∠DAC =30°.又∠BAD =60°,∴ ∠BAD +∠ADB =90°,∴ ∠B =90°,即△ABC 是直角三角形. 14.21a 解析:因为等腰三角形的顶角是底角的4倍,所以顶角是120°,底角是30°.如图,在△ABC 中,AC =BC ,BD ⊥AD ,∠A =∠ABC = 30°,AB =a ,则BD =21.15.22.5°或67.5°解析:当等腰三角形为锐角三角形时,底角为67.5°,当等腰三角形为钝角三角形时,底角为22.5°.16.417.5018.6解析:因为∠BAE=60°,所以∠AEB=30°.所以∠AEB+∠DEC=30°+60°=90°,所以∠AED=90°.又因为AB=CE=3,所以AE=DE=6,所以AD =6.三、解答题19.解:如图所示.20.证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∴在Rt△ADC中CD=•2AD.•∵∠BAC=120°,∴∠BAD=120°-90°=30°,∴∠B=∠BAD,∴AD=BD,∴BC=3AD.21.(1)解:因为AD是∠CAB的平分线,CD⊥AC,DE⊥AB,所以CD=DE=1 cm.因为AC=BC,所以∠CAB=∠B =.又因为DE⊥AB,所以∠EDB=∠B =.所以ED=EB.所以DB =(cm).所以AC=BC=CD+DB =cm.(2)证明:在△ACD和△AED中,∠CAD=∠EAD,∠C=∠AED,AD=AD,所以△ACD≌△AED,即得AC=AE.由(1)得CD=DE=BE,又AB=AE+EB,所以AB=AC+CD.22.分析:从条件BD平分∠ABC,可联想到角平分线定理的基本图形,故要作垂线段.证明:如图,过点D作DE⊥AB交BA的延长线于点E,过点D作DF⊥BC于点F.因为BD平分∠ABC,所以DE=DF.在Rt△EAD和Rt△FCD中,AD=DC,DE=DF,所以Rt△EAD≌Rt△FCD(HL).所以∠C=∠EAD.F B第22题答图因为∠EAD+∠BAD=180°,所以∠C+∠BAD=180°.23.解:△APQ为等边三角形.证明如下:∵△ABC为等边三角形,∴AB=AC.∵∠ABP=∠ACQ,BP=CQ,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠P AC=60°,∴∠P AQ=∠CAQ+∠P AC=∠BAP+∠P AC=∠BAC=60°.∴△APQ是等边三角形.24. 解:因为△ABD和△CDE是等边三角形,所以AD=BD,CD=DE,∠ADB=∠CDE=60°.所以∠ADB-∠CDB=∠CDE-∠CDB,即∠ADC=∠BDE.在△ADC和△BDE中,因为AD=BD,CD=DE,∠ADC=∠BDE,所以△ADC≌△BDE,所以AC=BE.在等腰直角△ABC中,AB=2,所以AC=BC=1,故BE=1.25.解:(1)90.(2)①α+β=180°.理由:因为∠BAC=∠DAE,所以∠BAC-∠DAC =∠DAE-∠DAC,即∠BAD=∠CAE.又AB=AC,AD=AE,所以△ABD≌△ACE.所以∠B=∠ACE.所以∠B+∠ACB =∠ACE+∠ACB,所以∠B+∠ACB =β.因为α+∠B+∠ACB =180°,所以α+β=180°.②当点D在射线BC上时,α+β=180°.当点D在射线CB上时,α=β.。

八年级上册数学单元测试卷-第2章 特殊三角形-浙教版(含答案)

八年级上册数学单元测试卷-第2章 特殊三角形-浙教版(含答案)

八年级上册数学单元测试卷-第2章特殊三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,B C′交AD于E,AD=8,AB=4,则DE的长为A.3B.4C.5D.62、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是().A.7B.9C.10D.113、如图,在等腰三角形ABC中,AC=BC=5cm, AB=6cm,则等腰△ABC的面积为()A.12B.11C.10D.134、如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为( )A.3cmB.4cmC.1cmD.2cm5、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个6、如图,在中,,、、分别是、、上的点,且,,若,则的度数是()A. B. C. D.7、下列都是同学们喜欢的商标,其中是轴对称图形的是()A. B. C. D.8、如图,正方形ABCD的边长为4,点E在对角线BD上,且,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.9、如图,,是的直径,,是的弦,且,与交于点,连接,若,则的度数是()A.20°B.30°C.40°D.50°10、如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接AE,则sin∠AED=()A. B. C. D.11、如图,,,三点在正方形网格线的交点处,若将绕点逆时针旋转得到,则点的坐标为()A. B. C. D.12、如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C′处,若长方体的长AB=4cm,宽BC=3cm,高BB′=2cm,则蚂蚁爬行的最短路径是()A. cmB. cmC. cmD.7cm13、如图,将Rt△ABC(∠ACB=90°,∠ABC=30°)沿直线AD折叠,使点B落在E处,E 在AC的延长线上,则∠AEB的度数为()A.30°B.40°C.60°D.55°14、如图所示,为等腰直角三角形,,正方形DEFG边长也为2,且AC与DE在同一直线上,从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为与正方形DEFG重合部分图中阴影部分的面积为y,则y与x之间的函数关系的图象大致是()A. B. C. D.15、下列图形中,不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求:(1)AB的长为________(2)S△ABC=________17、在△ABC中,∠C=90°,若AB= ,则AB2+AC2+BC2=________。

【浙教版】八年级数学上册第二章《特殊三角形》单元检测题(8套 含答案)

【浙教版】八年级数学上册第二章《特殊三角形》单元检测题(8套 含答案)

单元测试(二)特殊三角形题号一二三总分合分人复分人得分一.1.(泰安中考)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1B.2C.3D.42.(荆门中考)已知一个等腰三角形的两边长分别2和4,则该等腰三角形的周长为( C )A.8或10B.8C.10D.6或123.下列说法中,正确的是( A )A.每个命题都有逆命题B.假命题的逆命题一定是假命题C.每个定理都有逆定理D.假命题没有逆命题4.如图,字母B所代表的正方形的面积是( C )A.12B.13C.144D.194第4题图第5题图第7题图第8题图5.(内江中考)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB 的延长线于点E,若∠E=35°,则∠BAC的度数为( A )A.40°B.45°C.60°D.70°6.下列说法中,正确的个数是( C )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.47.(萧山区期中)如图,已知△ABC是等边三角形,点D.E分别在A C.BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为( A )A.60°B.45°C.75°D.70°8.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为( C )A.6B.7C.8D.99.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AD=AE,则∠EDC的度数为( B )A.15°B.25°C.30°D.50°第9题图第10题图10.(下城区校级期中)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D.E为BC边上的两点,且∠DAE=45°,连结EF.BF,则下列结论:①△AED≌△AEF;②△AED为等腰三角形;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有( B )A.4个B.3个C.2个D.1个二.填空题(每小题4分,共24分)11.若等腰三角形的顶角为50°,则它的一个底角为65°.12.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为96.13.如图,已知∠BAC=130°,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=50°.14.小明想测量教学楼的高度.他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了2 m,当他把绳子的下端拉开6 m后,发现绳子下端刚好接触地面,则教学楼的高为8m.15.(萧山区期中)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.16.做如下操作:在等腰△ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线.底边上的中线和高互相重合.由上述操作可得出的是②③(将正确结论的序号都填上).三.解答题(共66分)17.(6分)如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的痕迹.(1)(2)解:(1)如图所示:或(2)如图所示:18.(8分)(杭州中考)如图,在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .求证:PB =PC .并直接写出图中其他相等的线段.证明:在△ABF 和△ACE 中,⎩⎨⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,∴△ABF ≌△ACE (SAS ). ∴∠ABF =∠ACE . ∵AB =AC ,∴∠ABC =∠ACB .∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠PBC =∠PCB .∴PB =PC .图中相等的线段还有:PE =PF ,BF =CE ,BE =CF .19.(8分)(丽水中考)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =37°,求∠CAD 的度数.解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点). (2)∵在Rt △ABC 中,∠B =37°, ∴∠CAB =53°.∵AD =BD ,∴∠BAD =∠B =37°.∴∠CAD =53°-37°=16°.20.(10分)如图,在等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论.解:△APQ 是等边三角形.证明: ∵△ABC 为等边三角形, ∴AB =AC .又∵∠ABP =∠ACQ ,BP =CQ , ∴△ABP ≌△ACQ (SAS ).∴AP =AQ ,∠BAP =∠CAQ .∵∠BAC =∠BAP +∠P AC =60°,∴∠P AQ =∠CAQ +∠P AC =∠BAP +∠P AC =∠BAC =60°. ∴△APQ 是等边三角形.21.(10分)如图,AB =AC ,∠BAC =90°,BD ⊥AE 于D ,CE ⊥AE 于E ,且BD >CE .求证:BD =EC +ED .证明:∵∠BAC =90°,CE ⊥AE ,BD ⊥AE ,∴∠ABD +∠BAD =90°,∠BAD +∠EAC =90°,∠BDA =∠E =90°. ∴∠ABD =∠EAC .在△ABD 和△CAE 中,⎩⎨⎧∠ABD =∠EAC ,∠BDA =∠E ,AB =AC ,∴△ABD ≌△CAE (AAS ). ∴BD =AE ,AD =EC . ∵AE =AD +DE ,∴BD =EC +ED .22.(12分)如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中∠BAC 与平面展开图中∠B ′A ′C ′的大小关系? 解:(1)在平面展开图中可画出最长的线段长为10.如图2中的A ′C ′,在Rt △A ′C ′D ′中,∵C ′D ′=1,A ′D ′=3,由勾股定理得A ′C ′=C′D′2+A′D′2=1+9=10.这样的线段可画4条.(2)∵立体图中∠BAC 为等腰直角三角形的一锐角,∴∠BAC =45°.在平面展开图中,连结B′C′,由勾股定理可得A′B′=5,B′C′= 5.又∵A′B′2+B′C′2=A′C′2,由勾股定理的逆定理可得△A′B′C′为直角三角形.又∵A′B′=B′C′,∴△A′B′C′为等腰直角三角形.∴∠B′A′C′=45°.∴∠BAC与∠B′A′C′相等.23.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,若∠BAC=90°,则∠BCE=90°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.图1图2解:(2)①α+β=180°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△ABD≌△ACE.∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB=∠BCE=β.∵α+∠B+∠ACB=180°,∴α+β=180°.②当点D在射线BC上时,α+β=180°;当点D在CB延长线上时,α=β.第二章特殊三角形单元测试一.单选题(共10题;共30分)1.已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里2.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)3.如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A.27B.18C.18D.94.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=ADB.AB=ABC.∠ABC=∠ABDD.∠BAC=∠BAD5.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°6.对于命题“如果a>b>0,那么a2>b2 . ”用反证法证明,应假设()A.a2>b2B.a2<b2C.a2≥b2D.a2≤b27.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A.B在围成的正方体中的距离是()A.0B.1C.D.8.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EFB.已知AB∥EFC.假定CD不平行于EFD.假定AB不平行于EF9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.10.在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2二.填空题(共8题;共24分)11.用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12.在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ . (只添加一个)13.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15.如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2 .17.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2 .18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三.解答题(共5题;共40分)19.已知直线m.n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20.在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21.如图,在B港有甲.乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23.如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四.综合题(共1题;共6分)24.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一.单选题1.【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。

浙教版八年级数学上《第2章特殊三角形》单元测试含答案

浙教版八年级数学上《第2章特殊三角形》单元测试含答案

第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A .B .C .D .二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章特殊三角形参考答案一、选择题1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。

浙教版数学八年级上册 第 2章特殊三角形单元测试有答案

浙教版数学八年级上册 第  2章特殊三角形单元测试有答案

浙教版数学八上 2章特殊三角形单元测试含答案 班级__________ 姓名__________ 分数__________一、选择题1. 下列四个图形中,不是轴对称图形的是( )2. 在直角坐标系中有A ,B 两点,要在y 轴上找一点C ,使得它到A ,B 的距离之和最小,现有如下四种方案,其中正确的是( )A .B .C .D .3. 下列定理有逆定理的是( )A .全等三角形的对应角相等B .如果两个角都是45°,那么这两个角相等C .两直线平行,同位角相等D .对顶角相等4. 下列图形中只有一条对称轴的是( )5. 如图,是一台球桌面示意图,图中小正方形的边长均相等.黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A .①B .②C .⑤D .⑥6. 已知:一等腰三角形的两边长x 、y 满足方程组⎩⎨⎧2x -y =33x +2y =8,则此等腰三角形的周长为( )A .5B .4C .3D .5或47. 已知下列命题:①如果a >b ,那么a 2>b 2;②如果a >1,那么(a -1)0=1; ③两个全等的三角形的面积相等;④等边三角形的三条边都相等.其中原命题与逆命题均为真命题的有( )A .4个B .3个C .2个D .1个8. 如图,CE 平分∠ACB 且CE ⊥DB 于E ,∠DAB =∠DBA ,又知AC =18 cm ,△CDB 的周长为28 cm ,则DB 的长为( )A .7 cmB .8 cmC .9 cmD .10 cm9. 若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为( )A .75°或15°B .36°或60°C .75°D .30°10.如图所示△ABC 中,DM 与EN 分别是边AB ,AC 的垂直平分线,MD 与NE 的延长线交于点G ,连结AD ,AE ,已知∠DAE =x °,则①AD =BD ,AE =CE ;②∠B +∠C =⎝⎛⎭⎫180-x 2°;③∠BAC =⎝⎛⎭⎫180+x 2°;④∠DGE =∠B +∠C四个结论中,正确的有( )个A .1B .2C .3D .4二、填空题11.如图所示,在△ABC 中,AB =AC ,∠BAC =130°,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连结AF ,则∠F AC =__________.第11题图第13题图第14题12.有一个等腰三角形,三边分别是3x -2,4x -3,6-2x ,则该等腰三角形的周长为__________.13.如图,已知∠AOB =α,在射线OA ,OB 上分别取点A 1,B 1,使OA 1=OB 1,连结A 1B 1,在B 1A 1,B 1B 上分别取点A 2,B 2,使B 1A 2= B 1B 2,连结A 2B 2……按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3= θ2,…,∠A n + 1 B n B n + 1 = θn ,则:(1)θ1=__________;(2)θn =__________.14.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为__________.15.电子跳蚤游戏盘是如图所示的△ABC ,AB =AC =BC =6.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1= CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2= AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3= BP 2;…;跳蚤按照上述规则一直跳下去,第N 次落点为P N (N 为正整数),则点P 2009与点P 2010之间的距离为__________.第15题图第16题图16.将正方形纸片ABCD 按下图所示折叠,那么图中∠HAB 的度数是__________.17.如图,在△ABC 中,AB =AC ,AB >BC ,点D 在边BC 上,CD =3BD ,点E 、F 在线段AD 上,∠1=∠2=∠BAC .若△ABC 的面积为16,则△ACF 与△BDE 的面积之和为__________.18.在△ABC 中,AB =AC =12cm ,BC =6cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B →A →C 的方向运动.设运动时间为t 秒,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍,那么t 的值为__________.三、解答题19.如图所示,P 是∠AOB 内任一点,以OA ,OB 为对称轴分别画出点P 经轴对称变换后的点P 1,P 2,连结P 1P 2,分别与OA ,OB 相交于点C ,D .若P 1P 2=8 cm ,求△PCD 的周长.GNMED CBA20.如图所示,在△ABC中,AB=AC,D是AC上一点,AD=BD=BC,则图中有几个等腰三角形?分别指出它们的顶角、底角、腰和底边.21.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分.求这个等腰三角形的底边长.22.如图所示,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=12∠A.23.如图①,在△BCD中,∠BCD=90°,BC=DC,P是∠BCD的角平分线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:PE=PD;(2)求证:∠DPE+∠BCD=180°;(3)如图②把题中“∠BCD=90°”条件删去,其他条件不变,结论(2):∠DPE+∠BCD=180°还成立吗?说明理由.(4)如图①,若BC=DC=4,点P在AC上移动,△PBE面积的最大值为:__________.(直接写出结果)24.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C不重合),Q是CB延长线上一点,由B向CB延长线方向运动(Q不与B重合),连结PQ交AB于D.若两点同时出发,以相同的速度每秒1个单位运动,运动时间为t.(1)当∠PQC=30°时,求t的值;(2)过P作PE⊥AB于E,过Q作QF⊥AB,交AB的延长线于F,请找出图中在运动过程中的一对全等三角形,并加以证明;(3)在(2)的条件下,当P,Q在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化,请说明理由.参考答案一、选择题二、填空题11.105° 12.8.5或913.180°+α2 (2n -1)·180°+α2n14.615.216.15°17.418.7秒或17秒三、解答题19.解:根据轴对称变换的性质,可知PC=P1C,PD=P2D,∴△PCD的周长为PC+CD+PD=P1C+CD+P2D=P1P2=8cm.20.解:有三个等腰三角形,它们分别是△ABC,△DAB,△BCD.在△ABC中,AB和AC是腰,BC是底边,∠A是顶角,∠ABC和∠ACB是底角;在△DAB中,AD和BD是腰,AB是底边,∠ADB是顶角,∠DAB和∠ABD是底角;在△BCD中,BC和BD是腰,CD是底边,∠CBD是顶角,∠BCD和∠BDC是底角.21.解:设这个等腰三角形的底边长为x,腰长为y.x+y2=12,y+y2=21或x+y2=21,y+y2=12.∵x=5,y=14或x=17,y=8.因为三角形两边之和必然大于第三边,则必须满足2y>x,所以x=17,y=8,不合题意舍去.所以这个等腰三角形的底边长为5cm.22.证明:过点A作AE⊥BC于点E,交CD于点F,如图.∴∠BAE+∠B=90°.∵AB=AC,∴∠BAE=12∠BAC.又∵CD⊥AB,∴∠BCD+∠B=90°.∴∠BAE=∠BCD.∴∠BCD=12∠A.23.解:(1)∵AC是∠BCD的角平分线,∴∠BCA=∠DCA.∵PC=PC,BC=DC,∴△BCP≌△DCP(SAS),∴PB=PD.∵PB=PE,∴PD=PE.(2)在图①中由(1)知∠PBC=∠PDC∵PB=PE,∴∠PBC=∠E,∴∠PDC=∠E.∵∠PFD=∠EFC,∴∠DPE=∠DCE.∵∠BCD+∠DCE=180°,∴∠BCD+∠DPE=180°.(3)在图②中,由△BCP≌△DCP得∠PBC=∠PDC,∵PB=PE∴∠PBC=∠E,∴∠PDC=∠E.∵∠PFD=∠EFC,∴∠DPE=∠DCE.∵∠BCD+∠DCE=180°,∴∠BCD+∠DPE=180°.(4)424.解:(1)t=2.(2)△APE≌△QBF或△EPD≌△FQD,证明略.(3)ED的长度不变,ED=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D B
A C
E
80
60
D
C
B A
D
C
B
A
E
第二章 特殊三角形单元测试
一、选择题:
1、等腰三角形的对称轴有( )
A.1 条
B.1条或3条
C.3条
D.4条
2.下图是某地的长方形大理石广场示意图,如果小琴A 角走到C 角,至少走( ) A. 90米 B. 100米 C. 120米 D. 140米
3.使两个直角三角形全等的条件是( )
A .斜边相等
B .一直角边和一条斜边对应相等
C .一锐角对应相等
D .两锐角对应相等
4、若一个三角形有两条边相等,且有一内角为60º,那么这个三角形一定为( ) A 、等边三角形 B 、等腰三角形 C 、直角三角形 D 、钝角三角形
5、若等腰三角形的顶角为α,则它一腰上的高与底边的夹角等于( ) A .α-︒90 B .2
90α
-
︒ C .2
90α
-
︒ D .
2
α
6、如果等腰三角形的一个底角比顶角大15 º,那么顶角为( )
A 、45 º B40 º C55 º D50 º 7.如图,AB=AC,∠B=50°,D 是BC 中点,则∠DAC 度数为( ) A.30° B.40° C.50° D.70° 8、已知等腰三角形的一边长为4,另一边长为8,则它的周长是( ) A 、12
B 、16
C 、20
D 、16或20 9.直角三角形两条直角边长分别是5和12,则第三边上的中线长( )
A.5
B.6
C.6.5
D.12 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,
交BC 于D ,若AB=10,AC=6,则△ACD 的周长为( ) A 、16 B 、14 C 、20 D 、18 二、填空题:
11、已知三角形三边长分别为5、12、13,则此三角形的面积为 . 12、等腰三角形有一个角为30°,则它的底角度数是_________. 13、如图,在△ABC 中,∠A=40º,AB=AC ,AB 的垂直平分线DE 交AC 于D ,
则∠DBC 的度数是 .
14、现有两根木棒的长度分别为40CM 和50CM ,若要钉成一个直角三角形木架,则所需木棒长度为 .
15、一个直角三角形的三边长为三个连续偶数,则三边长分别为 . 16、在Rt △ABC 中,∠C=90°,AB=15㎝,D 是AB 边的中点,则CD= 。

17、我们知道等腰三角形是轴对称图形,你认为它有____条对称轴.对于等腰三角形对称轴的问题,芳芳、丽丽、园园有了不同的看法。

芳芳:“我认为等腰三角形的对称轴是顶角平分线所在的直线.” 丽丽:“我认为等腰三角形的对称轴是底边中线所在的直线.” 园园:“我认为等腰三角形的对称轴是底边高线所在的直线.” 你认为她们谁说的对呢?请说明你的理由__________________ 。

18、等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长
为 。

19、如图,所有的四边形都是正方形,所有的三角形都是直角三
角形,其中最大的正方形的边和长为9cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2
20、在Rt △ABC 中,∠C=Rt ∠,BC=3,AC=4,则斜边上的高线长
为 ,中线长 . 三、简答题
21. 一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C
处的距离为4米,∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为多少米?(答案可保留根号).
D
C
B
A
E
22、如图,在△ABC 中,∠B=∠C ,AD ⊥BC 于D ,E 为AC 的中点,AB=6,求DE 的长。

23、如图,等腰△ABC ,AB =AC ,∠C=30°,AB ⊥AD,AD=2,求BC 的长.
D
C
B
A
24、晶晶同学想知道学校旗杆的高,他发现从旗杆顶上挂下来的绳子垂直到地面还多1米,当他把绳子拉开离旗杆底部5米后,绳子下端刚好接触地面;请你帮晶晶同学算一算学校旗杆高度.
25、如图所示的一块地,∠ADC=90°,AD=4m ,CD=3m ,AB=13m ,BC=12m ,求这块地的面积。

D
C
B
A
26.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC.已知
AB=5,DE=1,BD=8,设CD=x.
(1)用含x 的代数式表示AC +CE 的长; (2)请问点C 满足什么条件时,AC +CE 的值最小?
(3)根据(2)中的规律和结论,请构图求出代数式9)12(42
2+-++x x 的最小值.
参考答案:
1.B;
2.B;
3.B;
4.A;
5.D;
6.D;
7.B;
8.C;
9.C;10.B;
11.30;12.30°或75°;13.30°;14.30cm,或10√34cm;15.6,8,10;
16.7.5;17.3,都正确,因为等腰三角形,三线合一;18.8;19.81;20.2.4,2.5;
21.4+4√2;22.3;23.6;24.13;25.36;26.(1)25+(8-x)2+1+x2;(2)当点A、C、E在一条直线上,有最小值;(3)13;。

相关文档
最新文档