特殊三角形(习题及答案)

合集下载

特殊三角形复习

特殊三角形复习

特殊三角形复习一:等腰三角形 例1:如图1,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论中正确的有( ) ①△ACE ≌△BCD ,②BG=AF ,③△DCG ≌△ECF ,④△ADB ≌△CEA ,⑤DE=DG ,⑥∠AOB=60°.A . ①②③⑤B . ①②④⑤C . ①②③⑥D .①②③④⑤⑥图1 图3二:等腰三角形的性质 例2:如图2,△ABC 是等边三角形,D 是AB 边上的一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连结AE . (1)求证:AE ∥BC ; (2)当AD=AE 时,求∠BCE 的度数.图2例3: 如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 _________ .例4:如图,在等腰三角形ABC 中,AB=AC ,AD 是BC 边上的中线,∠ABC 的平分线BG ,交AD 于点E ,EF ⊥AB ,垂足为F .求证:EF=ED .拓展:如图,在△ABC 中,AC=BC ,∠C=90°,BD 为∠ABC 的平分线,若A 点到直线BD 的距离为a ,则BE 的长为 _________ .三,等腰三角形的判定例5:等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.例6:如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有_________ 个.例7:如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.四,直角三角形的性质例8:如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.求证:(1)G是CE的中点;(2)∠B=2∠BCE.例9:已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.四,直角三角形的判定例10:如图,在△ABC 与△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C 、D 、E 在同一条直线上,连接BD 、BE .把以下所有正确结论的序号都填在写在横线上: _________ .①BD=CE ; ②∠ACE+∠DBC=45°; ③BD ⊥CE ; ④BE 2=2(AB 2+AD 2).五,直角三角形全等的判定例11: 在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAE=30°,求∠ACF 的度数.课后练习一.选择题1.如图1,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④BE+DF=EF ,⑤S △CEF =2S △ABE .其中正确结论有( )个.A.2 B. 3 C . 4 D . 5图1 图2 图3 图42.如图2,OP 平分∠BOA ,∠BOA=45°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于( )A 4BCD 2....二.填空题1.如图3,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为_________ .2.如图4,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= _________ 度.3.如图所示,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个6×6的方格纸中,找出格点C,使△ABC的面积为1个平方单位的直角三角形的个数是_________ 个.4.如图a,P是等边△ABC内任意一点,由P向边BC、AC、AB分别引垂线段PD、PE、PF,AM⊥BC,AM=6cm,则PD+PE+PF= _________ .图a 图b 图c5.如图b,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC= _________ °.6.如图c,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于_________ .三.解答题1.已知,在△ABC中,AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.(1)求证:PE+PF=CH;(2)P为BC延长线上的点时,其它条件不变,求证:PE﹣PF=CH.2.如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.3.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.4.如图,△ABC是等腰三角形,D、E分别是腰AB及AC延长线上的点,且DG=GE,请证明:BD=CE.5.如图所示,在△ABC中,BD、CE分别是边AC、AB上的高,点F在边BC上,BF=CF.求证:△DEF是等腰三角形.6.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.7.如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.8.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管_________ 根.9.已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.10.在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE.求证:AD=CE.11.如图,点D,E分别在AB,AC上,且AD=AE,∠BDC=∠CEB.求证:BD=CE.12.如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.13.如图,已知在等边三角形ABC的边AC、BC上各取一点P、Q,且AP=CQ,AQ、BP相交于点O,(1)求证:△ABP≌△ACQ;(2)求∠BOQ的度数.14.如图,P是等边△ABC内一点,∠PBQ=60°,且BQ=BP,连接CQ.猜想AP与CQ之间的大小关系,并证明.15.已知:如图,四边形ABCD中,∠A+∠C=180°,BD平分∠ABC.求证:DC=AD.16.如图,已知△ABC中,AB=AC,∠A=100°,BD平分∠ABC,求证:BC=BD+AD.17.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得四边形ABCE.求证:EC∥AB.18.如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值.19.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.20.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.21.如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上一点,且CE=BC.求证:AF⊥FE.22.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.23.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.。

浙教版2019-2020年八年级数学上学期: 第2章 特殊三角形(A卷)含解析版答案

浙教版2019-2020年八年级数学上学期: 第2章 特殊三角形(A卷)含解析版答案

第2章特殊三角形单元测试卷(A卷基础篇)【浙教版】学校:___________姓名:___________班级:___________考号:___________满分:120分考试时间:100分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,每小题3分,共30分)1.(3分)(2019春•商河县期末)下列图形中不是轴对称图形的是()A.B.C.D.2.(3分)(2014•盐城)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°3. (3分)(2019春•甘井子区期末)已知直角三角形的两条直角边长分别为1和4,则斜边长为()A.3 B.C.D.54.(3分)(2019春•长沙县期末)如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.B.﹣C.D.﹣5.(3分)(2019春•即墨区期末)等腰三角形的周长为11m,其中一边长为2cm,则该等腰三角形的腰长为()A.4.5cm B.2cm C.2cm或4.5cm D.5.5cm6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+27. (3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm28.(3分)(2019春•南岸区校级期中)如图,在△ABC中,AB=AC=BD,∠DAC=∠DCA,则∠DAC=()A.30°B.36°C.40°D.45°9.(3分)(2019春•兰山区期中)如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若S1,S2,S3,S4和S分别代表相应的正方形的面积,且S1=4,S2=9,S3=8,S4=10,则S等于()A.25 B.31 C.32 D.4010.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.C.D.第Ⅱ卷(非选择题)二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019春•郁南县期末)如图的直角三角形中未知边的长x=________.12.(4分)如图,在△ABC中,AB=AC,AD=BD=BC,那么∠A= 度.13.(4分)如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠,∠C=∠.14.(4分)(2019春•萧山区月考)已知△ABC为等腰三角形,它的一个外角为100°,则∠B的度数是.15.(4分)(2019春•南岗区校级月考)如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为.16.(4分)(2018秋•抚宁区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三.解答题(共7小题,共66分)17.(6分)(2018秋•北仑区期末)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.18.(8分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD是否垂直?为什么?19.(8分)(2019春•铜仁市期末)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.20.(10分)(2019春•海淀区校级月考)在△ABC中,AB=AC,M是边BC的中点,BD平分∠ABC,交AM于E,交AC于D,若∠AED=64°,求∠BAC的度数的大小21.(10分)(2019•南岸区校级模拟)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,22.(12分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.23.(12分)如图,等腰直角△ACB,∠ACB=90°,CA=CB.操作:如图1,过点A任作一条直线(不经过点C和点B)交BC所在直线于点D,过点B作BF⊥AD交AD 于点F,交AC所在直线于点E,连接DE.(1)猜想△CDE的形状;(2)请你利用图2、图3作与上述位置不同的直线,然后按上述方法操作.画出相应的图形;(3)在经历(2)之后,若你认为(1)中的结论是成立的,请你利用图2加以证明;若你认为不成立,请你利用其中一图说明理由.第2章特殊三角形单元测试卷(A卷基础篇)【浙教版】参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2019春•商河县期末)下列图形中不是轴对称图形的是()A.B.C.D.【思路点拨】根据轴对称图形的定义判断即可.【答案】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:A.【点睛】本题考查轴对称图形的定义,解题的关键是理解轴对称图形的性质,属于中考常考题型.2.(3分)(2014•盐城)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【思路点拨】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【答案】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.【点睛】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.3. (3分)(2019春•甘井子区期末)已知直角三角形的两条直角边长分别为1和4,则斜边长为()A.3 B.C.D.5【思路点拨】根据在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方进行计算即可.【答案】解:斜边长为:=,故选:C.【点睛】此题主要考查了勾股定理,关键是掌握勾股定理内容.4.(3分)(2019春•长沙县期末)如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.B.﹣C.D.﹣【思路点拨】首先根据勾股定理计算出AC的长,进而得到AD的长,再根据A点表示0,可得D点表示的数.【答案】解:AC===,则AD=,∵A点表示0,∴D点表示的数为:﹣,故选:B.【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.5.(3分)(2019春•即墨区期末)等腰三角形的周长为11m,其中一边长为2cm,则该等腰三角形的腰长为()A.4.5cm B.2cm C.2cm或4.5cm D.5.5cm【思路点拨】根据等腰三角形的性质分为两种情况解答:当边长2cm为腰或者2cm底边时.【答案】解:分情况考虑:当2cm是腰时,则底边长是11﹣2×2=7cm,此时2cm,2cm,7cm不能组成三角形,应舍去;当2cm是底边时,腰长是(11﹣2)×=4.5cm,2cm,4.5cm,4.5cm能够组成三角形.此时腰长是4.5cm.故选:A.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+2【思路点拨】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【答案】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选:C.【点睛】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.7. (3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【思路点拨】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【答案】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.【点睛】这里不要去分别求a,b的值,熟练运用完全平方公式的变形和勾股定理.8.(3分)(2019春•南岸区校级期中)如图,在△ABC中,AB=AC=BD,∠DAC=∠DCA,则∠DAC=()A.30°B.36°C.40°D.45°【思路点拨】设∠DAC=x°,根据∠DAC=∠DCA得到∠DAC=∠DCA=x°,然后利用等腰三角形的性质表示出相关的角的度数,利用三角形内角和定理求得x即可求得答案.【答案】解:设∠DAC=x°,∵∠DAC=∠DCA,∴∠DAC=∠DCA=x°,∴∠ADB=2x°,∵AB=AC=BD,∴∠B=∠C=x°,∠BAD=∠BDA=2x°,∴x+2x+2x=180,∴x=36°,故选:B.【点睛】考查了等腰三角形的性质,了解等腰三角形中等边对等角是解答本题的关键,难度不大.9.(3分)(2019春•兰山区期中)如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若S1,S2,S3,S4和S分别代表相应的正方形的面积,且S1=4,S2=9,S3=8,S4=10,则S等于()A.25 B.31 C.32 D.40【思路点拨】如图,根据勾股定理分别求出AB2、AC2,进而得到BC2,即可解决问题.【答案】解:如图,由题意得:AB2=S1+S2=13,AC2=S3+S4=18,∴BC2=AB2+AC2=31,∴S=BC2=31.故选:B.【点睛】主要考查了正方形的性质、勾股定理等几何知识点及其应用问题;解题的关键是牢固掌握勾股定理等几何知识点.10.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.C.D.【思路点拨】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【答案】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.【点睛】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019春•郁南县期末)如图的直角三角形中未知边的长x=.【思路点拨】根据勾股定理计算即可.【答案】解:由勾股定理得,x==,故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.(4分)如图,在△ABC中,AB=AC,AD=BD=BC,那么∠A= 36 度.【思路点拨】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求解.【答案】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°.故答案为:36.【点睛】本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.13.(4分)如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠DAC,∠C=∠BAD.【思路点拨】先根据直角三角形两锐角互余得出∠B+∠C=90°,再由三角形的高的定义得出∠ADB=∠ADC=90°,那么根据直角三角形两锐角互余得出∠DAC+∠C=90°,∠B+∠BAD=90°,然后根据同角的余角相等即可得到∠B=∠DAC,∠C=∠BAD.【答案】解:∵在△ABC中,∠BAC=90°,∴∠B+∠C=90°,∵AD⊥BC于点D,∴∠ADB=∠ADC=90°,∴∠DAC+∠C=90°,∠B+∠BAD=90°,∴∠B=∠DAC,∠C=∠BAD.故答案为DAC,BAD.【点睛】本题考查了直角三角形的性质,余角的性质,三角形的高,掌握直角三角形中,两个锐角互余是解题的关键.14.(4分)(2019春•萧山区月考)已知△ABC为等腰三角形,它的一个外角为100°,则∠B的度数是20°或50°或80°.【思路点拨】没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【答案】解:∵一个外角为100°,∴与其相邻的内角为80°,如果80°为顶角,当∠B为顶角,∴∠B=80°,当∠B为底角,∴∠B=50°,如果80°为底角,当∠B为顶角,∴∠B=20°,当∠B为底角,∴∠B=80°,综上所述,∠B的度数是20°或50°或80°,故答案为:20°或50°或80°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.(4分)(2019春•南岗区校级月考)如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为1+.【思路点拨】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理得到△ACD为直角三角形,根据三角形的面积公式计算,得到答案.【答案】解:连接AC,在Rt△ABC中,AC==,AC2+CD2=5+1=6,AD2=6,则AC2+CD2=AD2,∴△ACD为直角三角形,∴四边形ABCD的面积=×1×2+×1×=1+,故答案为:1+.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.16.(4分)(2018秋•抚宁区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6 厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【思路点拨】首先求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.【答案】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了等腰三角形的性质、全等三角形的判定的应用;熟练掌握等腰三角形的性质,根据题意得出方程是解决问题的关键.三.解答题(共7小题,共66分)17.(6分)(2018秋•北仑区期末)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.【思路点拨】根据轴对称图形的概念求解可得.【答案】解:如图所示:【点睛】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称图形的概念.18.(8分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD是否垂直?为什么?【思路点拨】根据等腰三角形的性质可知,∠1=∠2,∠B=∠C,由三角形外角平分线的性质可知∠3=∠C,AE∥BC,由平行线的性质可知AE⊥AD.【答案】证明:∵AB=AC,CD=BD,∴∠1=∠2,∠B=∠C,AD⊥BC,又∵AE是△ABC的外角平分线,∴∠3=∠4=(∠B+∠C)=∠C,∴AE∥BC,∠DAE+∠ADB=180°,又∵AD⊥BC,∴∠DAE=∠ADC=90°.∴AE⊥AD.【点睛】本题考查的是角平分线、等腰三角形及平行线的性质;由已知证得AE∥BC,AD⊥BC是解答本题的关键.19.(8分)(2019春•铜仁市期末)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.【思路点拨】根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【答案】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=90°,∴∠B=90°.∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)【点睛】本题考查了直角三角形全等的判定及性质;主要利用了直角三角形全等的判定方法HL,也利用了等腰三角形的性质:等角对等边,做题时要综合利用这些知识.20.(10分)(2019春•海淀区校级月考)在△ABC中,AB=AC,M是边BC的中点,BD平分∠ABC,交AM于E,交AC于D,若∠AED=64°,求∠BAC的度数的大小【思路点拨】根据等腰三角形的性质得到∠ABM=90°,∠BAM=∠CAM,根据角平分线的定义得到∠ABC =2∠EBM=52°,于是得到结论.【答案】解:∵AB=AC,M是边BC的中点,∴∠AMB=90°,∠BAM=∠CAM,∵∠BEM=∠AED=64°,∴∠EBM=26°,∵BD平分∠ABC,∴∠ABC=2∠EBM=52°,∴∠BAM=90°﹣∠ABM=38°,∴∠BAC=2∠BAM=76°.【点睛】本题考查了等腰三角形的性质,角平分线定义,正确的识别图形是解题的关键.21.(10分)(2019•南岸区校级模拟)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,【思路点拨】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【答案】解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.22.(12分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.【思路点拨】(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.【答案】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ是解题的关键.23.(12分)如图,等腰直角△ACB,∠ACB=90°,CA=CB.操作:如图1,过点A任作一条直线(不经过点C和点B)交BC所在直线于点D,过点B作BF⊥AD交AD 于点F,交AC所在直线于点E,连接DE.(1)猜想△CDE的形状;(2)请你利用图2、图3作与上述位置不同的直线,然后按上述方法操作.画出相应的图形;(3)在经历(2)之后,若你认为(1)中的结论是成立的,请你利用图2加以证明;若你认为不成立,请你利用其中一图说明理由.【思路点拨】(1)猜想△CDE是等腰直角三角形;(2)据要求画出图形;(3)只要证得△ACD≌△BEC,可得到CD=CE,即可得到结论;【答案】解:(1)由AC=BC,∠ACD=∠BCE,容易猜想到△ACD≌△BEC,那么CD=CE,则△CDE是等腰直角三角形;(2)据要求画出图形如下:(3)结论成立;证明:∵∠ACB=90°,AF⊥BE,∴∠FDB+∠FBD=90°,∠EBC+∠CEB=90°,∴∠FDB=∠CEB;又∵∠FDB=∠ADC,∴∠ADC=∠CEB;∵在三角形ACD和三角形BCE中,∴△ACD≌△BEC;∴CD=CE,∴△CDE是等腰直角三角形.即猜想△CDE是等腰直角三角形结论成立.【点睛】此题主要考查直角三角形全等的判定,要利用已知条件寻找缺少的条件判定三角形全等,解题关键在于证明两腰相等.。

特殊三角形-练习题(含答案)

特殊三角形-练习题(含答案)

特殊三角形-练习题(含答案)特殊三角形-练习题(含答案)一、选择题1. 在直角三角形中,若一条直角边的长度为3,另一条直角边的长度为4,那么斜边的长度是:A. 5B. 7C. 9D. 122. 一个等腰三角形的两条等边分别为5,那么等腰三角形的底边长为:A. 2.5B. 4C. 5D. 103. 在等边三角形中,每个角的度数为:A. 45°B. 60°C. 90°D. 120°4. 若一个三角形有一条边长为2,另外两条边长为3和4,那么这个三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形5. 在等腰直角三角形中,两条直角边的长度分别为3和4,那么斜边的长度为:A. 5B. 7C. 9D. 12二、填空题1. 正三角形的每个角度数为__________。

2. 整数边长的直角三角形有__________组。

3. 锐角三角形的内角和为__________度。

4. 勾股定理可以用来判断一个三角形是否为__________。

5. 一个等腰三角形的两条等边分别为6,那么等腰三角形的底边长为__________。

三、解答题1. 证明等腰直角三角形的两条直角边相等。

解答思路:通过证明直角三角形两个角相等,并且直角三角形的两边长相等,可以得出等腰直角三角形的两条直角边相等。

2. 在等边三角形ABC中,边长为6。

连接点A和边BC的垂线段AD,求垂足D与点C之间的距离。

解答思路:利用等边三角形的性质,可以得出垂足D与点C之间的距离等于等边三角形的边长的一半。

四、答案选择题答案:1. A2. B3. B4. D5. A填空题答案:1. 60°2. 3组3. 180°4. 直角三角形5. 6解答题答案:1. 略2. 等边三角形的边长为6,所以垂足D与点C之间的距离为3。

结束语通过以上练习题的答案,我们可以对特殊三角形的性质和计算有更深入的了解。

浙教八年级上册数学特殊三角形经典习题(含答案)

浙教八年级上册数学特殊三角形经典习题(含答案)

浙教数学八年级上册特殊三角形历年中考典型习题一、等腰三角形1.如图,△ABC中,AB=AC,AM是BC边上的中线,点N在AM上,求证:NB=NC.2.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2 ,使得△PP1P2的周长最小,作出点P1,P2 ,叙述作图过程(作法),保留作图痕迹.3.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.4.如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且BD=DE.(1)如果∠BAE=40°,那么∠B=,∠C=°;(2)如果△ABC的周长为13 cm,AC=6 cm,那么△ABE的周长=cm;(3)你发现线段AB与BD的和等于图中哪条线段的长?并证明你的结论.5.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.6.如图,∠AOB=30̊,OC平分∠AOB,P为OC上一点,PD∥OA交OB于D,PE垂直OA于E,若OD=4cm,求PE的长.7.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:EF=CF.8.如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.9.如图,△ABC 为等边三角形,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E . (1)求证:△ADE 是等边三角形.(2)求证:AE =21AB .10.如图所示,D 、E 分别是 △ABC 的边 BC 、AC 上的点,且 AB =AC ,AD =AE . (1)若 ∠BAD =20̊,则∠EDC = ; (2)若 ∠EDC =20̊,则∠BAD = ;(3)设∠BAD =ɑ ,∠EDC =β,你能由(1)(2)中的结果找到 ɑ、β 所满足的关系吗?请说明理由.11.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.12.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形。

中考数学专题复习27特殊三角形(解析版)

中考数学专题复习27特殊三角形(解析版)

特殊三角形考点1:等腰三角形的性质与判定1.(2021·江苏苏州市)如图.在Rt ABC △中.90C ∠=︒.AF EF =.若72CFE ∠=︒.则B ∠=______.【答案】54°【分析】首先根据等腰三角形的性质得出∠A =∠AEF .再根据三角形的外角和定理得出∠A +∠AEF =∠CFE .求出∠A 的度数.最后根据三角形的内角和定理求出∠B 的度数即可.【详解】∠ AF =EF .∠ ∠A =∠AEF .∠∠A +∠AEF =∠CFE=72°.∠ ∠A =36°.∠ ∠C =90°.∠A +∠B +∠C =180°.∠ ∠B =180°-∠A -∠C =54°.故答案为:54°.2.(2021·江苏南京市·中考真题)如图.在四边形ABCD 中.AB BC BD ==.设ABC α∠=.则ADC ∠=______(用含α的代数式表示).【答案】11802α︒-【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠.∠BDC =1902CBD ︒-∠.两角相加即可得到结论.【详解】解:在∠ABD 中.AB =BD∠∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在∠BCD 中.BC =BD∠∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∠ABC ABD CBD α∠=∠+∠=∠ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠ =1180()2ABD CBD ︒-∠+∠ =11802ABC ︒-∠ =11802α︒- 故答案为:11802α︒-.3.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后.按图1分成六等份折叠得到图2.将图2沿虚线AB 剪开.再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒.则OBA ∠的度数为______.【答案】135°【分析】利用折叠的性质.根据等腰三角形的性质及三角形内角和定理解题.【详解】解:连接OC.EO由折叠性质可得:∠EOC=3603012︒=︒.EC=DC.OC平分∠ECD∠∠ECO=11(180275)15 22ECD∠=︒-⨯︒=︒∠∠OEC=180°-∠ECO-∠EOC=135°即OBA∠的度数为135°故答案为:135°4.(2021·山东中考真题)如图.在ABC中.ABC∠的平分线交AC于点D.过点D作//DE BC;交AB于点E.(1)求证:BE DE =;(2)若80,40A C ∠=︒∠=︒.求BDE ∠的度数.【答案】(1)见详解;(2)30BDE ∠=︒【分析】(1)由题意易得,ABD CBD CBD EDB ∠=∠∠=∠.则有ABD EDB ∠=∠.然后问题可求证; (2)由题意易得60ABC ∠=︒.则有30ABD CBD ∠=∠=︒.然后由(1)可求解.【详解】(1)证明:∠BD 平分ABC ∠.∠ABD CBD ∠=∠.∠//DE BC .∠CBD EDB ∠=∠.∠ABD EDB ∠=∠.∠BE DE =;(2)解:∠80,40A C ∠=︒∠=︒.∠18060ABC A C ∠=︒-∠-∠=︒.由(1)可得30ABD CBD BDE ∠=∠=∠=︒.5.(2020•台州)如图.已知AB =AC .AD =AE .BD 和CE 相交于点O .(1)求证:∠ABD ∠∠ACE ;(2)判断∠BOC 的形状.并说明理由.【分析】(1)由“SAS ”可证∠ABD ∠∠ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE .由等腰三角形的性质可得∠ABC =∠ACB .可求∠OBC =∠OCB .可得BO =CO .即可得结论.【解答】证明:(1)∠AB =AC .∠BAD =∠CAE .AD =AE .∠∠ABD∠∠ACE(SAS);(2)∠BOC是等腰三角形.理由如下:∠∠ABD∠∠ACE.∠∠ABD=∠ACE.∠AB=AC.∠∠ABC=∠ACB.∠∠ABC﹣∠ABD=∠ACB﹣∠ACE.∠∠OBC=∠OCB.∠BO=CO.∠∠BOC是等腰三角形.考点2:等边三角形的性质与判定6.(2021·四川凉山彝族自治州·中考真题)如图.等边三角形ABC的边长为4.C的半3P为AB边上一动点.过点P作C的切线PQ.切点为Q.则PQ的最小值为________.【答案】3【分析】连接OC和PC.利用切线的性质得到CQ∠PQ.可得当CP最小时.PQ最小.此时CP∠AB.再求出CP.利用勾股定理求出PQ即可.【详解】解:连接QC和PC.∠PQ和圆C相切.∠CQ∠PQ.即∠CPQ始终为直角三角形.CQ为定值.∠当CP最小时.PQ最小.∠∠ABC是等边三角形.∠当CP∠AB时.CP最小.此时CP∠AB.∠AB=BC=AC=4.∠AP=BP=2.∠CP22-3AC AP∠圆C的半径CQ3∠PQ22-=3.CP CQ故答案为:3.7.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的∠DEF的周长是.【分析】根据三等分点的定义可求EF的长.再根据等边三角形的判定与性质即可求解.【解析】∠等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∠EF=2.∠DE∠AB.DF∠AC.∠∠DEF是等边三角形.∠剪下的∠DEF的周长是2×3=6.故答案为:6.8.(2020•凉山州)如图.点P、Q分别是等边∠ABC边AB、BC上的动点(端点除外).点P、点Q以相同的速度.同时从点A、点B出发.(1)如图1.连接AQ、CP.求证:∠ABQ∠∠CAP;(2)如图1.当点P、Q分别在AB、BC边上运动时.AQ、CP相交于点M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数;(3)如图2.当点P、Q在AB、BC的延长线上运动时.直线AQ、CP相交于M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数.【分析】(1)根据等边三角形的性质.利用SAS 证明∠ABQ ∠∠CAP 即可;(2)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =60°;(3)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =120°.【解析】(1)证明:如图1.∠∠ABC 是等边三角形∠∠ABQ =∠CAP =60°.AB =CA .又∠点P 、Q 运动速度相同.∠AP =BQ .在∠ABQ 与∠CAP 中.{AB =CA∠ABQ =∠CPA AP =BQ. ∠∠ABQ ∠∠CAP (SAS );(2)点P 、Q 在AB 、BC 边上运动的过程中.∠QMC 不变.理由:∠∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠ACM 的外角.∠∠QMC =∠ACP +∠MAC =∠BAQ +∠MAC =∠BAC∠∠BAC =60°.∠∠QMC =60°;(3)如图2.点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时.∠QMC 不变 理由:同理可得.∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠APM 的外角.∠∠QMC =∠BAQ +∠APM .∠∠QMC =∠ACP +∠APM =180°﹣∠P AC =180°﹣60°=120°.即若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动.∠QMC 的度数为120°.考点3:直角三角形的性质9.(2020•衡阳)如图.在∠ABC 中.∠B =∠C .过BC 的中点D 作DE ∠AB .DF ∠AC .垂足分别为点E 、F .(1)求证:DE =DF ;(2)若∠BDE =40°.求∠BAC 的度数.【分析】(1)根据DE ∠AB .DF ∠AC 可得∠BED =∠CFD =90°.由于∠B =∠C .D 是BC 的中点.AAS 求证∠BED ∠∠CFD 即可得出结论.(2)根据直角三角形的性质求出∠B =50°.根据等腰三角形的性质即可求解.【解答】(1)证明:∠DE ∠AB .DF ∠AC .∠∠BED =∠CFD =90°.∠D 是BC 的中点.∠BD =CD .在∠BED 与∠CFD 中.{∠BED =∠CFD∠B =∠CBD =CD. ∠∠BED ∠∠CFD (AAS ).∠DE =DF ;(2)解:∠∠BDE =40°.∠∠B=50°.∠∠C=50°.∠∠BAC=80°.10.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上.抽象出如图(2)的平面图形.∠ACB与∠ECD恰好为对顶角.∠ABC=∠CDE=90°.连接BD.AB =BD.点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时.连接DF(如图(2)).小明经过探究.得到结论:BD∠DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换.即:BD∠DF.则点F为线段CE的中点.请判断此结论是否成立.若成立.请写出证明过程;若不成立.请说明理由.问题解决:(3)若AB=6.CE=9.求AD的长.【分析】(1)证明∠FDC+∠BDC=90°可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF.推出EF=FD.再证明FD=FC 即可解决问题.(3)如图3中.取EC的中点G.连接GD.则GD∠BD.利用(1)中即可以及相似三角形的性质解决问题即可.【解析】(1)如图(2)中.∠∠EDC=90°.EF=CF.∠DF=CF.∠∠FCD=∠FDC.∠∠ABC=90°.∠∠A+∠ACB=90°.∠BA=BD.∠∠A=∠ADB.∠∠ACB=∠FCD=∠FDC.∠∠ADB+∠FDC=90°.∠∠FDB=90°.∠BD∠DF.故答案为是.(2)结论成立:理由:∠BD∠DF.ED∠AD.∠∠BDC+∠CDF=90°.∠EDF+∠CDF=90°.∠∠BDC=∠EDF.∠AB=BD.∠∠A=∠BDC.∠∠A=∠EDF.∠∠A+∠ACB=90°.∠E+∠ECD=90°.∠ACB=∠ECD.∠∠A=∠E.∠∠E=∠EDF.∠EF=FD.∠∠E+∠ECD=90°.∠EDF+∠FDC=90°.∠FD =FC .∠EF =FC .∠点F 是EC 的中点.(3)如图3中.取EC 的中点G .连接GD .则GD ∠BD .∠DG =12EC =92. ∠BD =AB =6.在Rt∠BDG 中.BG =√DG 2+BD 2=√(92)2+62=152. ∠CB =152−92=3.在Rt∠ABC 中.AC =√AB 2+BC 2=√62+32=3√5.∠∠ACB =∠ECD .∠ABC =∠EDC .∠∠ABC ∠∠EDC .∠AC EC =BC CD. ∠3√59=3CD. ∠CD =9√55. ∠AD =AC +CD =3√5+9√55=24√55. 11.(2020•常德)已知D 是Rt∠ABC 斜边AB 的中点.∠ACB =90°.∠ABC =30°.过点D 作Rt∠DEF 使∠DEF =90°.∠DFE =30°.连接CE 并延长CE 到P .使EP =CE .连接BE .FP .BP .设BC 与DE 交于M .PB 与EF 交于N .(1)如图1.当D .B .F 共线时.求证:∠EB =EP ;(2)如图2.当D .B .F 不共线时.连接BF .求证:∠BFD +∠EFP =30°.【分析】(1)∠证明∠CBP 是直角三角形.根据直角三角形斜边中线可得结论; ∠根据同位角相等可得BC ∠EF .由平行线的性质得BP ∠EF .可得EF 是线段BP 的垂直平分线.根据等腰三角形三线合一的性质可得∠PFE =∠BFE =30°;(2)如图2.延长DE 到Q .使EQ =DE .连接CD .PQ .FQ .证明∠QEP ∠∠DEC (SAS ).则PQ =DC =DB .由QE =DE .∠DEF =90°.知EF 是DQ 的垂直平分线.证明∠FQP ∠∠FDB (SAS ).再由EF 是DQ 的垂直平分线.可得结论.【解答】证明(1)∠∠∠ACB =90°.∠ABC =30°.∠∠A =90°﹣30°=60°.同理∠EDF =60°.∠∠A =∠EDF =60°.∠AC ∠DE .∠∠DMB =∠ACB =90°.∠D 是Rt∠ABC 斜边AB 的中点.AC ∠DM .∠BM BC =BD AB =12. 即M 是BC 的中点.∠EP =CE .即E 是PC 的中点.∠ED ∠BP .∠∠CBP =∠DMB =90°.∠∠CBP 是直角三角形.∠BE =12PC =EP ; ∠∠∠ABC =∠DFE =30°.∠BC ∠EF .由∠知:∠CBP =90°.∠BP ∠EF .∠EB=EP.∠EF是线段BP的垂直平分线.∠PF=BF.∠∠PFE=∠BFE=30°;(2)如图2.延长DE到Q.使EQ=DE.连接CD.PQ.FQ.∠EC=EP.∠DEC=∠QEP.∠∠QEP∠∠DEC(SAS).则PQ=DC=DB.∠QE=DE.∠DEF=90°∠EF是DQ的垂直平分线.∠QF=DF.∠CD=AD.∠∠CDA=∠A=60°.∠∠CDB=120°.∠∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP.∠∠FQP∠∠FDB(SAS).∠∠QFP=∠BFD.∠EF是DQ的垂直平分线.∠∠QFE=∠EFD=30°.∠∠QFP+∠EFP=30°.∠∠BFD+∠EFP=30°.考点4:勾股定理及其逆定理12.(2021·四川凉山彝族自治州·中考真题)如图.ABC中.∠=︒==.将ADE沿DE翻折.使点A与点B重合.则CE的长为90,8,6ACB AC BC()A.198B.2C.254D.74【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10.再利用折叠的性质得到AE=BE.AD=BD=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中根据勾股定理可得到x2=62+(8-x)2.解得x.可得CE.【详解】解:∠∠ACB=90°.AC=8.BC=6.∠AB22AC BC+∠∠ADE沿DE翻折.使点A与点B重合.∠AE=BE.AD=BD=12AB=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中∠BE2=BC2+CE2.∠x2=62+(8-x)2.解得x=25 4.∠CE=2584-=74.故选:D.。

特殊三角形单元检测 (困难)培优提升 答案

特殊三角形单元检测 (困难)培优提升 答案

第二章、特殊三角形单元测试(难度:困难)参考答案与试题解析一.选择题(共10小题)1.下列图标中轴对称图形的个数是()A.4个B.3个C.2个D.1个【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:图①是轴对称图形,图②是轴对称图形;图③是轴对称图形;图④不是轴对称图形,轴对称图形共3个,故选:B.【点评】此题主要考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在△ABC中,已知D为直线BC上一点,若∠ABC=α,∠BAD=β,且AB=AC=CD,则β与α之间不可能存在的关系式是()A.β=90°﹣αB.β=180°﹣αC.β=D.β=120°﹣α【分析】分点D在线段BC上,在BC延长线上,在CB延长线上讨论,根据外角和等于不相邻的两个内角和及三角形内角和定理可求β与α的等量关系式.【解答】解:当点D在线段BC上,∵∠ABC=α,CA=AB,∴∠C=∠ABC=α,∵CD=CA,∴∠ADC=∠CAD==90°﹣α,∵∠ADC=∠B+∠BAD,∴90°﹣α=α+β,即β=90°﹣α;当点D在线段BC的延长线上,同理可得:β=180°﹣α;当点D在线段CB的延长线上,同理可得:β=α﹣90°.故选:D.【点评】此题考查了等腰三角形的判定与性质以及三角形外角的性质.注意分类思想的应用是解此题的关键.3.若用反证法证明命题“四边形中至少有一个角是钝角或直角”时,则首先应该假设这个四边形中()A.至少有一个角是钝角或直角B.没有一个角是锐角C.没有一个角是钝角或直角D.每一个角都是钝角或直角【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中没有一个角是钝角或直角.故选:C.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.三角形C.等腰梯形D.正五边形【分析】针对各图形的对称轴,对各选项分析判断后利用排除法求解.【解答】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、三角形对称轴只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一个等腰三角形与一个等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.【点评】本题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解题的关键.5.如图将长方形ABCD沿EF折叠,B、C分别落在点H、G的位置,延长EH交边CD于点M.下列说法不正确的是()A.∠1<∠2B.∠2=∠3C.∠MEB=2∠2D.∠2与∠4互补【分析】过点F作FN⊥EH,垂足为N,且点N在线段EH上,根据矩形的性质可得AB ∥CD,∠B=90°,再根据折叠可得:∠B=∠GHE=90°,从而可得GH∥FN,进而可得∠1=∠MFN,即可判断A;根据角平分线和平行线的性质即可判断B和C;根据平角定义即可判断D.【解答】解:过点F作FN⊥EH,垂足为N,且点N在线段EH上,∴∠FNE=90°,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,由折叠得:∠B=∠GHE=90°,∴∠GHE=∠FNE=90°,∴GH∥FN,∴∠1=∠MFN,∵∠2=∠MFN+∠EFN,∴∠1<∠2,故A不符合题意;∵AB∥CD,∴∠2=∠FEB,由折叠得:∠FEB=∠3,∴∠2=∠3,故B不符合题意;∵∠FEB=∠3,∴∠MEB=2∠3,∵∠3=∠2,∴∠MEB=2∠2,故C不符合题意;∵ME≠EF,∴∠2≠∠EMF,∵∠4+∠EMF=180°,∴∠4与∠2不一定互补,故D符合题意;故选:D.【点评】本题考查了平行线的性质,余角和补角,等腰三角形的判定与性质,熟练掌握等腰三角形的判定与性质,以及平行线的性质是解题的关键.6.如图,在△ABC中,∠ACB=90°,∠B﹣∠A=10°,D是AB上一点,将△ACD沿CD翻折后得到△CED,边CE交AB于点F.若△DEF中有两个角相等,则∠ACD的度数为()A.15°或20°B.20°或30°C.15°或30°D.15°或25°【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【解答】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B﹣∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=180°﹣40°﹣x°=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°﹣40°﹣40°=100°,∴140﹣x=100+40+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140﹣x=40+40+x,解得x=30,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=,∴140﹣x=70+40+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【点评】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.7.在直角三角形ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,∠ABC的平分线BE交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.有以下结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】由三角形的内角和与角平分线的定义求∠AFB,由DG∥AB和BE平分∠ABC判断②,结合DG⊥DG求∠GBC与∠ABC的关系判断③,由三角形的内角和与平行线的性质判断④.【解答】解:∵AD平分∠BAC,BE平分∠ABC,∴∠BAF=∠CAF=∠BAC,∠FBA=∠CBE=∠ABC,∵∠C=90°,∴∠BAC+∠ABC=180°﹣90°=90°,∴∠F AB+∠FBA=(∠BAC+∠ABC)=45°,∴∠AFB=180°﹣(∠F AB+∠FBA)=180°﹣45°=135°,故①正确,符合题意;∵DG∥AB,∴∠BDG=∠ABC,∵∠CBE=∠ABC,∴∠BDG=2∠CBE,故②正确,符合题意;∵BG⊥DG,∴∠G=90°,∴∠GDB+∠GBD=90°,又∵∠GDB=∠ABC,∴∠ABC+∠GBD=90°,无法判定∠GBD=∠ABC,故③错误,不符合题意;又∵∠BAC+∠ABC=90°,∴∠BAC=∠GBD,∵∠ABF=∠EBC,∴∠ABF+∠BAC=∠EBC+∠GBD,∴∠BEC=∠EBG,故④正确,符合题意;故选:C.【点评】本题考查了三角形的内角和与外角和、平行线的性质、垂直的定义和角平分线的定义,整体思想的应用是判断①的关键,解题的时候要多次应用等量代换.8.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【分析】先证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,再由勾股定理得出BC2=(4+2)x2,即可得出答案.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,在△BPG和△BCG中,,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2=x2(+1)2+x2=(4+2)x2,∴===2+.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.9.如图,△ABC中,AC=DC=3,∠BAC的角平分线AD⊥BD于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5B.3C.4.5D.9【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【解答】解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=S△ABH,S△CDH=S△ABH,∵S△OBD﹣S△AOE=S△ADB﹣S△ABE=S△ADH﹣S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为×3×3=.故选:C.【点评】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.10.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.36【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH 交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,故选:A.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.二.填空题(共6小题)11.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为16.【分析】由勾股定理得AB2+AC2=BC2,=(2)2=8,则AB2+AC2+BC2=2BC2,即可得出结论【解答】解:∵Rt△ABC中,斜边BC=2,∴AB2+AC2=BC2=(2)2=8,∴AB2+AC2+BC2=2BC2=2×8=16.故答案为:16.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.12.如图,已知,∠MON=∠BAC=90°,且点A在OM上运动,点B在ON上运动,若AB=8,AC=6,则OC的最大值为4+2.【分析】取AB的中点E,连接OE,CE,利用勾股定理求出CE,再利用直角三角形斜边上中线的性质得OE的长,最后利用三角形三边关系可得答案.【解答】解:取AB的中点E,连接OE,CE,∴AE=4,在Rt△ACE中,由勾股定理得,CE===2,∵∠AOB=90°,点E为AB的中点,∴OE=AB=4,∵OC≤OE+CE,∴当点O、E、C共线时,OC最大值为4+2,故答案为:4+2.【点评】本题主要考查了勾股定理,直角三角形斜边上中线的性质等知识,熟练掌握三角形三边关系求单线段的最值是解题的关键.13.如图,已知四边形ABCD中,AB=AD=,CB=CD=,∠DAB=90°,若线段DE平分四边形ABCD的面积,则DE=.【分析】连接BD交AC于点O,证明AC垂直平分BD,利用勾股定理可求解BD=2,OC=2,再利用面积法可求解DE的长.【解答】解:连接BD交AC于点O,过D点作DM⊥BC于点M,∵AB=AD=,CB=CD=,∴A,C在BD的垂直平分线上,即AC垂直平分BD,∵∠DAB=90°,∴BD=,S△ABD=AB•AD=,∴AO=DO=BO=1,∴CO=,∴S△BCD==,∴四边形ABCD的面积=1+2=3,∵S△BCD=BC•DM=2,∴DM==,∴BM=,∵线段DE平分四边形ABCD的面积,∴S△CDE=,S△BDE=,∴BE:CE=1:3,∴BE=,∴EM=BM﹣BE=,∴DE=.故答案为:.【点评】本题主要考查线段垂直平分线,勾股定理,三角形的面积,证明AC垂直平分BD是解题的关键.14.如图,△ABC中,∠A=45°,AB=3,AC=2,若点D、E、F分别是三边AB、BC、CA上的动点,则△DEF周长的最小值为.【分析】如图,作E关于AB的对称点,作E关于AC的对称点N,连接AE,MN,MN 交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,推出△DEF的周长DE+EF+FD=DM+DF+FN,推出当点E固定时,此时△DEF的周长最小,再证明△MNA是等腰直角三角形,推出MN=AE,推出当AE的值最小时,MN的值最小,求出AE的最小值即可解决问题.【解答】解:如图,作E关于AB的对称点M,作E关于AC的对称点N,连接AE,MN,MN交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,∴△DEF的周长DE+EF+FD=DM+DF+FN,∴当点E固定时,此时△DEF的周长最小,∵∠BAC=45°,∠BAE=∠BAM,∠CAE=∠CAN,∴∠MAN=90°,∴△MNA是等腰直角三角形,∴MN=AE,∴当AE的值最小时,MN的值最小,∵AC=2,∴AK=KC=2,∵AB=3,∴BK=AB﹣AK=1,在Rt△BKC中,∠BKC=90°,BK=1,CK=2,∴BC==,∵•BC•AH=•AB•CK,∴AH=,根据垂线段最短可知:当AE与AH重合时,AE的值最小,最小值为,∴MN的最小值为,∴△DEF的周长的最小值为.【点评】本题考查了轴对称问题,解题的关键是学会利用轴对称解决最短问题.15.一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是88°,90°,99°,108°,116°.【分析】当它为顶角时,根据等腰三角形的性质,可以求得最大角是90度,如图①所示;当它是侧角时,用同样的方法,可求得最大角有4种情况.【解答】解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,此题涉及等知识点并不多,但是要分4种情况解答,因此,属于难题.16.如图,在△ABC中,∠BAC=30°,AC=4,AB=8,点D在△ABC内,连接DA、DB、DC,则DC+DB+AD的最小值是4.【分析】如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F 作FH⊥CA交CA的延长线于H.则DE=AD,则DC+DB+DA=DC+DE+EF≥CF,求出CF即可得出结论.【解答】解:如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F作FH⊥CA交CA的延长线于H.∵AD=AE,∠DAE=120°,BD=EF,∴DE=AD,∴DC+DB+DA=DC+DE+EF,∵CD+DE+EF≥CF,在Rt△ABC中,∠ACB=90°,AB=8,∠BAC=30°,∴AB=AB•cos30°=4,在Rt△AFH中,∠H=90°,AF=AB=8,∠F AH=30°,∴FH=AF=4,AH=FH=4,∴CH=AC+AH=8,∴CF===4,∴CD+DB+AD≥4,∴CF的最小值为4.故答案为:.【点评】本题考查轴对称最短问题,解直角三角形等知识,解题的关键是学会利用旋转变换,把问题转化为两点之间线段最短,属于中考填空题中的压轴题.三.解答题(共7小题)17.图①、图②、图③均是9×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求作图,保留适当的作图痕迹.(1)在图①中,画△ABC关于AC的轴对称图形,得到四边形ABCD.(2)在图②中,画EF∥BC,点E在AC上,点F在AB上,且AE=2EC.(3)在图③中,画△ABC关于BC的轴对称图形,得到四边形ACMB.【分析】(1)依据要求,根据轴对称的性质作图即可.(2)利用平行线分线段成比例定理作图即可.(3)取格点P,Q,连接PQ,过点A作BC的垂线,与PQ交于点M,连接CM,BM 即可.【解答】解:(1)如图①,四边形ABCD即为所求.(2)如图②,EF即为所求.(3)如图③,四边形ACMB即为所求.【点评】本题考查作图﹣轴对称变换、平行线分线段成比例定理,熟练掌握相关知识点是解答本题的关键.18.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在AC边上,且∠CBE=45°,BE分别交AC,AD于点B、F.(1)如图1,若AB=13,BC=10,求AF的长;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD===12,在Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH,在△CHB和△AEF中,,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,在Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.19.求证:等腰三角形两底角的平分线相等.【分析】根据等腰三角形的两底角相等可得到∠ABC=∠ACB,再根据角平分线的性质可得到∠BCE=∠CBF,从而可利用ASA判定△BCE≌△CBF,由全等三角形的对应边相等即可证得结论.【解答】已知:△ABC中,AB=AC,BF,CE分别∠ABC,∠ACB的角平分线.求证:BF=CE,即等腰三角形的两底角的平分线相等证明:∵AB=AC,∴∠ABC=∠ACB,∵BF,CE分别是∠ABC,∠ACB的角平分线,∴∠BCE=∠CBF,∵∠ABC=∠ACB,BC=BC,∴△BCE≌△CBF,∴BF=CE,即等腰三角形两底角的平分线相等.【点评】此题主要考查等腰三角形的性质以及全等三角形的判定与性质的综合运用.20.如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB 的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO =33°,∠PNO=70°,求∠QPN的度数.【分析】先根据点P与点Q关于直线OA对称可知OM是线段PQ的垂直平分线,故PM =MQ,∠PMQ=2∠PMO,根据三角形内角和定理求出∠PQM的度数,同理可得出PN =RN,故可得出∠PNR=2∠PNO,再由平角的定义得出∠PNQ的度数,由三角形外角的性质即可得出结论.【解答】解:∵点Q和点P关于OA的对称,点R和点P关于OB的对称∴直线OA、OB分别是PQ、PR的中垂线,∴MP=MQ,NP=NR,∴∠PMO=∠QMO,∠PNO=∠RNO,∵∠PMO=3 3°,∠PNO=70°∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°∴∠PMQ=66°,∠PNR=140°∴∠MQP=57°,∴∠PQN=123°,∠PNQ=40°,∴∠QPN=17°.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.21.已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【分析】延长BE交AC于M,利用三角形内角和定理,得出∠3=∠4,AB=AM,∴AC ﹣AB=AC﹣AM=CM.再利用∠4是△BCM的外角,再利用等腰三角形对边相等,CM=BM利用等量代换即可求证.【解答】证明:延长BE交AC于M∵BE⊥AE,∴∠AEB=∠AEM=90°在△ABE中,∵∠1+∠3+∠AEB=180°,∴∠3=90°﹣∠1同理,∠4=90°﹣∠2∵∠1=∠2,∴∠3=∠4,∴AB=AM∵BE⊥AE,∴BM=2BE,∴AC﹣AB=AC﹣AM=CM,∵∠4是△BCM的外角∴∠4=∠5+∠C∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5∴3∠C=∠4+∠5=2∠5+∠C∴∠5=∠C∴CM=BM∴AC﹣AB=BM=2BE【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,此题的关键是作好辅助线,延长BE交AC于M,利用三角形内角和定理,三角形外角的性质,考查的知识点较多,是一道难题.22.在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.(1)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系,并证明你的猜想.(2)当点D在直线BC上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,求∠CDE的度数(直接写出结果).【分析】(1)设∠B=x,∠ADE=y,根据已知等量求得∠C与∠AED,再通过三角形的外角性质求得∠CDE,通过三角形的内角和定理求得∠BAD,便可得出结论;(2)分四种情形画出图形分别求解可得结论.【解答】解:(1)结论:∠BAD=2∠CDE.理由如下:设∠B=x,∠ADE=y,∵∠B=∠C,∴∠C=x,∵∠AED=∠ADE,∴∠AED=y,∴∠CDE=∠AED﹣∠C=y﹣x,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣2y,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=180°﹣x﹣x﹣(180°﹣2y)=2(y﹣x),∴∠BAD=2∠CDE;(2)当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:当点E在线段AC上时,与①相同,∠CDE=12.5°;当点E在CA的延长线上时,如图2,在AC边上截取AE′=AE,连接DE′,∵∠ADE=∠AED,∴AE=AD=AE′,∴∠ADE=∠AE′D,由①知,∠CDE′=12.5°,∴∠ADE+∠ADE′=∠AED+∠AE′D,∵∠ADE+∠ADE′+∠AED+∠AE′D=180°,∴∠ADE+∠ADE′=∠AED+∠AE′D=90°,∴∠CDE=90°+12.5°=102.5°.如图3中,当点D在CB的延长线上时,同法可得∠CDE′=12.5°,∠CDE=77.5°综上所述:∠CDE的度数为12.5°或102.5°或77.5°.【点评】本题主要考查了三角形的内角和定理,三角形性质的外角定理,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD =3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若P A=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.【点评】本题考查了等腰三角形的性质、勾股定理,解决本题的关键是动点运动到不同位置形成不同的等腰三角形.。

【期末优化训练】浙教版2022-2023学年八上数学第2章 特殊三角形 测试卷1(解析版)

【期末优化训练】浙教版2022-2023学年八上数学第2章 特殊三角形 测试卷1(解析版)

【期末优化训练】浙教版2022-2023学年八上数学第2章特殊三角形测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】A【解析】A、不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意.故答案为:A.2.判断下列几组数据中,可以作为直角三角形的三条边的是()A.6,15,17B.7,12,15C.13,15,20D.7,24,25【答案】D【解析】直角三角形的三条边满足勾股定理的逆定理:两条直角边的平方和等于斜边的平方,要判断三个数是否能是勾股数,只要验证一下,两个较小的数的平方和是否等于最大数的平方,等于就是直角三角形,否则就不是。

A,62+152≠172,不符合;B,72+122≠152,不符合;C,132+152≠202,不符合;D,72+242=252,符合.故选D.3.下列命题的逆命题是假命题的是()A.直角三角形两锐角互余B.全等三角形对应角相等C.两直线平行,同位角相等D.角平分线上的点到角两边的距离相等【答案】B【解析】A.直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B.全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C.两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D.角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故答案为:B.4.若一个等腰三角形的一条边是另一条边的k倍,我们把这样的等腰三角形叫做“k倍边等腰三角形”.如果一个等腰三角形是“4倍边等腰三角形”,且周长为18cm,则该等腰三角形底边长为()A.12cm B.12cm或2cm C.2cm D.4cm或12cm【答案】C【解析】设该等腰三角形的较短边长为xcm(x>0),则较长边长为4xcm.①当xcm为腰时,∵x+x<4x,∴x,x,4x不能组成三角形;②当4xcm为腰时,4x,4x,x能够组成三角形,∵4x+4x+x=18,∴x=2,∴该等腰三角形底边长为2cm.故答案为:C.5.如图,一个圆柱形花瓶上下底面圆上有相对的A,B两点,现要用一根金色铁丝装饰花瓶,金色铁丝沿侧面缠绕花瓶一圈,并且经过A ,B 两点.若花瓶高16cm ,底面圆的周长为24cm ,则需要金色铁丝的长度最少为( )A .20cmB .8√13cmC .16√13cmD .40cm 【答案】D【解析】将圆柱体展开如图,点A 为展开图长方形一边的中点,BC 为底面圆周长的一半,∴BC =12cm ,在Rt △ABC 中,AB 2=AC 2+BC 2,∴AB =√AC 2+BC 2=√162+122=20cm , ∴需要金色铁丝的长度最少为20×2=40cm , 故答案为:D .6.如图,在等边△ABC 的AC ,BC 边上各取一点P ,Q ,使AP=CQ ,AQ ,BP 相较于O ,若OB=2则B 点到AQ 的距离等于( )A .1B .2C .√3D .32【答案】C【解析】 △ABC 是等边三角形∴△BAP =△ACQ =60°,AB =AC ∵在△ABP 和△ACQ 中∵AB =AC ,△BAP =△ACQ ,AP =CQ ∴△ABP△△CAQ (SAS ) ∴△ABP =△CAQ ,∵△BAQ +△CAQ =60°∴△BAQ +△ABP =60° ∵△BOQ =△BAQ +ABP ∴△BOQ =60° 如图:过点B 作BE△AQ 于点E ,∴△BEA=90°,在Rt△BEO 中,△AOE=60°, ∴△OBE=30°, ∴OE=12BO=1,∴BE=√BO 2−OE 2=√22−12=√3即B点到AQ的距离等于√3.故答案为:C.7.如图,在四边形ABCD中,△DAB=△BCD=90°,分别以四边形ABCD的四条边为边向外作四个正方形,面积分别为S1,S2,S3,S4.若S1=48,S2+S3=135,则S4=()A.183B.87C.119D.81【答案】B【解析】连接BD,∵△DAB=△BCD=90°,∴BD2=DC2+BC2=AD2+AB2,∴S3+S2=S4+S1=135;∴S4=135-48=87.故答案为:B8.如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC 于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°【答案】D【解析】∵AB=AD=DC,∠BAD=α,∴∠B=∠ADB,∠C=∠CAD=β,∵DE⊥AD,∴∠ADE=90°,∴∠CAD+∠AED=90∘∵∠CDE=γ,∠AED=∠CDE+∠C∴∠AED=γ+β∴2β+γ=90∘故答案为:D.9.如图,△ABC和△ADE都是等腰直角三角形,△BAC=△DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③△ADB=△AEB;④S四边形BCDE=12BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个【答案】C【解析】∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∵△BAD=△BAC+△CAD=90°+△CAD,△CAE=△DAE+△CAD=90°+△CAD,∴△BAD=△CAE,∴△ABD△△ACE(SAS),∴CE=BD,△ABD=△ACE,故①正确;∴△BCG+△CBG=△ACB+△ABC=90°,在△BCG中,△BGC=180°-(△BCG+△CBG)=180°-90°=90°,∴BD△CE,∴S四边形BCDE=S△BCE+S△DCE=12CE·BG+12CE·DG=12BD•CE,故④正确;由勾股定理,在Rt△BCG中,BC2=BG2+CG2,在Rt△DEG中,DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2,在Rt△BGE中,BE2=BG2+EG2,在Rt△CDG中,CD2=CG2+DG2,∴BE2+CD2=BG2+CG2+DG2+EG2,∴BC2+DE2=BE2+CD2,故⑤正确;从题干信息没有给出AC=AD,所以只有AE∥CD时,∠DAE=∠ADC=90°,无法说明AE∥CD,更不能说明CD=AD,故②错误;∵△ABD△△ACE,∴△ADB=△AEC,∵条件不足以证明△CAE≌△BAE,∴△AEC与△AEB相等无法证明,∴△ADB=△AEB不一定成立,故③错误;综上所述,正确的结论有①④⑤共3个.故答案为:C.10.如图,在平面直角坐标系中,0为坐标原点,A点坐标(6,0),B点坐标(3,-3),动点P从A点出发,沿x轴正方向运动,连接BP,以BP为直角边向下作等腰直角三角形BPC,△PBC=90°,连结OC,当OC=10时,△OCP的面积为()A.16√2B.64C.32D.36【答案】C【解析】过点C作CE△y轴于点E,过点B作BF△x轴于点F,延长FB交CE于点D,∴△OFD=△EOF=△OEC=90°,∴四边形OEDF是矩形,∴OF=DE,OE=DF,∵点B(3,-3),点A(6,0),∴OF=AF=BF=DE=3,∵△PBC是等腰直角三角形,∴PB=BC,△PBC=90°,∴△FPB+△FBP=90°,△FBP+△DBC=90°,∴△DBC=△FPB,在△FBP和△DCB中{∠BFP=∠BDC ∠FPB=∠DBC PB=BC∴△FBP△△DCB(AAS),∴BF=DC=3,PF=BD,∴CE=DE+CD=3+3=6;在△COE中OE=DF=√OC2−CE2=√102−62=8∴BD=PF=DF-BF=8-3=5,∴OP=OF+PF=3+5=8,∴S△COP=12OP·DF=12×8×8=32.故答案为:C二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.下列条件:①△C =△A -△B ;②△A :△B :△C =5△2△3;③a =35c ,b =45c ;④a△b△c =1△2:√3,则能确定△ABC 是直角三角形的条件有 个. 【答案】4【解析】①∵△C=△A -△B ,△A +△B +△C =180°,∴△A =90°,故△ABC 是直角三角形; ②∵△A :△B :△C =5:2:3,△A +△B +△C =180°,∴△A =90°,故△ABC 是直角三角形; ③∵a= 35 c ,b= 45c ,∴a 2+b 2=c 2,∴△c=90°,故△ABC 是直角三角形;④∵a :b :c =1:2:√3,∴a 2+c 2=b 2,∴△B=90°,故△ABC 是直角三角形. 故答案为:4.12.如图,把长方形纸条依次沿着线段EF 、HI 折叠,且EF ∥HI , 得到“Z”字形图案.已知∠DFE =60°,AE =2cm ,要使点H ,点K 分别在AD 和EF 的延长线上(不与D ,F 重合),则AB = cm .【答案】10【解析】如图,连接DH ,FK ,点H ,点K 分别在AD 和EF 的延长线上(不与D ,F 重合),点M 为EH 延长线上一点.在长方形纸条ABCD 中,∠A =∠ADC =90°,AB ∥CD , ∴∠DFE =∠BEF =60°,EH ∥FI , 由折叠可知:∠GEF =∠BEF =60°, ∴∠AEG =60°, ∴∠AHE =30°,∴AE =12EH ,∵EH ∥FI ,∴∠EHI +∠GEF =180°, ∴∠EHI =120°, ∴∠MHI =60°,由折叠可知:∠JHI =∠MHI =60°, ∴∠EHK =60°, ∵∠GEF =60°, ∴∠EKH =60°,∴ΔEHK 是等边三角形, ∴EH =HK =EK ,∵AE =12EH ,AE =2cm∴EH =HK =EK =4cm ,由折叠可知:AE +EH +HK =AB , ∴AB =2+4+4=10cm , 故答案为:10.13.如图,在△ABC 中,△C =90°,AC =BC ,AD 平分△CAB 交BC 于D ,DE△AB 于E ,且AB =8cm ,则△BED 的周长是 .【答案】8cm【解析】∵△C =90°,AD 平分△CAB ,DE△AB , ∴CD =DE ,在△ACD 和△AED 中, {AD =AD CD =DE,∴△ACD△△AED (HL ), ∴AC =AE ,∴△BED 的周长=DE+BD+BE , =BD+CD+BE , =BC+BE , =AC+BE , =AE+BE , =AB ,∵AB =8cm ,∴△BED 的周长是8cm. 故答案为:8cm. 14.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是 .【答案】76【解析】依题意,设“数学风车”中的四个直角三角形的斜边长为x , 则x 2=122+52=169, 解得:x =13,∴“数学风车”的外围周长(13+6)×4=76. 故答案为:76.15.如图,在Rt△ABC 中,AC =BC =1,D 是斜边AB 上一点(与点A ,B 不重合),将△BCD 绕着点C 旋转90°到△ACE ,连结DE 交AC 于点F ,若△AFD 是等腰三角形,则AF 的长为 .【答案】12或√2−1【解析】∵Rt△ABC 中,AC=BC=1, ∴△CAB=△B=45°,∵△BCD 绕着点C 旋转90°到△ACE , ∴△ECD=90°,△CDE=△CED=45°,①AF=FD 时,△FDA=△FAD=45°, ∴△AFD=90°,△CDA=45°+45°=90°=△ECD=△DAE , ∵EC=CD ,∴四边形ADCE 是正方形, ∴AD=DC ,∴AF= 12AC= 12×1= 12;②AF=AD 时,△ADF=△AFD=67.5°,∴△CDB=180°-△ADE -△EDC=180°-67.5°-45°=67.5°, ∴△DCB=180°-67.5°-45°=67.5°, ∴△DCB=△CDB , ∴BD=CB=1,∴AD=AB -BD= √2−1, ∴AF=AD= √2−1,故答案为: 12或 √2−1.16.如图,已知△ABC 中,△ACB=90°,O 为AB 的中点,点E 在BC 上,且CE=AC ,△BAE=15°,则△COE= 度.【答案】75【解析】∵△ACB=90°,CE=AC ,∴△CAE=△AEC=45°, ∵△BAE=15°,∴△CAB=60°,∴△B=30°,∵△ACB=90°,O 为AB 的中点,∴CO=BO=AO= 12AB ,∴△AOC 是等边三角形,△OCB=△B=30°,∴AC=OC=CE , ∴△COE=△CEO= 12×(180°-30°)=75°.故答案为:75.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.在如图所示的6×6的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为6个平方单位的等腰三角形: (2)请你在图2中画一个以格点为顶点,一条直角边边长为√10的直角三角形. (3)请你在图3中画出△ABC 的边BC 上的高AD ,△ACB 的角平线CE 【答案】(1)解:如图(1)解:如图 (2)解:如图, (3)解:如图AD ,CE 就是所求作的图形.18.如图,ΔABC 为任意三角形,以边AB 、AC 为边分别向外作等边三角形ABD 和等边三角形ACE ,连接CD 、BE ,CD 、BE 相交于点P.(1)试说明:ΔDAC ≌ΔBAE ; (2)求∠BPC 的度数. 【答案】(1)解:∵ΔABD 和ΔACE 都是等边三角形, ∴AD =AB ,AC =AE ,∠DAB =∠EAC =60°, ∴∠DAC =∠BAE =60°+∠BAC , 在ΔDAC 和ΔBAE 中,{AD =AB∠DAC =∠BAE AC =AE,∴ΔDAC ≌ΔBAE(SAS).(2)解:由(1)得∠ADC =∠ABE ,∴∠BPC =∠PBD +∠PDB =∠ABD +∠ABE +∠PDB =∠ABD +∠ADC +∠PDB =∠ABD +∠ADB , ∵∠ABD =∠ADB =60°, ∴∠BPC =120°. 19.已知 △ABC , AB =AC ,点 D 在线段 BC 上,点 E 在线段 AC 上.设 ∠BAD =α , ∠CDE =β .(1)如果 ∠B =60° , α=20° , β=10° 那么 △ADE 是什么特殊三角形?请说明理由. (2)猜想 α 与 β 之间有什么关系时,使得 AD =AE ,并进行证明. 【答案】(1)解: △ADE 等腰三角形,理由是: ∵AB =AC , ∠B =60° , α=20° , ∴∠BAC =∠B =∠C =60° ∴∠DAE =60°−α=40° . ∵∠ADC =∠B +α=80° , ∴∠ADE =∠ADC −β=70° .∵∠AED =∠C +β=70° , ∴∠ADE =∠AED ∴AD =AE∴△ADE 是等腰三角形(2)解:要使 AD =AE ,则需 ∠ADE =∠AED , ∵∠ADE =∠ADC −β=∠B +α−β , ∠AED =∠C +β ,又∵∠B =∠C , ∠ADE =∠AED , ∴∠B +α−β=∠C +β . ∴α=2β .20.如图,在等边△ABC 中,AB =AC =BC =10厘米,DC =4厘米,如果点M 以3厘米/秒的速度运动从点C 到点B 运动.(1)经过多少秒后,△CDM 是等边三角形?(2)若点N 在线段BA 上由B 点向A 点运动.点N 和点M 同时出发,若点N 的运动速度与点M 的运动速度相等.当两点的运动时间为多少时,△BMN 是一个直角三角形?(3)若点N 的运动速度与点M 的运动速度不相等,点N 从点B 出发,点M 以原来的运动速度从点C 同时出发,都是顺时针沿△ABC 三边运动,经过20秒,点M 与点N 第一次相遇,则点N 的运动速度是多少厘米/秒? 【答案】(1)解:设经过t 秒后,△CDM 是等边三角形,则CM=3t , ∴CM =DC =4, ∴3t =4,∴t =43,答:经过43秒后,△CDM 是等边三角形;(2)解:设运动时间为t 秒,△BMN 是直角三角形有两种情况: ①当∠NMB =90°时, ∵∠B =60°,∴∠BNM =90°−∠B =90°−60°=30°, ∴BN =2BM ,∴3t =2×(10−3t),∴t =209;②当∠BNM =90°时, ∵∠B =60°,∴∠BMN =90°−∠B =90°−60°=30°, ∴BM =2BN ,∴10−3t =2×3t ,∴t =109,综上,当t =209或t =109时,△BMN 是直角三角形;(3)解:分两种情况讨论:若点M 运动速度快,则3×20−10=20V N , 解得:V N =2.5;若点N 的运动速度快,则20V N −20=3×20, 解得:V N =4;答:点N的运动速度是2.5厘米/秒或4厘米/秒.21.已知△ACB为直角三角形,∠ACB=90°,作CD⊥AB,AF平分∠CAB,点M、N分别为AC、EF的中点,且AC=6,BC=8.(1)求证:CE=CF;(2)求证:MN∥AB;(3)请你连接DN,并求线段DN的长.【答案】(1)证明:∵∠ACB=90°,∴∠CAF+∠AFC=90°,∵CD⊥AB∴∠ADC=90°,∴∠EAD+∠AED=90°,∵∠CEF=∠AED,∴∠EAD+∠CEF=90°,∵AF平分∠CAB,∴∠CAF=∠EAD,∴∠CEF=∠AFC,∴CE=CF;(2)证明:如图,连接CN,由(1)可知△CEF是等腰三角形,∵N为EF的中点,∴CN⊥EF,∴∠ANC=90°,∴ΔACN是直角三角形,∵M是AC的中点,∴MN=12AC.∵AM=12AC∴AM=MN,∴∠MAN=∠MNA.∵AF平分∠CAB∴∠MAN=∠NAD,∴∠MNA=∠NAD,∴MN∥AD;(3)解:延长CN交AB于点G,连接DN,∵MN ∥AG ,M 是 AC 的中点,∴N 是 CG 的中点,∴MN =12AG , 在 Rt △CDG 中, DN =12CG ; ∵∠ACB =90° , AC =6,BC =8 ,∴AB =√AC 2+BC 2=√82+62=10 ,∵S △ABC =12AC ⋅BC =12AB ⋅CD , 即: 6×8=10CD ,∴CD =245, ∴AD =√AC 2−CD 2=√62−(245)2=185 , ∵MN =12AC , ∴AG =AC =6,∴DG =AG −AD =6−185=125, ∴CG =√CD 2+DG 2=√(245)2+(125)2=12√55, ∴DN =12CG =65√5 . 22.如图,△ABC 是边长为6的等边三角形,三边上分别有点E 、D 、F ,使得AE =BD =CF ,过点E作EP△DF ,垂足为点P(1)求证:△BDE△△CFD ;(2)求△DEP 的度数;(3)当点E 、D 、F 分别在三边BA 、CB 及AC 的延长线上时,过点E 作EP△DF ,垂足为点P ,若AE =BD =CF =2,若△BDE 的周长为19,求DP 的长.【答案】(1)证明:∵△ABC 是等边三角形,∴△B=△C=60°,AB=BC ,∵AE=BD=CF ,∴AB -AE=BC -BD ,即BE=CD ,∴△BDE△△CFD (SAS );(2)解:由(1)得△BDE△△CFD ,∴△BED=△CDF ,又∵△EDC=△B+△BED,∴△ EDP+△CDF=△B+△BED,∴△ EDP=△B=60°,∵EP△DF,∴△EPD=90°,∴△ DEP=30° ;(3)解:∵△ABC边长为6,AE=BD =2,∴BE=AB+AE=8,又∵△BDE的周长为19,∴ DE=19-BD-BE=9,∵△ABC是等边三角形,∴△ABC=△ACB=60°,BA=CB,∴△EBD=180°-△ABC=180°-△ACB=△DCF=120°,又∵BD=AE,∴BA+AE=CB+BD,即BE=CD,∴△BDE△△CFD(SAS),∴△DEB=△FDC,∵△EBC=△EDB+△DEB=60°,∴△EDB+△FDC=60°,即△EDP=60°,又∵EP△DF ,∴△EPD=90°,∴△ DEP=30°,∴DE=2DP,∴DP= 4.5.23.定义:过三角形的顶点作一条射线与其对边相交,将三角形分成两个三角形,若得到的两个三角形中有等腰三角形,这条射线就叫做原三角形的“和谐分割线”.(1)下列三角形中,不存在“和谐分割线”的是(只填写序号).①等边三角形;②顶角为150°的等腰三角形;③等腰直角三角形.(2)如图1,在△ABC中,△A=60°,△B=40°,直接写出△ABC被“和谐分割线”分得到的等腰三角形顶角的度数;(3)如图2,△ABC中,△A=30°,CD为AB边上的高,BD=4,E为AD的中点,过点E作直线l交AC于点F,作CM△l于M,DN△l于N.若射线CD为△ABC的“和谐分割线”.求CM+DN 的最大值.【答案】(1)①(2)解:∵∠A=60°,∠B=40°,∴∠ACB=180°−60°−40°=80°,如图,当EC=EA时,△AEC=60°,当FC=FB时,△BFC=100°,当BC=BG时,△B=40°.如图,当AC=AR时,△CAR=20°,当CA=CW时,△C=80°,如图,当BC=BQ时,△CBQ=20°,综上所述,满足条件的等腰三角形的顶角的度数为:20°,40°,60°,80°或100°;(3)解:如图2中,作AG△l于点G.∵CD为AB边上的高,∴△CDB=△CDA=90°.∴△ACD=90°﹣△A=60°.∴△CDA不是等腰三角形.∵CD为△ABC的“友好分割线”,∴△CDB和△CDA中至少有一个是等腰三角形.∴△CDB是等腰三角形,且CD=BD=4.∵△BAC=30°,∴AC=2CD=8.∵DN△l于N,∴△DNE=△AGE=90°.∵E为AD的中点,∴DE=AE.在△DNE和△AGE中,{∠AGE=∠DNE DE=AE∠DEN=∠AEG∴△DNE△△AGE(ASA),∴DN=AG.在Rt△AGF和Rt△CMF中,△CMF=△AGF=90°,∴CM≤CF,AG≤AF,∴CM+AG≤CF+AF,即CM+AG≤AC,∴CM+DN≤8,∴CM+DN的最大值为8.【解析】(1)根据“友好分割线”的定义可知,如图,等腰直角三角形,顶角为150°的等腰三角形存在“友好分割线”.等边三角形不存在“友好分割线”.故答案为:①;24.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=√3,则该三角形的面积为;(3)如图,△ABC中,△ABC=120°,△ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连接CD,AD.若△ABD为“方倍三角形”,且AP=√2,求△PDC的面积.(2)√22(3)解:由题意可知:△ABP△△DBP,∴BA=BD,△ABP=△DBP,根据“方倍三角形”定义可知:BA2+BD2=2AD2=2BA2,∴AD=AB=BD,∴△ABD为等边三角形,△BAD=60°,∴△ABP=△DBP=30°,∴△PBC=90°,∵△CPB=45°,∴△APB=180°﹣45°=135°,∴△DPC=90°,∵△ABC=120°,△ACB=45°,∴△BAC=15°,∴△CAD=45°,∴△APD为等腰直角三角形,∴AP=DP=√2,∴AD=2,延长BP交AD于点E,如图,∵△ABP=△PBD,∴BE△AD,PE=12AD=AE=1,∴BE=√AB2−AE2=√4−1=√3,∴PB=BE﹣PE=√3﹣1,∵△CPB=△PCB=45°,∴△PBC为等腰直角三角形,∴PC=√2PB=√6﹣√2,∴S△PDC=12×PC•PD=12×(√6﹣√2)× √2=√3﹣1.【解析】(1)对于①等边三角形,三边相等,设边长为a,则a2+a2=2a2,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:a2+b2=c2,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;(2)设Rt△ABC其余两条边为a,b,则满足a2+b2=3,根据“方倍三角形”定义,还满足:a2+3=2b2,联立解得{a=1b=√2,则Rt△ABC的面积为:√22;故答案为:√22;。

冀教版数学八年级上册-第十七章-特殊三角形-巩固练习(含答案解析)

冀教版数学八年级上册-第十七章-特殊三角形-巩固练习(含答案解析)

A(3,4).连接 OA,若在直线 a 上存在点 P,使△AOP 是等腰三角形,那么所有满足条件的
点 P 的坐标是________.
11.若等腰三角形的顶角为
,则它腰上的高与底边的夹角是________度.
12.现有 A、B 两个大型储油罐,它们相距 2km,计划修建一条笔直的输油管道,使得 A、B
【解析】【解答】解:当腰为 6 时,则三角形的三边长分别为 6、6、5,满足三角形的三边 关系,周长为 17; 当腰为 5 时,则三角形的三边长分别为 5、5、6,满足三角形的三边关系,周长为 16; 综上可知,等腰三角形的周长为 16 或 17. 故选 C. 【分析】分腰为 6 和腰为 5 两种情况,再求其周长. 6.【答案】C 【解析】【解答】解:由题意可得, 3cm 作腰,6cm 作底或 12cm 作底,则三边分别为 3cm,3cm,6cm,不能构成三角形, 3cm,3cm,12cm,不能构成三角形; 6cm 作腰,3cm 作底或 12cm 作底,则三边分别为 6cm,6cm,3cm,能构成三角形, 6cm,6cm,12cm,不能构成三角形; 12cm 作腰,3cm 或 6cm 作底,则三边分别为 12cm,12cm,3cm,能构成三角形, 12cm,12cm,6cm,能构成三角形, 故最多能组成 3 个等腰三角形, 故选:C. 【分析】由题意,可分情况:3cm 作腰,6cm 作底或 12cm 作底;6cm 作腰,3cm 作底或 12cm 作底;12cm 作腰,3cm 或 6cm 作底;再根据三角形的三边关系定理:任意两边之和 大于第三边,判定等腰三角形的个数. 7.【答案】B
的关键是学生熟练掌握三角形内角和定理.
二、填空题
10.【答案】 (8,4)或(-2,4)或(-3,4)或(- ,4) 【解析】【解答】∵A(3,4), ∴OB=3,AB=4,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊三角形(习题)
➢例题示范
例1:已知:如图,在四边形ABCD中,∠B=∠D=60°,AB=BC,AD=CD,点E 在边BC上,点F在边CD上,且∠EAF=60°.
求证:△AEF是等边三角形.
【思路分析】
①读题标注:
60°
60°60°
F
E
D C
B
A
②梳理思路:
要证△AEF是等边三角形,已知∠EAF=60°,只需证△AEF是等腰三角形即可,考虑证AE=AF,可以把这两条线段放在两个三角形中证全等.
观察图形,连接AC,可以把线段AE和AF分别放在△ABE和
△ACF中.结合题中条件∠B=∠D=60°,AB=BC,AD=CD,可知△ABC和△ACD 均为等边三角形,所以∠B=∠ACF=60°,
∠BAC=∠EAF=60°,因此∠BAE=∠CAF,进而得证△ABE≌△ACF,证明成立.【过程书写】
证明:如图,连接AC.
∵∠B=∠D=60°,AB=BC,AD=CD
∴△ABC和△DAC是等边三角形
∴AB=AC,∠BAC=60°,∠ACF=60°
∴∠1+∠3=60°,∠B=∠ACF
∵∠EAF=60°
∴∠2+∠3=60°
∴∠1=∠2
∴△ABE≌△ACF(ASA)
∴AE=AF
∴△AEF是等边三角形
➢巩固练习
1.如图,以正方形ABCD的边AB为一边向外作等边三角形ABE,连接DE,
则∠BED的度数为________.F
E
D C
B
A
32
1 60°
60°60°
F
E
D C
B
A
D
E
C B
A
2. 如图,在△ABC 的外部,分别以AB ,AC 为直角边,点A 为直角顶点,作等
腰直角三角形ABD 和等腰直角三角形ACE ,CD 与BE 交于点P ,则∠BPC 的度数为________.
P
E
D
C B A
3. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,DE 是线段AB 的垂直平分线,
交AB 于点D ,交AC 于点E ,若DE =2,则AC 的长是________.
E
D C
B A 4. 如图,在△AB
C 中,∠ACB =90°,
D 在BC 上,
E 为AB 的中点,AD ,CE 相
交于F ,且AD =DB .若∠B =20°,则∠DFE 的度数为________.
F
E
D
C B
A
5. 已知:如图,在△ABC 中,AB =AC ,∠B =15°,过C 作CD ⊥AB ,交BA 的
延长线于点D .求证:AB =2CD .
D
C
B
A
6. 已知:如图,在△ABC 中,∠BAC >90°,BD ,CE 分别为AC ,AB 边上的高,
F 为BC 的中点,连接DE ,DF ,EF . 求证:∠FED =∠FDE .
7. 已知:如图,在△ABC 中,AC =BC ,∠ACB =90°,CD ⊥AB 于点D ,E 为AC
的中点,BE 交CD 于点G ,EF ⊥BE 交AB 于点F .求证:EF =EG .
G F E
D C B A F E
D
A
➢思考小结
1.在做几何题目的时候,看到“直角+30°”,考虑30°角所对的直角边是
___________________;看到“直角+中点”,考虑直角三角形_____________________________;看到“等腰+一线”,考虑等腰三角形___________.
2.根据上面的思考方式研究等腰直角三角形的性质:
如图,在等腰直角三角形ABC中,CD⊥AB于点D,如果从等腰的角度出发,看到“等腰+高线”,考虑等腰三角形_________,所以得到AD=______;如果从直角的角度出发,看到“直角+中点”,考虑_____________________________,可以得到CD=______.
综上可得,对于图中的等腰直角三角形ABC我们可以得到:CD=______=_______.
C
D
【参考答案】
1.45°
2.90°
3. 6
4.60°
5.证明:如图
∵AB=AC
∴∠B=∠ACB
∵∠B=15°
∴∠ACB=15°
∵∠DAC是△ABC的一个外角,
∴∠DAC=∠B+∠ACB
=15°+15°
=30° ∵CD ⊥AB ∴∠D =90°
在Rt △ADC 中,∠D =90°,∠DAC =30°
∴CD =1
2AC
∴CD =1
2
AB
即AB =2CD 6. 证明:如图
∵BD ,CE 分别为AC ,AB 边上的高 ∴∠BDC =∠CEB =90° ∵F 是BC 的中点
∴DF =12BC ,EF =1
2
BC
∴DF =EF ∴∠FED =∠FDE 7. 证明:如图,连接DE .
∵AC=BC ,∠ACB=90° ∴∠A =45° ∵CD ⊥AB ∴∠ADC =90°,AD =
12
AB ∴CD =12
AB
∴AD =CD
∵E 为AC 中点
∴DE =1
2
AC=AE ,DE ⊥AC ,∠1=45°
∴∠AED =90°,∠A =∠1 ∴∠2+∠DEF =90° ∵EF ⊥BE ∴∠3+∠DEF =90° ∴∠2=∠3
在△AEF 和△DEG 中
123A EA ED ∠=∠⎧⎪
=⎨⎪∠=∠⎩
321G
F
E D
C
B
A
∴△AEF≌△DEG(ASA)
∴EG=EF
思考小结:
1. 斜边的一半,斜边上的中线等于斜边的一半,三线合一
2. 三线合一,BD,直角三角形斜边上的中线等于斜边的一半,
1
AB,AD,BD
2。

相关文档
最新文档