特殊三角形测试题
【浙教版】八年级数学上:第二章-特殊三角形单元测试题(含答案)

第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M 是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
浙教版八年级上《第2章特殊三角形》自我评价测试含答案

第2章自我评价一、选择题(每小题3分,共30分)1.下列轴对称图形中,对称轴条数最多的是(D)A. 线段B. 角C. 等腰三角形D. 等边三角形2.以下列各组数为边长的三角形中,能组成直角三角形的是(B)A.3,4,6 B.15,20,25C.5,12,15 D.10,16,253.一个等腰三角形的两边长分别为5,6,则它的周长为(D)A.16 B.17C.18 D.16或174.若等腰三角形有一个角为40°,则它的顶角为(C)A.40°B.100°C.40°或100°D.无法确定5.如图,将直角边AC=6 cm,BC=8 cm的直角△ABC纸片折叠,使点B与点A重合,折痕为DE,则CD的长为(C)A. 254 B.223C. 74 D.53(第5题)(第6题)6.如图,在△ABC中,AC=DC=DB,∠ACD=88°,则∠B等于(C)A.46°B.44°C.23°D.22°7.在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别为a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=(C)(第7题)A.a+b B.b+cC.a+c D.a+b+c【解】∵∠ACB+∠BAC=90°,∠ACB+∠DCE=90°,∴∠BAC=∠DCE,故可证得△ABC≌△CDE,∴AB=CD.同理可证得△PQM≌△MFN,∴PQ=MF.∵CD2+DE2=AB2+DE2=a,MF2+FN2=PQ2+FN2=c,又∵S1=AB2,S2=DE2,S3=PQ2,S4=FN2,∴S1+S2+S3+S4=AB2+DE2+PQ2+FN2=a+c.8.如图,所有的四边形都是正方形,其中最大的正方形的边长为15 cm,正方形A的边长为11 cm,B的边长为8 cm,C的边长为5 cm,则正方形D的边长为(C)A.14 cm B.4 cmC.15 cm D.3 c m【解】设正方形D的边长为x.据勾股定理,得S A+S B+S C+S D=S大正方形,∴112+82+52+x2=152,解得x=±15(负的舍去),∴正方形D的边长为15.(第8题)(第9题)9.用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案如图所示,已知大正方形的面积为49,小正方形的面积为9,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是(D)A.x2+y2=49 B.x-y=3C.2xy+9=49 D.x+y=13【解】在Rt△ACB中,x2+y2=AB2=49.∵CD2=9,∴CD=3(-3舍去),∴x-y=3,∴(x-y)2=9,∴x2+y2-2xy=9,∴2xy+9=x2+y2=49,∴2xy=40,∴x2+y2+2xy=89,(x+y)2=89,∴x+y=89≠13,故选D.10.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是(D)(第10题)A.①②③B.①②④C .②③④D .①③④【解】 ①中,作∠ABC 的平分线与AC 交于点D ,则△ABD 和△BCD 为等腰三角形; ②不能分成两个小的等腰三角形;③作∠BAC 的平分线AD ,则△ABD 和△ACD 为等腰三角形;④过点A 作∠BAD =36°交BC 于点D ,则△ABD 和△ACD 为等腰三角形. 二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C =90°,∠A =37°,则∠B =__53°__.12. 已知直角三角形的斜边长是6,则以斜边的中点为圆心,斜边上的中线为半径的圆的面积是__9π__.13. 若直角三角形的两直角边长分别为a ,b ,且满足a 2-6a +9+|b -4|=0,则该直角三角形的斜边长为__5__.14.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条路,他们仅仅少走了__4__步路(假设2步为1 m),却踩伤了花草.(第14题) (第15题)15.如图,已知D 为等边三角形ABC 内的一点,DB =DA ,BF =AB ,∠1=∠2,则∠BFD =30°. 【解】 连结CD ,可证明△BCD ≌△BFD ≌△ACD ,故可得∠BFD =∠BCD =∠ACD =12×60°=30°.16. 命题“等腰三角形两腰上的高相等”的逆命题是如果一个三角形两边上的高相等,那么这个三角形是等腰三角形,这个逆命题是__真__命题.(第17题)17.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于点D ,M 为AD 上任意一点,则MC 2-MB 2等于45.18.如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连结DM .在不添加任何辅助线和字母的情况下,图中的等腰三角形有△MBD ,△MDE ,△EAD .(第18题) (第19题)19.如图,在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2的值等于__2π__.【解】 S 1=12π·⎝⎛⎭⎫AC 22=π8AC 2,S 2=12π·⎝⎛⎭⎫BC 22=π8BC 2,∴S 1+S 2=π8(AC 2+BC 2)=π8AB 2=2π.(第20题)20.如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推,直到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为__15.5__. 【解】 ∵AB =BC =1,∠ABC =90°, ∴CA =12+12=2=DC .同理,DA =(2)2+(2)2=2=DE ,EA =22+22=2 2=EF ,F A =(2 2)2+(2 2)2=4=FG .∴S △ABC =12AB ·BC =12×1×1=12,S △ACD =12AC ·CD =12×2×2=1,S △ADE =12AD ·DE =12×2×2=2,S △AEF =12AE ·EF =12×2 2×2 2=4,S △AFG =12AF ·FG =12×4×4=8.∴S △A BC +S △ACD +S △ADE +S △AEF +S △AFG =12+1+2+4+8=1512.三、解答题(共40分)(第21题)21.(6分)在一块平地上,张大爷家房屋前9 m 远处有一棵大树.在一次强风中,这棵大树从离地面6 m 处折断倒下,量得倒下部分的长是10 m .大树倒下时会砸到张大爷的房子吗?请你通过计算,分析后给出正确的回答. 【解】 不会.理由如下: 如解图,在(第21题解)Rt △ABC 中,∠C =90°,AB =10 m ,AC =6 m .由勾股定理,得BC =AB 2-AC 2=100-36=8(m). ∵8<9,∴大树不会砸到张大爷的房子.(第22题)22.(6分)如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°. (1)求∠DAC 的度数; (2)求证:DC =AB . 【解】 (1)∵AB =AC , ∴∠C =∠B =30°.∵∠C+∠BAC+∠B=180°,∴∠BAC=180°-30°-30°=120°.∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°.(2)∵∠DAB=45°,∠B=30°,∴∠ADC=∠B+∠DAB=75°.∵∠DAC=75°,∴∠DAC=∠ADC,∴DC=AC.∵AB=AC,∴DC=AB.23.(8分)在△ABC中,AB边上的中线CD=3,AB=6,AC+BC=8.求△ABC的面积.(第23题解)【解】如解图,在△ABC中,CD是AB边上的中线.∵CD=3,AB=6,∴AD=DB=3,∴CD=AD=DB,∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2=36.又∵AC+BC=8,∴AC2+2AC·BC+BC2=64,∴2AC·BC=64-(AC2+BC2)=64-36=28.又∵S△ABC=12AC·BC,∴S△ABC =12×282=7.(第24题)24.(8分)一牧童在A处牧马,牧童的家在B处,A,B处距河岸的距离分别是AC=500 m,BD=700 m,且C,D两地间的距离也为500 m,天黑前牧童从点A将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来;(2)问:他至少要走多少路?【解】(1)如解图①,作点A关于河岸的对称点A′,连结BA′交河岸于点P,则PB+P A=PB+P A′=BA′最短,故牧童应将马赶到河边的点P处.(第24题解)(2)如解图②,过点A′作A′B⊥BD交BD的延长线于点B′.易知A′C∥B′D,A′B′∥CD,∴四边形A′B′DC是平行四边形,∴B′A′=CD=500 m,B′D=A′C=AC=500 m.在Rt△BB′A′中,BB′=BD+DB′=1200 m,A′B′=500 m,∴BA′=12002+5002=1300(m).答:他至少要走1300 m路.25.(12分)某数学兴趣小组开展了一次活动,过程记录如下:设∠BAC=θ(0°<θ<90°).现把不同长度的小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在两射线上.活动一:如图①,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒.(第25题①)数学思考:(1)小棒能无限摆下去吗?答:__能__(填“能”或“不能”);(2)设AA1=A1A2=A2A3=1.①θ=__22.5__度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2),求此时a2,a3的值,并直接写出a n的值(用含n的式子表示);活动二:如图②,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.(第25题②)数学思考:(3)若已经向右摆放了3根小棒,则θ1=__2θ__,θ2=__3θ___,θ3=__4θ___(用含θ的式子表示); (4)若只能摆放4根小棒,求θ的范围.【解】 (2)②∵AA 1=A 1A 2=A 2A 3=1, A 1A 2⊥A 2A 3, ∴A 1A 3=2,AA 3=1+ 2. 又∵A 2A 3⊥A 3A 4,∴A 1A 2∥A 3A 4. 同理,A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6, ∴a 2=A 3A 4=AA 3=1+2, a 3=AA 3+A 3A 5=a 2+A 3A 5. ∵A 3A 5=2a 2,∴a 3=A 5A 6=AA 5=a 2+2a 2=(2+1)2. 同理,a n =(2+1)n -1.(4)由题意,得⎩⎪⎨⎪⎧4θ<90°,5θ≥90°,∴18°≤θ<22.5°.。
浙教版八年级上册数学_第二章特殊三角形测试题

八年级(上)第二章测试卷班级_______________,姓名________________得分________________。
1、已知等腰三角形的两边长分别为4、9,则它的周长为()(A)17 (B)22 (C)17或22 (D)132、等边三角形的对称轴有()A 1 条B 2条C 3条D 4条3、以下列三个数为边长的三角形能组成直角三角形的是()A 1, 1 ,2B 5, 8 10C 6 ,7 ,8D 3 ,4 ,54、已知ΔABC的三边分别是3cm, 4cm, 5cm,则ΔABC的面积是()A 6c㎡,B 7.5c㎡C 10c㎡D 12c㎡5、三角形内到三角形各边的距离都相等的点必在三角形的()A 中线上B 角平分线上C 高线上D 不能确定6、下列条件中,不能判定两个直角三角形全等的是()A 两个锐角对应相等B 一条边和一个锐角对应相等C 两条直角边对应相等D 一条直角边和一条斜边对应相等7、等腰三角形的一个顶角为40º,则它的底角为()(A)100º(B)40º(C)70º(D)70º或40º8、下列能断定△ABC为等腰三角形的是()(A)∠A=30º、∠B=60º(B)∠A=50º、∠B=80º(C)AB=AC=2,BC=4 (D)AB=3、BC=7,周长为139、若一个三角形有两条边相等,且有一内角为60º,那么这个三角形一定为()(A)等边三角形(B)等腰三角形(C)直角三角形(D)钝角三角形10、如图∠B C A=90,C D⊥A B,则图中与∠A互余的角有()个A.1个B、2个C、3个D、4个二.填空题(10*3=30)1、一个等腰三角形底上的高、________和顶角的________互相重合。
2、在Rt△ABC中,∠C=90度,∠B=25度,则∠A=______度.3、等腰三角形的腰长为10,底边长为12,则其底边上的高为______.4、已知等边三角形的周长为24cm,则等边三角形的边长为_______cm5、Rt△ABC的斜边AB的长为10cm,则AB边上的中线长为________ DCBAD B C A FE AB C6、在Rt △ABC 中,∠C=90º,∠A=30º,BC=2cm ,则AB=_____cm 。
特殊三角形单元检测 (困难)培优提升 答案

第二章、特殊三角形单元测试(难度:困难)参考答案与试题解析一.选择题(共10小题)1.下列图标中轴对称图形的个数是()A.4个B.3个C.2个D.1个【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:图①是轴对称图形,图②是轴对称图形;图③是轴对称图形;图④不是轴对称图形,轴对称图形共3个,故选:B.【点评】此题主要考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在△ABC中,已知D为直线BC上一点,若∠ABC=α,∠BAD=β,且AB=AC=CD,则β与α之间不可能存在的关系式是()A.β=90°﹣αB.β=180°﹣αC.β=D.β=120°﹣α【分析】分点D在线段BC上,在BC延长线上,在CB延长线上讨论,根据外角和等于不相邻的两个内角和及三角形内角和定理可求β与α的等量关系式.【解答】解:当点D在线段BC上,∵∠ABC=α,CA=AB,∴∠C=∠ABC=α,∵CD=CA,∴∠ADC=∠CAD==90°﹣α,∵∠ADC=∠B+∠BAD,∴90°﹣α=α+β,即β=90°﹣α;当点D在线段BC的延长线上,同理可得:β=180°﹣α;当点D在线段CB的延长线上,同理可得:β=α﹣90°.故选:D.【点评】此题考查了等腰三角形的判定与性质以及三角形外角的性质.注意分类思想的应用是解此题的关键.3.若用反证法证明命题“四边形中至少有一个角是钝角或直角”时,则首先应该假设这个四边形中()A.至少有一个角是钝角或直角B.没有一个角是锐角C.没有一个角是钝角或直角D.每一个角都是钝角或直角【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中没有一个角是钝角或直角.故选:C.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.三角形C.等腰梯形D.正五边形【分析】针对各图形的对称轴,对各选项分析判断后利用排除法求解.【解答】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、三角形对称轴只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一个等腰三角形与一个等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.【点评】本题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解题的关键.5.如图将长方形ABCD沿EF折叠,B、C分别落在点H、G的位置,延长EH交边CD于点M.下列说法不正确的是()A.∠1<∠2B.∠2=∠3C.∠MEB=2∠2D.∠2与∠4互补【分析】过点F作FN⊥EH,垂足为N,且点N在线段EH上,根据矩形的性质可得AB ∥CD,∠B=90°,再根据折叠可得:∠B=∠GHE=90°,从而可得GH∥FN,进而可得∠1=∠MFN,即可判断A;根据角平分线和平行线的性质即可判断B和C;根据平角定义即可判断D.【解答】解:过点F作FN⊥EH,垂足为N,且点N在线段EH上,∴∠FNE=90°,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,由折叠得:∠B=∠GHE=90°,∴∠GHE=∠FNE=90°,∴GH∥FN,∴∠1=∠MFN,∵∠2=∠MFN+∠EFN,∴∠1<∠2,故A不符合题意;∵AB∥CD,∴∠2=∠FEB,由折叠得:∠FEB=∠3,∴∠2=∠3,故B不符合题意;∵∠FEB=∠3,∴∠MEB=2∠3,∵∠3=∠2,∴∠MEB=2∠2,故C不符合题意;∵ME≠EF,∴∠2≠∠EMF,∵∠4+∠EMF=180°,∴∠4与∠2不一定互补,故D符合题意;故选:D.【点评】本题考查了平行线的性质,余角和补角,等腰三角形的判定与性质,熟练掌握等腰三角形的判定与性质,以及平行线的性质是解题的关键.6.如图,在△ABC中,∠ACB=90°,∠B﹣∠A=10°,D是AB上一点,将△ACD沿CD翻折后得到△CED,边CE交AB于点F.若△DEF中有两个角相等,则∠ACD的度数为()A.15°或20°B.20°或30°C.15°或30°D.15°或25°【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【解答】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B﹣∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=180°﹣40°﹣x°=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°﹣40°﹣40°=100°,∴140﹣x=100+40+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140﹣x=40+40+x,解得x=30,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=,∴140﹣x=70+40+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【点评】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.7.在直角三角形ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,∠ABC的平分线BE交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.有以下结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】由三角形的内角和与角平分线的定义求∠AFB,由DG∥AB和BE平分∠ABC判断②,结合DG⊥DG求∠GBC与∠ABC的关系判断③,由三角形的内角和与平行线的性质判断④.【解答】解:∵AD平分∠BAC,BE平分∠ABC,∴∠BAF=∠CAF=∠BAC,∠FBA=∠CBE=∠ABC,∵∠C=90°,∴∠BAC+∠ABC=180°﹣90°=90°,∴∠F AB+∠FBA=(∠BAC+∠ABC)=45°,∴∠AFB=180°﹣(∠F AB+∠FBA)=180°﹣45°=135°,故①正确,符合题意;∵DG∥AB,∴∠BDG=∠ABC,∵∠CBE=∠ABC,∴∠BDG=2∠CBE,故②正确,符合题意;∵BG⊥DG,∴∠G=90°,∴∠GDB+∠GBD=90°,又∵∠GDB=∠ABC,∴∠ABC+∠GBD=90°,无法判定∠GBD=∠ABC,故③错误,不符合题意;又∵∠BAC+∠ABC=90°,∴∠BAC=∠GBD,∵∠ABF=∠EBC,∴∠ABF+∠BAC=∠EBC+∠GBD,∴∠BEC=∠EBG,故④正确,符合题意;故选:C.【点评】本题考查了三角形的内角和与外角和、平行线的性质、垂直的定义和角平分线的定义,整体思想的应用是判断①的关键,解题的时候要多次应用等量代换.8.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【分析】先证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,再由勾股定理得出BC2=(4+2)x2,即可得出答案.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,在△BPG和△BCG中,,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2=x2(+1)2+x2=(4+2)x2,∴===2+.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.9.如图,△ABC中,AC=DC=3,∠BAC的角平分线AD⊥BD于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5B.3C.4.5D.9【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【解答】解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=S△ABH,S△CDH=S△ABH,∵S△OBD﹣S△AOE=S△ADB﹣S△ABE=S△ADH﹣S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为×3×3=.故选:C.【点评】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.10.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.36【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH 交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,故选:A.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.二.填空题(共6小题)11.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为16.【分析】由勾股定理得AB2+AC2=BC2,=(2)2=8,则AB2+AC2+BC2=2BC2,即可得出结论【解答】解:∵Rt△ABC中,斜边BC=2,∴AB2+AC2=BC2=(2)2=8,∴AB2+AC2+BC2=2BC2=2×8=16.故答案为:16.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.12.如图,已知,∠MON=∠BAC=90°,且点A在OM上运动,点B在ON上运动,若AB=8,AC=6,则OC的最大值为4+2.【分析】取AB的中点E,连接OE,CE,利用勾股定理求出CE,再利用直角三角形斜边上中线的性质得OE的长,最后利用三角形三边关系可得答案.【解答】解:取AB的中点E,连接OE,CE,∴AE=4,在Rt△ACE中,由勾股定理得,CE===2,∵∠AOB=90°,点E为AB的中点,∴OE=AB=4,∵OC≤OE+CE,∴当点O、E、C共线时,OC最大值为4+2,故答案为:4+2.【点评】本题主要考查了勾股定理,直角三角形斜边上中线的性质等知识,熟练掌握三角形三边关系求单线段的最值是解题的关键.13.如图,已知四边形ABCD中,AB=AD=,CB=CD=,∠DAB=90°,若线段DE平分四边形ABCD的面积,则DE=.【分析】连接BD交AC于点O,证明AC垂直平分BD,利用勾股定理可求解BD=2,OC=2,再利用面积法可求解DE的长.【解答】解:连接BD交AC于点O,过D点作DM⊥BC于点M,∵AB=AD=,CB=CD=,∴A,C在BD的垂直平分线上,即AC垂直平分BD,∵∠DAB=90°,∴BD=,S△ABD=AB•AD=,∴AO=DO=BO=1,∴CO=,∴S△BCD==,∴四边形ABCD的面积=1+2=3,∵S△BCD=BC•DM=2,∴DM==,∴BM=,∵线段DE平分四边形ABCD的面积,∴S△CDE=,S△BDE=,∴BE:CE=1:3,∴BE=,∴EM=BM﹣BE=,∴DE=.故答案为:.【点评】本题主要考查线段垂直平分线,勾股定理,三角形的面积,证明AC垂直平分BD是解题的关键.14.如图,△ABC中,∠A=45°,AB=3,AC=2,若点D、E、F分别是三边AB、BC、CA上的动点,则△DEF周长的最小值为.【分析】如图,作E关于AB的对称点,作E关于AC的对称点N,连接AE,MN,MN 交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,推出△DEF的周长DE+EF+FD=DM+DF+FN,推出当点E固定时,此时△DEF的周长最小,再证明△MNA是等腰直角三角形,推出MN=AE,推出当AE的值最小时,MN的值最小,求出AE的最小值即可解决问题.【解答】解:如图,作E关于AB的对称点M,作E关于AC的对称点N,连接AE,MN,MN交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,∴△DEF的周长DE+EF+FD=DM+DF+FN,∴当点E固定时,此时△DEF的周长最小,∵∠BAC=45°,∠BAE=∠BAM,∠CAE=∠CAN,∴∠MAN=90°,∴△MNA是等腰直角三角形,∴MN=AE,∴当AE的值最小时,MN的值最小,∵AC=2,∴AK=KC=2,∵AB=3,∴BK=AB﹣AK=1,在Rt△BKC中,∠BKC=90°,BK=1,CK=2,∴BC==,∵•BC•AH=•AB•CK,∴AH=,根据垂线段最短可知:当AE与AH重合时,AE的值最小,最小值为,∴MN的最小值为,∴△DEF的周长的最小值为.【点评】本题考查了轴对称问题,解题的关键是学会利用轴对称解决最短问题.15.一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是88°,90°,99°,108°,116°.【分析】当它为顶角时,根据等腰三角形的性质,可以求得最大角是90度,如图①所示;当它是侧角时,用同样的方法,可求得最大角有4种情况.【解答】解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,此题涉及等知识点并不多,但是要分4种情况解答,因此,属于难题.16.如图,在△ABC中,∠BAC=30°,AC=4,AB=8,点D在△ABC内,连接DA、DB、DC,则DC+DB+AD的最小值是4.【分析】如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F 作FH⊥CA交CA的延长线于H.则DE=AD,则DC+DB+DA=DC+DE+EF≥CF,求出CF即可得出结论.【解答】解:如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F作FH⊥CA交CA的延长线于H.∵AD=AE,∠DAE=120°,BD=EF,∴DE=AD,∴DC+DB+DA=DC+DE+EF,∵CD+DE+EF≥CF,在Rt△ABC中,∠ACB=90°,AB=8,∠BAC=30°,∴AB=AB•cos30°=4,在Rt△AFH中,∠H=90°,AF=AB=8,∠F AH=30°,∴FH=AF=4,AH=FH=4,∴CH=AC+AH=8,∴CF===4,∴CD+DB+AD≥4,∴CF的最小值为4.故答案为:.【点评】本题考查轴对称最短问题,解直角三角形等知识,解题的关键是学会利用旋转变换,把问题转化为两点之间线段最短,属于中考填空题中的压轴题.三.解答题(共7小题)17.图①、图②、图③均是9×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求作图,保留适当的作图痕迹.(1)在图①中,画△ABC关于AC的轴对称图形,得到四边形ABCD.(2)在图②中,画EF∥BC,点E在AC上,点F在AB上,且AE=2EC.(3)在图③中,画△ABC关于BC的轴对称图形,得到四边形ACMB.【分析】(1)依据要求,根据轴对称的性质作图即可.(2)利用平行线分线段成比例定理作图即可.(3)取格点P,Q,连接PQ,过点A作BC的垂线,与PQ交于点M,连接CM,BM 即可.【解答】解:(1)如图①,四边形ABCD即为所求.(2)如图②,EF即为所求.(3)如图③,四边形ACMB即为所求.【点评】本题考查作图﹣轴对称变换、平行线分线段成比例定理,熟练掌握相关知识点是解答本题的关键.18.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在AC边上,且∠CBE=45°,BE分别交AC,AD于点B、F.(1)如图1,若AB=13,BC=10,求AF的长;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD===12,在Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH,在△CHB和△AEF中,,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,在Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.19.求证:等腰三角形两底角的平分线相等.【分析】根据等腰三角形的两底角相等可得到∠ABC=∠ACB,再根据角平分线的性质可得到∠BCE=∠CBF,从而可利用ASA判定△BCE≌△CBF,由全等三角形的对应边相等即可证得结论.【解答】已知:△ABC中,AB=AC,BF,CE分别∠ABC,∠ACB的角平分线.求证:BF=CE,即等腰三角形的两底角的平分线相等证明:∵AB=AC,∴∠ABC=∠ACB,∵BF,CE分别是∠ABC,∠ACB的角平分线,∴∠BCE=∠CBF,∵∠ABC=∠ACB,BC=BC,∴△BCE≌△CBF,∴BF=CE,即等腰三角形两底角的平分线相等.【点评】此题主要考查等腰三角形的性质以及全等三角形的判定与性质的综合运用.20.如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB 的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO =33°,∠PNO=70°,求∠QPN的度数.【分析】先根据点P与点Q关于直线OA对称可知OM是线段PQ的垂直平分线,故PM =MQ,∠PMQ=2∠PMO,根据三角形内角和定理求出∠PQM的度数,同理可得出PN =RN,故可得出∠PNR=2∠PNO,再由平角的定义得出∠PNQ的度数,由三角形外角的性质即可得出结论.【解答】解:∵点Q和点P关于OA的对称,点R和点P关于OB的对称∴直线OA、OB分别是PQ、PR的中垂线,∴MP=MQ,NP=NR,∴∠PMO=∠QMO,∠PNO=∠RNO,∵∠PMO=3 3°,∠PNO=70°∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°∴∠PMQ=66°,∠PNR=140°∴∠MQP=57°,∴∠PQN=123°,∠PNQ=40°,∴∠QPN=17°.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.21.已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【分析】延长BE交AC于M,利用三角形内角和定理,得出∠3=∠4,AB=AM,∴AC ﹣AB=AC﹣AM=CM.再利用∠4是△BCM的外角,再利用等腰三角形对边相等,CM=BM利用等量代换即可求证.【解答】证明:延长BE交AC于M∵BE⊥AE,∴∠AEB=∠AEM=90°在△ABE中,∵∠1+∠3+∠AEB=180°,∴∠3=90°﹣∠1同理,∠4=90°﹣∠2∵∠1=∠2,∴∠3=∠4,∴AB=AM∵BE⊥AE,∴BM=2BE,∴AC﹣AB=AC﹣AM=CM,∵∠4是△BCM的外角∴∠4=∠5+∠C∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5∴3∠C=∠4+∠5=2∠5+∠C∴∠5=∠C∴CM=BM∴AC﹣AB=BM=2BE【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,此题的关键是作好辅助线,延长BE交AC于M,利用三角形内角和定理,三角形外角的性质,考查的知识点较多,是一道难题.22.在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.(1)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系,并证明你的猜想.(2)当点D在直线BC上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,求∠CDE的度数(直接写出结果).【分析】(1)设∠B=x,∠ADE=y,根据已知等量求得∠C与∠AED,再通过三角形的外角性质求得∠CDE,通过三角形的内角和定理求得∠BAD,便可得出结论;(2)分四种情形画出图形分别求解可得结论.【解答】解:(1)结论:∠BAD=2∠CDE.理由如下:设∠B=x,∠ADE=y,∵∠B=∠C,∴∠C=x,∵∠AED=∠ADE,∴∠AED=y,∴∠CDE=∠AED﹣∠C=y﹣x,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣2y,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=180°﹣x﹣x﹣(180°﹣2y)=2(y﹣x),∴∠BAD=2∠CDE;(2)当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:当点E在线段AC上时,与①相同,∠CDE=12.5°;当点E在CA的延长线上时,如图2,在AC边上截取AE′=AE,连接DE′,∵∠ADE=∠AED,∴AE=AD=AE′,∴∠ADE=∠AE′D,由①知,∠CDE′=12.5°,∴∠ADE+∠ADE′=∠AED+∠AE′D,∵∠ADE+∠ADE′+∠AED+∠AE′D=180°,∴∠ADE+∠ADE′=∠AED+∠AE′D=90°,∴∠CDE=90°+12.5°=102.5°.如图3中,当点D在CB的延长线上时,同法可得∠CDE′=12.5°,∠CDE=77.5°综上所述:∠CDE的度数为12.5°或102.5°或77.5°.【点评】本题主要考查了三角形的内角和定理,三角形性质的外角定理,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD =3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若P A=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.【点评】本题考查了等腰三角形的性质、勾股定理,解决本题的关键是动点运动到不同位置形成不同的等腰三角形.。
特殊三角形能力提升测试题

第二章:特殊三角形能力提升测试题 一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.如果等腰三角形的一个角是80°,那么它的底角是( )A .80°或50°B .50°或20°C .80°或20°D .50°2.在下列各组数据中,不能作为直角三角形的三边边长的是( )A .3,4,6B .7,24,25C .6,8,10D .9,12,153.等腰三角形一腰上的高与另一腰的夹角为45°,则等腰三角形的底角为( )A .67°B .67.5°C .22.5°D .67.5°或22.5°4.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5.如图,在△ABC 中,∠ACB =90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD =DB.若∠B =20°,则∠DFE 等于( )A .30°B .40°C .50°D .60°6.下列说法中,正确的是( )A .直角三角形中,已知两边长为3和4,则第三边长为5B .三角形是直角三角形,三角形的三边为a ,b ,c ,则满足a 2﹣b 2=c 2C .以三个连续自然数为三边长不可能构成直角三角形D .△ABC 中,若∠A :∠B :∠C =1:5:6,则△ABC 是直角三角形7.如图,在正方形网格中,每个小正方形的边长都为1,点A 、B 都是格点(小正方形的顶点叫做格点),若△ABC 为等腰三角形,且△ABC 的面积为1,则满足条件的格点C 有( )A .0个B .2个C .4个D .8个 8.如图,在等边△ABC 中,D 、E 分别是BC 、AC 上的点,且AE =CD ,AD 、BE 相交于F 点,BH ⊥AD 于H 点,FH =3,EF =0.5,则AD 的长为( )A .6B .6.5C .7D .7.59.由四个全等的直角三角形和一个小正方形EFGH 组成的大正方形ABCD 如图所示.连接,AF CH ,设正方形ABCD 的面积为1S ,正方形EFGH 的面积为2S ,四边形AFCH 的面积为3S .若123S S S =+,则下面结论一定正确的是( )A .45EAF ∠=︒B .60=︒∠BAEC .2BE AE =D .3BE AE =10.如图,正方形ABCO和正方形DEFO的顶点A,O,E在同一直线l上,且EF=2,AB=3,下列结论:①∠COD=45°;②AE=5;③CF=BD=17;④△COF的面积是32.其中正确的结论为()A.①②④B.①④C.②③D.①③④二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.如图是单位长度为1的正方形网格,则123∠+∠+∠=______°.12.如图,在Rt△ABC中,∠A=90°,∠B=38°,点E,F分别在边BC,AC上,将△CEF沿EF所在的直线折叠,使C的对应点C'落在AB上,且C'E=BC',则∠AFC'=_____13.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°14.如图,已知S△ABC=10m2,AD平分∠BAC,直线BD⊥AD于点D,交AC于点E,连接CD,则S△ADC=______________2m15.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为厘米/秒.16.如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_______三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分).如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=512(1)求AD的长;(2)求证:△ABC是直角三角形.18.(本题8分)已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.19(本题8分).如图,在△ABC中,AB=AC=13,F是BC中点,AF=12,D是AB中点,DE⊥AC于点E.(1)求BF的长;(2)直接写出DE的长.20(本题10分).勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,请你利用图1或图2证明勾股定理(其中∠DAB=90°)求证:a2+b2=c2.21(本题10分).如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与PA相等,DE⊥PD交BC于点E.(1)求证:点E在BD的垂直平分线上;(2)若∠DEB=α,①求∠CPD的度数;(用含α的式子表示);②当α=110°时,求∠A的度数.22.(本题12分)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.23.(本题12分)综合与实践:综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断:操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究:小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用:在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.。
组卷特殊三角形中等测试题

特殊三角形-2一、选择题(共8小题)1.(2014•乐山)如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为().C D.3.(2014•潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个5.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三8.(2014•绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,.C D.二、填空题(共9小题)(除非特别说明,请填准确值)9.(2014•牡丹江)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于_________cm.10.(2014•宿迁)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AB 的长是_________.11.(2014•三明)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于点D,P是上的一个动点,连接AP,则AP的最小值是_________.12.(2014•新疆)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD 的长为_________.13.(2014•新疆)如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是_________°.14.(2014•天津)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为_________(度).15.(2014•徐州)如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=_________°.16.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为_________cm.17.(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.三、解答题(共2小题)(选答题,不自动判卷)18.(2014•菏泽)(1)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.(2)已知x2﹣4x+1=0,求﹣的值.19.(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【章节训练】第2章特殊三角形-2参考答案与试题解析一、选择题(共8小题)1.(2014•乐山)如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为().C D.AC==∵2=××BDBD=3.(2014•潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()5.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三∴,∴8.(2014•绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,.C D.或,,×<取××n=二、填空题(共9小题)(除非特别说明,请填准确值)9.(2014•牡丹江)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于12cm.=,根据勾股定理求得BC∴CE=BC∴,∴,BD=DC=BC∴=,AB=×××=12.10.(2014•宿迁)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AB 的长是4.AC=,AB=2AC=4,11.(2014•三明)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于点D,P是上的一个动点,连接AP,则AP的最小值是﹣1.AE===故答案为:12.(2014•新疆)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.AC===5OA=AC=,∠∴,即,解得.故答案为:13.(2014•新疆)如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是30°.C=(14.(2014•天津)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).15.(2014•徐州)如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=15°.ABC=(16.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.=6cmBE=CD=3=3cm+3+317.(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为﹣1.,根据平行线分线段成比例可得比例式2EF=BD=CD=BC=1CAD=∠∠)2)EF=故答案为:三、解答题(共2小题)(选答题,不自动判卷)18.(2014•菏泽)(1)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.(2)已知x2﹣4x+1=0,求﹣的值.DE=BE=AE=19.(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.。
特殊三角形单元测试题.doc

特别三角形单元测试题一、填空题(每题 3 分,共 30 分)1 .等腰三角形一边长为1cm ,另一边长为5cm ,它的周长是_____cm .2 .在 Rt△ABC 中,∠C=Rt ∠,∠A=70 °,则∠B=_______ .3 .△ABC 为等腰直角三角形, D 、E、F 分别为 AB 、 BC 、AC 边上的中点,则图中共有_____个等腰直角三角形.4 .现用火柴棒摆一个直角三角形,两直角边分别用了7 根、 24 根长度同样的火柴棒,则斜边需要用 ______根.5. 等腰三角形的腰长为10 ,底边长为12 ,则其底边上的高为______.6.在等腰三角形中,设底角为 x°,顶角为 y°,则用含 x 的代数式表示 y,得 y=.7.如图,在△ABC中,∠C=902,AD均分∠BAC,BC=10㎝,BD=6㎝,则 D 点到 AB 的距离为 ________.8 .如图,已知:在△ ABC 中, AB=AC ,∠B=70 0,BD=CF ,则∠EDF=2。
二、选择题9 .以下图形中,不是轴对称图形的是()A 线段B 角C 等腰三角形D 直角三角形10 .等腰三角形的一个顶角为40 o,则它的底角为()A 100 oB 40 oC 70 o D70 o 或 40 o11 .以下判断正确的选项是()A顶角相等的的两个等腰三角形全等B腰相等的两个等腰三角形全等C有一边及一锐角相等的两个直角三角形全等D顶角和底边分别相等的两个等腰三角形全等12.已知一个三角形的周长为15cm ,且此中两边长都等于第三边的 2 倍,那么这个三角形的最短边为()A 1cmB 2cmC 3cmD 4cm A 13.如下图,△ ABC 中,AB=AC ,过 AC 上一点作 DE ⊥AC ,EF ⊥BC ,ED 若∠BDE=140 °,则∠DEF= ()B F CA55 ° B 60°C65 °D70°14 .如图,有两个长度同样的滑梯(即BC=EF ),左侧滑梯的高度AC ? 与右侧滑梯水平方向的长度DF 相等,则∠ABC+ ∠DFE 的度数为()A600B900C1200 C 不确立15.如图, CD 是Rt ABC斜边 AB 上的高,将BCD 沿CD 折叠, B 点恰巧落在 AB 的中点 E 处,则 A 等于()A、 25B、 30C、45D、6016.在直线 l 上挨次摆放着七个正方形(如下图)。
【期末优化训练】浙教版2022-2023学年八上数学第2章 特殊三角形 测试卷1(解析版)

【期末优化训练】浙教版2022-2023学年八上数学第2章特殊三角形测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】A【解析】A、不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意.故答案为:A.2.判断下列几组数据中,可以作为直角三角形的三条边的是()A.6,15,17B.7,12,15C.13,15,20D.7,24,25【答案】D【解析】直角三角形的三条边满足勾股定理的逆定理:两条直角边的平方和等于斜边的平方,要判断三个数是否能是勾股数,只要验证一下,两个较小的数的平方和是否等于最大数的平方,等于就是直角三角形,否则就不是。
A,62+152≠172,不符合;B,72+122≠152,不符合;C,132+152≠202,不符合;D,72+242=252,符合.故选D.3.下列命题的逆命题是假命题的是()A.直角三角形两锐角互余B.全等三角形对应角相等C.两直线平行,同位角相等D.角平分线上的点到角两边的距离相等【答案】B【解析】A.直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B.全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C.两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D.角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故答案为:B.4.若一个等腰三角形的一条边是另一条边的k倍,我们把这样的等腰三角形叫做“k倍边等腰三角形”.如果一个等腰三角形是“4倍边等腰三角形”,且周长为18cm,则该等腰三角形底边长为()A.12cm B.12cm或2cm C.2cm D.4cm或12cm【答案】C【解析】设该等腰三角形的较短边长为xcm(x>0),则较长边长为4xcm.①当xcm为腰时,∵x+x<4x,∴x,x,4x不能组成三角形;②当4xcm为腰时,4x,4x,x能够组成三角形,∵4x+4x+x=18,∴x=2,∴该等腰三角形底边长为2cm.故答案为:C.5.如图,一个圆柱形花瓶上下底面圆上有相对的A,B两点,现要用一根金色铁丝装饰花瓶,金色铁丝沿侧面缠绕花瓶一圈,并且经过A ,B 两点.若花瓶高16cm ,底面圆的周长为24cm ,则需要金色铁丝的长度最少为( )A .20cmB .8√13cmC .16√13cmD .40cm 【答案】D【解析】将圆柱体展开如图,点A 为展开图长方形一边的中点,BC 为底面圆周长的一半,∴BC =12cm ,在Rt △ABC 中,AB 2=AC 2+BC 2,∴AB =√AC 2+BC 2=√162+122=20cm , ∴需要金色铁丝的长度最少为20×2=40cm , 故答案为:D .6.如图,在等边△ABC 的AC ,BC 边上各取一点P ,Q ,使AP=CQ ,AQ ,BP 相较于O ,若OB=2则B 点到AQ 的距离等于( )A .1B .2C .√3D .32【答案】C【解析】 △ABC 是等边三角形∴△BAP =△ACQ =60°,AB =AC ∵在△ABP 和△ACQ 中∵AB =AC ,△BAP =△ACQ ,AP =CQ ∴△ABP△△CAQ (SAS ) ∴△ABP =△CAQ ,∵△BAQ +△CAQ =60°∴△BAQ +△ABP =60° ∵△BOQ =△BAQ +ABP ∴△BOQ =60° 如图:过点B 作BE△AQ 于点E ,∴△BEA=90°,在Rt△BEO 中,△AOE=60°, ∴△OBE=30°, ∴OE=12BO=1,∴BE=√BO 2−OE 2=√22−12=√3即B点到AQ的距离等于√3.故答案为:C.7.如图,在四边形ABCD中,△DAB=△BCD=90°,分别以四边形ABCD的四条边为边向外作四个正方形,面积分别为S1,S2,S3,S4.若S1=48,S2+S3=135,则S4=()A.183B.87C.119D.81【答案】B【解析】连接BD,∵△DAB=△BCD=90°,∴BD2=DC2+BC2=AD2+AB2,∴S3+S2=S4+S1=135;∴S4=135-48=87.故答案为:B8.如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC 于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°【答案】D【解析】∵AB=AD=DC,∠BAD=α,∴∠B=∠ADB,∠C=∠CAD=β,∵DE⊥AD,∴∠ADE=90°,∴∠CAD+∠AED=90∘∵∠CDE=γ,∠AED=∠CDE+∠C∴∠AED=γ+β∴2β+γ=90∘故答案为:D.9.如图,△ABC和△ADE都是等腰直角三角形,△BAC=△DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③△ADB=△AEB;④S四边形BCDE=12BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个【答案】C【解析】∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∵△BAD=△BAC+△CAD=90°+△CAD,△CAE=△DAE+△CAD=90°+△CAD,∴△BAD=△CAE,∴△ABD△△ACE(SAS),∴CE=BD,△ABD=△ACE,故①正确;∴△BCG+△CBG=△ACB+△ABC=90°,在△BCG中,△BGC=180°-(△BCG+△CBG)=180°-90°=90°,∴BD△CE,∴S四边形BCDE=S△BCE+S△DCE=12CE·BG+12CE·DG=12BD•CE,故④正确;由勾股定理,在Rt△BCG中,BC2=BG2+CG2,在Rt△DEG中,DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2,在Rt△BGE中,BE2=BG2+EG2,在Rt△CDG中,CD2=CG2+DG2,∴BE2+CD2=BG2+CG2+DG2+EG2,∴BC2+DE2=BE2+CD2,故⑤正确;从题干信息没有给出AC=AD,所以只有AE∥CD时,∠DAE=∠ADC=90°,无法说明AE∥CD,更不能说明CD=AD,故②错误;∵△ABD△△ACE,∴△ADB=△AEC,∵条件不足以证明△CAE≌△BAE,∴△AEC与△AEB相等无法证明,∴△ADB=△AEB不一定成立,故③错误;综上所述,正确的结论有①④⑤共3个.故答案为:C.10.如图,在平面直角坐标系中,0为坐标原点,A点坐标(6,0),B点坐标(3,-3),动点P从A点出发,沿x轴正方向运动,连接BP,以BP为直角边向下作等腰直角三角形BPC,△PBC=90°,连结OC,当OC=10时,△OCP的面积为()A.16√2B.64C.32D.36【答案】C【解析】过点C作CE△y轴于点E,过点B作BF△x轴于点F,延长FB交CE于点D,∴△OFD=△EOF=△OEC=90°,∴四边形OEDF是矩形,∴OF=DE,OE=DF,∵点B(3,-3),点A(6,0),∴OF=AF=BF=DE=3,∵△PBC是等腰直角三角形,∴PB=BC,△PBC=90°,∴△FPB+△FBP=90°,△FBP+△DBC=90°,∴△DBC=△FPB,在△FBP和△DCB中{∠BFP=∠BDC ∠FPB=∠DBC PB=BC∴△FBP△△DCB(AAS),∴BF=DC=3,PF=BD,∴CE=DE+CD=3+3=6;在△COE中OE=DF=√OC2−CE2=√102−62=8∴BD=PF=DF-BF=8-3=5,∴OP=OF+PF=3+5=8,∴S△COP=12OP·DF=12×8×8=32.故答案为:C二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.下列条件:①△C =△A -△B ;②△A :△B :△C =5△2△3;③a =35c ,b =45c ;④a△b△c =1△2:√3,则能确定△ABC 是直角三角形的条件有 个. 【答案】4【解析】①∵△C=△A -△B ,△A +△B +△C =180°,∴△A =90°,故△ABC 是直角三角形; ②∵△A :△B :△C =5:2:3,△A +△B +△C =180°,∴△A =90°,故△ABC 是直角三角形; ③∵a= 35 c ,b= 45c ,∴a 2+b 2=c 2,∴△c=90°,故△ABC 是直角三角形;④∵a :b :c =1:2:√3,∴a 2+c 2=b 2,∴△B=90°,故△ABC 是直角三角形. 故答案为:4.12.如图,把长方形纸条依次沿着线段EF 、HI 折叠,且EF ∥HI , 得到“Z”字形图案.已知∠DFE =60°,AE =2cm ,要使点H ,点K 分别在AD 和EF 的延长线上(不与D ,F 重合),则AB = cm .【答案】10【解析】如图,连接DH ,FK ,点H ,点K 分别在AD 和EF 的延长线上(不与D ,F 重合),点M 为EH 延长线上一点.在长方形纸条ABCD 中,∠A =∠ADC =90°,AB ∥CD , ∴∠DFE =∠BEF =60°,EH ∥FI , 由折叠可知:∠GEF =∠BEF =60°, ∴∠AEG =60°, ∴∠AHE =30°,∴AE =12EH ,∵EH ∥FI ,∴∠EHI +∠GEF =180°, ∴∠EHI =120°, ∴∠MHI =60°,由折叠可知:∠JHI =∠MHI =60°, ∴∠EHK =60°, ∵∠GEF =60°, ∴∠EKH =60°,∴ΔEHK 是等边三角形, ∴EH =HK =EK ,∵AE =12EH ,AE =2cm∴EH =HK =EK =4cm ,由折叠可知:AE +EH +HK =AB , ∴AB =2+4+4=10cm , 故答案为:10.13.如图,在△ABC 中,△C =90°,AC =BC ,AD 平分△CAB 交BC 于D ,DE△AB 于E ,且AB =8cm ,则△BED 的周长是 .【答案】8cm【解析】∵△C =90°,AD 平分△CAB ,DE△AB , ∴CD =DE ,在△ACD 和△AED 中, {AD =AD CD =DE,∴△ACD△△AED (HL ), ∴AC =AE ,∴△BED 的周长=DE+BD+BE , =BD+CD+BE , =BC+BE , =AC+BE , =AE+BE , =AB ,∵AB =8cm ,∴△BED 的周长是8cm. 故答案为:8cm. 14.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是 .【答案】76【解析】依题意,设“数学风车”中的四个直角三角形的斜边长为x , 则x 2=122+52=169, 解得:x =13,∴“数学风车”的外围周长(13+6)×4=76. 故答案为:76.15.如图,在Rt△ABC 中,AC =BC =1,D 是斜边AB 上一点(与点A ,B 不重合),将△BCD 绕着点C 旋转90°到△ACE ,连结DE 交AC 于点F ,若△AFD 是等腰三角形,则AF 的长为 .【答案】12或√2−1【解析】∵Rt△ABC 中,AC=BC=1, ∴△CAB=△B=45°,∵△BCD 绕着点C 旋转90°到△ACE , ∴△ECD=90°,△CDE=△CED=45°,①AF=FD 时,△FDA=△FAD=45°, ∴△AFD=90°,△CDA=45°+45°=90°=△ECD=△DAE , ∵EC=CD ,∴四边形ADCE 是正方形, ∴AD=DC ,∴AF= 12AC= 12×1= 12;②AF=AD 时,△ADF=△AFD=67.5°,∴△CDB=180°-△ADE -△EDC=180°-67.5°-45°=67.5°, ∴△DCB=180°-67.5°-45°=67.5°, ∴△DCB=△CDB , ∴BD=CB=1,∴AD=AB -BD= √2−1, ∴AF=AD= √2−1,故答案为: 12或 √2−1.16.如图,已知△ABC 中,△ACB=90°,O 为AB 的中点,点E 在BC 上,且CE=AC ,△BAE=15°,则△COE= 度.【答案】75【解析】∵△ACB=90°,CE=AC ,∴△CAE=△AEC=45°, ∵△BAE=15°,∴△CAB=60°,∴△B=30°,∵△ACB=90°,O 为AB 的中点,∴CO=BO=AO= 12AB ,∴△AOC 是等边三角形,△OCB=△B=30°,∴AC=OC=CE , ∴△COE=△CEO= 12×(180°-30°)=75°.故答案为:75.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.在如图所示的6×6的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为6个平方单位的等腰三角形: (2)请你在图2中画一个以格点为顶点,一条直角边边长为√10的直角三角形. (3)请你在图3中画出△ABC 的边BC 上的高AD ,△ACB 的角平线CE 【答案】(1)解:如图(1)解:如图 (2)解:如图, (3)解:如图AD ,CE 就是所求作的图形.18.如图,ΔABC 为任意三角形,以边AB 、AC 为边分别向外作等边三角形ABD 和等边三角形ACE ,连接CD 、BE ,CD 、BE 相交于点P.(1)试说明:ΔDAC ≌ΔBAE ; (2)求∠BPC 的度数. 【答案】(1)解:∵ΔABD 和ΔACE 都是等边三角形, ∴AD =AB ,AC =AE ,∠DAB =∠EAC =60°, ∴∠DAC =∠BAE =60°+∠BAC , 在ΔDAC 和ΔBAE 中,{AD =AB∠DAC =∠BAE AC =AE,∴ΔDAC ≌ΔBAE(SAS).(2)解:由(1)得∠ADC =∠ABE ,∴∠BPC =∠PBD +∠PDB =∠ABD +∠ABE +∠PDB =∠ABD +∠ADC +∠PDB =∠ABD +∠ADB , ∵∠ABD =∠ADB =60°, ∴∠BPC =120°. 19.已知 △ABC , AB =AC ,点 D 在线段 BC 上,点 E 在线段 AC 上.设 ∠BAD =α , ∠CDE =β .(1)如果 ∠B =60° , α=20° , β=10° 那么 △ADE 是什么特殊三角形?请说明理由. (2)猜想 α 与 β 之间有什么关系时,使得 AD =AE ,并进行证明. 【答案】(1)解: △ADE 等腰三角形,理由是: ∵AB =AC , ∠B =60° , α=20° , ∴∠BAC =∠B =∠C =60° ∴∠DAE =60°−α=40° . ∵∠ADC =∠B +α=80° , ∴∠ADE =∠ADC −β=70° .∵∠AED =∠C +β=70° , ∴∠ADE =∠AED ∴AD =AE∴△ADE 是等腰三角形(2)解:要使 AD =AE ,则需 ∠ADE =∠AED , ∵∠ADE =∠ADC −β=∠B +α−β , ∠AED =∠C +β ,又∵∠B =∠C , ∠ADE =∠AED , ∴∠B +α−β=∠C +β . ∴α=2β .20.如图,在等边△ABC 中,AB =AC =BC =10厘米,DC =4厘米,如果点M 以3厘米/秒的速度运动从点C 到点B 运动.(1)经过多少秒后,△CDM 是等边三角形?(2)若点N 在线段BA 上由B 点向A 点运动.点N 和点M 同时出发,若点N 的运动速度与点M 的运动速度相等.当两点的运动时间为多少时,△BMN 是一个直角三角形?(3)若点N 的运动速度与点M 的运动速度不相等,点N 从点B 出发,点M 以原来的运动速度从点C 同时出发,都是顺时针沿△ABC 三边运动,经过20秒,点M 与点N 第一次相遇,则点N 的运动速度是多少厘米/秒? 【答案】(1)解:设经过t 秒后,△CDM 是等边三角形,则CM=3t , ∴CM =DC =4, ∴3t =4,∴t =43,答:经过43秒后,△CDM 是等边三角形;(2)解:设运动时间为t 秒,△BMN 是直角三角形有两种情况: ①当∠NMB =90°时, ∵∠B =60°,∴∠BNM =90°−∠B =90°−60°=30°, ∴BN =2BM ,∴3t =2×(10−3t),∴t =209;②当∠BNM =90°时, ∵∠B =60°,∴∠BMN =90°−∠B =90°−60°=30°, ∴BM =2BN ,∴10−3t =2×3t ,∴t =109,综上,当t =209或t =109时,△BMN 是直角三角形;(3)解:分两种情况讨论:若点M 运动速度快,则3×20−10=20V N , 解得:V N =2.5;若点N 的运动速度快,则20V N −20=3×20, 解得:V N =4;答:点N的运动速度是2.5厘米/秒或4厘米/秒.21.已知△ACB为直角三角形,∠ACB=90°,作CD⊥AB,AF平分∠CAB,点M、N分别为AC、EF的中点,且AC=6,BC=8.(1)求证:CE=CF;(2)求证:MN∥AB;(3)请你连接DN,并求线段DN的长.【答案】(1)证明:∵∠ACB=90°,∴∠CAF+∠AFC=90°,∵CD⊥AB∴∠ADC=90°,∴∠EAD+∠AED=90°,∵∠CEF=∠AED,∴∠EAD+∠CEF=90°,∵AF平分∠CAB,∴∠CAF=∠EAD,∴∠CEF=∠AFC,∴CE=CF;(2)证明:如图,连接CN,由(1)可知△CEF是等腰三角形,∵N为EF的中点,∴CN⊥EF,∴∠ANC=90°,∴ΔACN是直角三角形,∵M是AC的中点,∴MN=12AC.∵AM=12AC∴AM=MN,∴∠MAN=∠MNA.∵AF平分∠CAB∴∠MAN=∠NAD,∴∠MNA=∠NAD,∴MN∥AD;(3)解:延长CN交AB于点G,连接DN,∵MN ∥AG ,M 是 AC 的中点,∴N 是 CG 的中点,∴MN =12AG , 在 Rt △CDG 中, DN =12CG ; ∵∠ACB =90° , AC =6,BC =8 ,∴AB =√AC 2+BC 2=√82+62=10 ,∵S △ABC =12AC ⋅BC =12AB ⋅CD , 即: 6×8=10CD ,∴CD =245, ∴AD =√AC 2−CD 2=√62−(245)2=185 , ∵MN =12AC , ∴AG =AC =6,∴DG =AG −AD =6−185=125, ∴CG =√CD 2+DG 2=√(245)2+(125)2=12√55, ∴DN =12CG =65√5 . 22.如图,△ABC 是边长为6的等边三角形,三边上分别有点E 、D 、F ,使得AE =BD =CF ,过点E作EP△DF ,垂足为点P(1)求证:△BDE△△CFD ;(2)求△DEP 的度数;(3)当点E 、D 、F 分别在三边BA 、CB 及AC 的延长线上时,过点E 作EP△DF ,垂足为点P ,若AE =BD =CF =2,若△BDE 的周长为19,求DP 的长.【答案】(1)证明:∵△ABC 是等边三角形,∴△B=△C=60°,AB=BC ,∵AE=BD=CF ,∴AB -AE=BC -BD ,即BE=CD ,∴△BDE△△CFD (SAS );(2)解:由(1)得△BDE△△CFD ,∴△BED=△CDF ,又∵△EDC=△B+△BED,∴△ EDP+△CDF=△B+△BED,∴△ EDP=△B=60°,∵EP△DF,∴△EPD=90°,∴△ DEP=30° ;(3)解:∵△ABC边长为6,AE=BD =2,∴BE=AB+AE=8,又∵△BDE的周长为19,∴ DE=19-BD-BE=9,∵△ABC是等边三角形,∴△ABC=△ACB=60°,BA=CB,∴△EBD=180°-△ABC=180°-△ACB=△DCF=120°,又∵BD=AE,∴BA+AE=CB+BD,即BE=CD,∴△BDE△△CFD(SAS),∴△DEB=△FDC,∵△EBC=△EDB+△DEB=60°,∴△EDB+△FDC=60°,即△EDP=60°,又∵EP△DF ,∴△EPD=90°,∴△ DEP=30°,∴DE=2DP,∴DP= 4.5.23.定义:过三角形的顶点作一条射线与其对边相交,将三角形分成两个三角形,若得到的两个三角形中有等腰三角形,这条射线就叫做原三角形的“和谐分割线”.(1)下列三角形中,不存在“和谐分割线”的是(只填写序号).①等边三角形;②顶角为150°的等腰三角形;③等腰直角三角形.(2)如图1,在△ABC中,△A=60°,△B=40°,直接写出△ABC被“和谐分割线”分得到的等腰三角形顶角的度数;(3)如图2,△ABC中,△A=30°,CD为AB边上的高,BD=4,E为AD的中点,过点E作直线l交AC于点F,作CM△l于M,DN△l于N.若射线CD为△ABC的“和谐分割线”.求CM+DN 的最大值.【答案】(1)①(2)解:∵∠A=60°,∠B=40°,∴∠ACB=180°−60°−40°=80°,如图,当EC=EA时,△AEC=60°,当FC=FB时,△BFC=100°,当BC=BG时,△B=40°.如图,当AC=AR时,△CAR=20°,当CA=CW时,△C=80°,如图,当BC=BQ时,△CBQ=20°,综上所述,满足条件的等腰三角形的顶角的度数为:20°,40°,60°,80°或100°;(3)解:如图2中,作AG△l于点G.∵CD为AB边上的高,∴△CDB=△CDA=90°.∴△ACD=90°﹣△A=60°.∴△CDA不是等腰三角形.∵CD为△ABC的“友好分割线”,∴△CDB和△CDA中至少有一个是等腰三角形.∴△CDB是等腰三角形,且CD=BD=4.∵△BAC=30°,∴AC=2CD=8.∵DN△l于N,∴△DNE=△AGE=90°.∵E为AD的中点,∴DE=AE.在△DNE和△AGE中,{∠AGE=∠DNE DE=AE∠DEN=∠AEG∴△DNE△△AGE(ASA),∴DN=AG.在Rt△AGF和Rt△CMF中,△CMF=△AGF=90°,∴CM≤CF,AG≤AF,∴CM+AG≤CF+AF,即CM+AG≤AC,∴CM+DN≤8,∴CM+DN的最大值为8.【解析】(1)根据“友好分割线”的定义可知,如图,等腰直角三角形,顶角为150°的等腰三角形存在“友好分割线”.等边三角形不存在“友好分割线”.故答案为:①;24.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=√3,则该三角形的面积为;(3)如图,△ABC中,△ABC=120°,△ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连接CD,AD.若△ABD为“方倍三角形”,且AP=√2,求△PDC的面积.(2)√22(3)解:由题意可知:△ABP△△DBP,∴BA=BD,△ABP=△DBP,根据“方倍三角形”定义可知:BA2+BD2=2AD2=2BA2,∴AD=AB=BD,∴△ABD为等边三角形,△BAD=60°,∴△ABP=△DBP=30°,∴△PBC=90°,∵△CPB=45°,∴△APB=180°﹣45°=135°,∴△DPC=90°,∵△ABC=120°,△ACB=45°,∴△BAC=15°,∴△CAD=45°,∴△APD为等腰直角三角形,∴AP=DP=√2,∴AD=2,延长BP交AD于点E,如图,∵△ABP=△PBD,∴BE△AD,PE=12AD=AE=1,∴BE=√AB2−AE2=√4−1=√3,∴PB=BE﹣PE=√3﹣1,∵△CPB=△PCB=45°,∴△PBC为等腰直角三角形,∴PC=√2PB=√6﹣√2,∴S△PDC=12×PC•PD=12×(√6﹣√2)× √2=√3﹣1.【解析】(1)对于①等边三角形,三边相等,设边长为a,则a2+a2=2a2,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:a2+b2=c2,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;(2)设Rt△ABC其余两条边为a,b,则满足a2+b2=3,根据“方倍三角形”定义,还满足:a2+3=2b2,联立解得{a=1b=√2,则Rt△ABC的面积为:√22;故答案为:√22;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暑假作业:特殊三角形测试题班级: 姓名: 学号:一、填空题:1、(1)等腰三角形中,如果底边长为6,一腰长为8,那么周长是 。
(2)如果等腰三角形有一边长是6,另一边长是8,那么它的周长是 ;如果等腰三角形的两边长分别是4、8,那么它的周长是 。
(3)等腰三角形的对称轴最多有 条。
2、(1)等腰三角形的顶角平分线、 、 互相重合。
(2)等腰三角形有一个角是120°,那么其他两个角的度数是 和 。
(3)△ABC 中,∠A=∠B=2∠C ,那么∠C= 。
(4)在等腰三角形中,设底角为x °,顶角为y °,则用含x 的代数式表示y ,得y= ;用含y 的代数式表示x ,得x= 。
3、(1)在△ABC 中,∠A 的相邻外角是110°,要使△ABC 是等腰三角形,则∠B= 。
(2)如果等腰三角形底边上的高线和腰上的高线相等,则它的各内角的度数是 。
(3)在一个三角形中,等角对 ;等边对 。
(4)如图,AB=AC ,BD 平分∠ABC ,且∠C=2∠A ,则图中等腰三角形共有 个。
4、(1)等边三角形的三条边都 ,三个内角都 ,且每个内角都等于 。
(2)等边三角形有 条对称轴。
(3)等边三角形的 、 、 互相重合。
(4)如图,△ABC 和△BDE 都是等边三角形,如果∠ABE=40°, 那么∠CBD= 度。
5、(1)在△ABC 中,若∠A=∠B+∠C ,则△ABC 是 。
(2)在△ABC 中,∠C=90°,∠A =2∠B ,则∠A= ,∠B= 。
(3)在△ABC 中,若∠A ∶∠B ∶∠C=1∶2∶3,则△ABC 是 三角形。
(4)直角三角形两锐角之差是12度,则较大的一个锐角是 度。
6、(1)等腰三角形的底角为15度,腰长为2a ,则三角形的面积为 。
(2)已知:如图,∠BAC=90°,∠C=30°, AD ⊥BC 于D ,DE ⊥AB 于E ,BE=1,BC= 。
(3)在△ABC 中,如果∠A+∠B=∠C ,且AC=21AB , 则∠B= 。
7、(1)勾股定理说的是 。
(2)直角三角形的两边长分别是3cm 、4cm ,则第三边长是 。
(3)直角三角形的周长是24cm ,斜边上的中线长为5cm ,则此三角形的面积是 。
(4)如图,△ABC 是Rt △,BC 是斜边,P 是三角形内一点,将△ABP 绕点 A 逆时针旋转后,能与△ACP ′重合,如果AP=3,那么PP 8、(1)如果三角形中 等于 ,那么这个三角形是直角三角形, 所对的角是直角。
(2)在△ABC 中,已知AB=40,BC=41,AC=9,则∠BAC= 度。
9、(1)如图1,已知AB ⊥AC ,AC ⊥CD ,垂足分别是A ,C ,AD=BC 。
由此可判定全等的两个三角形是△ 和△ 。
A C D A B C D E AB C DE CP ′(2)如图2,已知BD ⊥AE 于B ,C 是BD 上一点,且BC=BE ,要使Rt △ABC ≌Rt △DBE ,应补充的条件是∠A=∠D 或 或 或 。
(3)如图3,在△ABC 中,AD ⊥BC 于D ,AD 与BE 相交于H ,且BH=AC ,DH=DC ,那么∠ABC= 度。
(4)如图4,点P 是∠BAC 内一点,且P 到AC ,AB 的距离PE=PF ,则△PEA ≌△PFA 的理由是 。
二、选择题:1、(1)如果△ABC 是等腰三角形,那么它的边长(或周长)可以是( )A 、三条边长分别是5,5,11B 、三条边长分别是4,4,8C 、周长为14,其中两边长分别是4,5D 、周长为24,其中两边长分别是6,12(2)等腰三角形一边长为2,周长为5,那么它的腰长为( )A 、3B 、2C 、1.5D 、2或1.52、(1)等腰三角形的一个外角为140°,那么底角等于( )A 、40°B 、100°C 、70°D 、40°或70°(2)等腰三角形一腰上的高线与底边的夹角等于( )A 、顶角B 、底角C 、顶角的一半D 、底角的一半(3)在等腰三角形ABC 中,∠A 与∠B 度数之比为5∶2,则∠A 的度数是( )A 、100°B 、75°C 、150°D 、75°或100°(4)等腰三角形ABC 中,AB=AC ,AD 是角平分线,则“①AD ⊥BC ,②BD=DC ,③∠B=∠C ,④∠BAD=∠CAD ”中,结论正确的个数是( )A 、4B 、3C 、2D 、1 3、如图,在△ABC 中,AB=AC ,∠BAC=108°,∠ADB=72°,DE 平分∠ADB ,则图中等腰三角形的个数是( ) A 、3 B 、4 C 、5 D 、64、(1)如果三角形的一个角等于其他两个角的差,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、以上都错(2)如果三角形的三个内角的比是3∶4∶7,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、锐角三角形或钝角三角形 (3)△ABC 中,如果两条直角边分别为3,4,则斜边上的高线是( )A 、56 B 、512 C 、5 D 、不能确定 (4)如图,△ABC 中,∠ACB=Rt ∠,在AB 上截取AE=AC , BD=BC ,则∠DCE 等于( )A 、45°B 、60°C 、50°D 、65°5、(1)已知等腰三角形一腰上的高线为腰长的一半,那么这个等腰三角形的一个底角为( )A 、15°或75°B 、15°C 、75°D 、150°或30°(2)如图,在△ABC 中,∠ACB=90°, CD ⊥AB 于D ,∠A=30°,则AD 等于( ) A 、4BD B 、3BD C 、2BD D 、BD(3)如图,EA ⊥AB ,BC ⊥AB ,AB=AE=2BC ,D 为AB 的中点,有以下 判断:①DE=AC ;②DE ⊥AC ;③∠CAB=30°;④∠EAF=∠ADE ;其中正确结论的个数是( )A 、1B 、2C 、3D 、4A B C D E A B CD E A BC D E F A B C D O 图1 A B C D E 图2 A B C D E H 图3 A B C E FP 图4 A B CD6、已知有不重合的两点A 和B ,以点A 和点B 为其中两个顶点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个7、(1)边长分别是下列各组数的三角形中,能组成直角三角形的是( )A 、5,10,13.B 、5,7,8。
C 、7,24,25。
D 、8,25,27。
(2)满足下列条件的△ABC ,不是直角三角形的是( )A 、b 2=a 2-c 2B 、∠C=∠A-∠BC 、∠A ∶∠B ∶∠C=3∶4∶5D 、a ∶b ∶c=12∶13∶58、下列条件中,不能判定两个直角三角形全等的是( )A 、一条直角边和一个锐角分别相等B 、两条直角边对应相等C 、斜边和一条直角边对应相等D 、斜边和一个锐角对应相等三、解答下列各题:1、已知等腰三角形的腰长是底边的3倍,周长为35cm ,求等腰三角形各边的长。
2、已知等腰三角形的底边和一腰长是方程组 的解,求这个三角形的各边长。
3、如图,已知△ABC 中,D 在BC 上,AB=AD=DC ,∠C=20°,求∠BAD 。
4、如图,已知△ABC 中,点D 、E 在BC 上, AB=AC ,AD=AE。
请说明BD=CE 的理由。
5、如图,已知∠EAC 是△ABC 的外角,∠1=∠2,AD ∥BC ,请说明AB=AC6、如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE=CD ,请说明DB=DE 的理由。
7、若a 、b 、c 为△ABC 的三边,且a 2+b 2+c 2=ab+bc+ca ,请说明△ABC 是等边三角形。
8、已知,如图,△ABC 是正三角形,D ,E ,F 分别是各边上的一点, 且AD=BE=CF 。
请你说明△DEF 是正三角形。
9、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm ,求斜边的长。
x+2y=4 3x+y=7 { A B C D E A B C D D F10、如图,△ABC 和△ABD 中,∠C=∠D=Rt ∠,E 是BC 边上 的中点。
请你说明CE=DE 的理由。
11、在△ABC 中,∠C=Rt ∠,BC=a ,AC=b ,AB=c 。
(1)a=9,b=12,求c ;(2)a=9,c=41,求b ;(3)a=11,b=13,求以c 为边的正方形面积。
12、如图,在四边形ABCD 中,AB=8,BC=1,∠DAB=30°, ∠ABC=60°,四边形ABCD 的面积为53,求AD 的长。
13、在直角三角形中,如果两直角边之和为17,两直角边之平方差为119,求斜边的长。
14、根据三角形的三边a ,b ,c 的长,判断三角形是不是直角三角形:(1)a=11,b=60,c=61; (2)a=32,b=1,c=45;15、在△ABC 中,三条边长分别为2n 2+2n ,2n+1,2n 2+2n+1(n >0)。
那么△ABC 是直角三角形吗?请说明理由。
16、如图,已知一个四边形的四条边AB ,BC ,CD 和DA 的长分别是3,4,13和12,其中∠B=90°,求这个四边形的面积。
17、如图,AD ∥BC ,∠A=90°,E 是AB 上一点,∠1=∠2,AE=BC 。
请你说明∠DEC=90°的理由。
18、如图,AD=BC ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE=BF 。
请你说明(1)∠DAE=∠BCF ;(2)AB ∥CD 成立的理由。
A B C D EA B C D A B C D A B C D E 12 C。