特殊三角形常见的题目型
一次函数特殊三角形存在性

特殊三角形存在性知识点睛1.存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.2.存在性问题处理框架:①研究背景图形.②分析不变特征,确定分类标准.③分析特殊状态的形成因素,画出符合题意的图形并求解.④结果验证.3.不变特征举例:①等腰三角形以定线段作为底边或者腰确定分类标准,利用两圆一线确定点的位置.②等腰直角三角形根据直角顶点确定分类标准,然后借助两腰相等或者45°角确定点的位置.精讲精练1.如图,在平面直角坐标系中,已知点A的坐标为(-3,4),P是x轴上的一个动点,则当△AOP是等腰三角形时,点P的坐标为____________.2.如图,在平面直角坐标系中,一次函数y x =+与x 轴交于点A ,与y 轴交于点B .将△AOB 沿过点B 的直线折叠,使点O 落在AB 上的点D 处,折痕交x 轴于点E . (1)求点D 的坐标.(2)x 轴上是否存在点P ,使得△PAD 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3. 直线y =kx -4与x 轴、y 轴分别交于点A ,B ,且43OB OA =.点C 在第一象限,是直线y =kx -4上的一个动点,当△AOC 的面积为6时,x 轴上是否存在点P ,使△ACP 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.4.如图,直线334y x=-+与x轴、y轴分别交于点A,B,在第一象限内是否存在点P,使以A,B,P为顶点的三角形是等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.5.如图,直线y=x轴、y轴分别交于点A,B,点C在点A左侧,是x轴上一点,且满足AC=OA,过点C作x轴的垂线交直线AB于点D,在第二象限内是否存在点P,使得△PAD是等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,点A的坐标为(2,0),Q是直线x=3上的一个动点,y轴正半轴上是否存在点P,使△APQ为等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【参考答案】 知识点睛1.运动的结果2.坐标或表达式 精讲精练1.(5,0),(-5,0),(-6,0),(256-,0)2.(1)(-3(2)存在 (,0),(-6-0), (0,0),(-4,0)3.存在(8,0),(-2,0),(9,0),(436,0)4.存在(7,4),(3,7),(72,72)5.存在3,3),6,3+),6.存在(0,1),(0,3),(0,4)。
特殊三角形常见的题目型

八年级上册第二章 特殊三角形一、将军饮马例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( )A 、3√10B 、10√3C 、9D 、9√2 【变式训练】1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2 B 、2√3 C 、4 D 、8√332、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是OA ,OB 上的动点,则△PCD 周长的最小值为3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2,OD=6,点C ,D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为4、如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1)已知AB=3,DE=2,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; (2)请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值;(3)根据(2)中的规律和结论,请构图求出代数式√x 2+4+√(8−x )2+16的最小值二、等腰三角形中的分类讨论例2(1)已知等腰三角形的两边长分别为8cm 和10cm ,则它的周长为(2)已知等腰三角形的两边长分别为8cm 和10cm ,则它的腰长为 (3)已知等腰三角形的周长为28cm 和8cm ,则它的底边为 【变式训练】1、已知等腰三角形的两边长分别为3cm 和7cm ,则周长为2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数5、已知等腰三角形底边为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为6、在三角形ABC 中,AB=AC ,AB 边上的垂直平分线与AC 所在的直线相交所得的锐角为40°,则底角∠B 的度数为EBCADP第2题 BOAPCD第1题 BOACN第3题D Ey =−34x +6 7、如图,A 、B 是4×5的网格中的格点,网格中每个小正方形的边长都是单位1,请在图中清晰地标出使以A 、B 、C 为顶点的三角形是等腰三角形的所有格点C 的位置三、两圆一线定等腰例3在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有 个 【变式训练】1、在平面直角坐标系xOy 中,已知点A (1,√3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则符合条件的点P 的个数为( )A .5B .6C .7D .82、在平面直角坐标系中,若点A (2,0),点B (0,1),在坐标轴上找一点C ,使得△ABC 是等腰三角形,这样的点C 可以找到 个.3、在坐标平面内有一点A (2,−√3),O 为原点,在x 轴上找一点B ,使O ,A ,B 为顶点的三角形为等腰三角形,写出B 点坐标4、平面直角坐标系中,已知点A (4,2),B (4,-3),试在y 轴上找一点P ,使△APB 为等腰三角形,求点P 的坐标5、如图1,已知一次函数 分别与x 、y 轴交于A 、B 两点,过点B 的直线BC 交x 轴负半轴与点C ,且OC=12OB .(1)求直线BC 的函数表达式;(2)如图2,若△ABC 中,∠ACB 的平分线CF 与∠BAE 的平分线AF 相交于点F ,求证:∠AFC=12∠ABC ; (3)在x 轴上是否存在点P ,使△ABP 为等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由ABxyO四、折叠问题 例4:如图,在矩形ABCD 中,AB=6,BC=8,将矩形折叠,使得点D 落在线段BC 的点F 处,则线段DE 的长为【变式训练】1、如图,在矩形ABCD 中,AB=6,BC=8,将矩形折叠,使得点B 落在对角线AC 的点F 处,则线段BE 的长为2、如图,在矩形ABCD 中,AB=6,BC=8,沿EF 将矩形折叠,使A 、C 重合,若,则折痕EF 的长为3、如图,在矩形ABCD 中,AB=6,BC=8,沿AC 将矩形折叠,使得点B 落在点E 处,则线段EF 的长为4、如图,将边长为4的正方形纸片,置于平面直角坐标系内,顶点A 在坐标原点,AB 在x 轴正方向上,E 、F 分别是AD 、BC 的中点,M 在DC 上,将△ADM 沿折痕AM 折叠,使点D 折叠后恰好落在EF 上的P 点处.(1)求点M 、P 的坐标;(2)求折痕AM 所在直线的解析式;(3)设点H 为直线AM 上的点,是否存在这样的点H ,使得以H 、A 、P 为顶点的三角形为等腰三角形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.例5 如图,在△ABC 中,BD 、CE 分别是边AC 、AB 上的高线. (1)如果BD=CE ,那么△ABC 是等腰三角形,请说明理由;(2)如果∠A=60°,取BC 中点F ,连结点D 、E 、F 得到△DEF ,请判断该三角形的形状,并说明理由;E D C A B FE F D C A B 第1题 E F G D C A B 第2题 FE D C AB 第3题(3)如果点G是ED的中点,求证:FG⊥DE【变式训练】1、如图,点M是Rt△ABC斜边BC的中点,点P、Q分别在AB、AC上,且PM⊥QM.(1)如图1,若P、Q分别是AB、AC的中点,求证:PQ2=PB2+QC2;(2)如图2,若P、Q分别是线段AB、AC的动点(不与端点重合)(1)中的结论还成立吗?若成立请给与证明,若不成立请说明理由2、问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:△ACD≌△BCE;(2)填空:∠AEB的度数为;拓展探究:如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,点M为AB的中点,连接BE、CM、EM,求证:CM=EM.全等之三垂直(K 型图)例1 如图,已知AC ⊥CF ,EF ⊥CF ,AB ⊥BE ,AB=BE 求证:AC=BF,BC=EF1、如图,已知,AC ⊥CF ,EF ⊥CF ,AB ⊥CE ,AC=CF 求证:AB=CE2、已知,AC ⊥CF ,EF ⊥CF ,AG ⊥CE ,AG=CE 求证:AG=CF3、如图: 已知,AE ⊥BD ,CD ⊥BD ,∠ABC=90°,AB=AC ,求证:AE=BD ,BE=CD4、如图,点A 是直线 在第一象限内的一点;连接OA ,以OA 为斜边向上作等腰直角三角形OAB ,若点A 的横坐标为4,则点B 的坐标为5、已知:如图,点B,C,E 在同一条直线上,∠B=∠E=60°,∠ACF=60°,且AB=CE 证明:△ACB ≌△CFE全等之手拉手模型例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。
特殊三角形-练习题(含答案)

特殊三角形-练习题(含答案)特殊三角形-练习题(含答案)一、选择题1. 在直角三角形中,若一条直角边的长度为3,另一条直角边的长度为4,那么斜边的长度是:A. 5B. 7C. 9D. 122. 一个等腰三角形的两条等边分别为5,那么等腰三角形的底边长为:A. 2.5B. 4C. 5D. 103. 在等边三角形中,每个角的度数为:A. 45°B. 60°C. 90°D. 120°4. 若一个三角形有一条边长为2,另外两条边长为3和4,那么这个三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形5. 在等腰直角三角形中,两条直角边的长度分别为3和4,那么斜边的长度为:A. 5B. 7C. 9D. 12二、填空题1. 正三角形的每个角度数为__________。
2. 整数边长的直角三角形有__________组。
3. 锐角三角形的内角和为__________度。
4. 勾股定理可以用来判断一个三角形是否为__________。
5. 一个等腰三角形的两条等边分别为6,那么等腰三角形的底边长为__________。
三、解答题1. 证明等腰直角三角形的两条直角边相等。
解答思路:通过证明直角三角形两个角相等,并且直角三角形的两边长相等,可以得出等腰直角三角形的两条直角边相等。
2. 在等边三角形ABC中,边长为6。
连接点A和边BC的垂线段AD,求垂足D与点C之间的距离。
解答思路:利用等边三角形的性质,可以得出垂足D与点C之间的距离等于等边三角形的边长的一半。
四、答案选择题答案:1. A2. B3. B4. D5. A填空题答案:1. 60°2. 3组3. 180°4. 直角三角形5. 6解答题答案:1. 略2. 等边三角形的边长为6,所以垂足D与点C之间的距离为3。
结束语通过以上练习题的答案,我们可以对特殊三角形的性质和计算有更深入的了解。
特殊角的三角函数试题汇编

2016年12月14日特殊角的三角函数一.填空题(共30小题)1.计算cos60°=.2.tan60°=.3.求值:sin60°﹣tan30°=.4.2cos30°=.5.如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A=度.6.计算:sin60°﹣cot30°=7.若tan(x+10°)=1,则锐角x的度数为.8.在等腰Rt△ABC中,AB=AC,则tanB=.9.计算:sin45°+cos45°﹣tan30°sin60°=.10.计算:sin245°+cot30°•tan60°=.11.计算cos245°+tan60°cos30°的值为.12.计算:|sin60°•tan30°﹣1|=.13.计算:1﹣2sin30°=.14.计算sin30°+cos245°=.15.∠A是锐角,若cosA=,则∠A的余角度数为.16.若2cosα=1,则锐角α=度.17.计算:sin230°+cos60°•sin30°=.18.计算sin230°﹣cos45°tan60°+﹣tan45°.19.已知锐角A满足关系式4sin2A﹣1=0,则sinA的值为.20.若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.21.计算:sin245°+cot60°•cos30°=.22.计算:cot30°+cot45°=.23.计算:2sin60°+tan45°=.24.已知α是锐角,且tan(90°﹣α)=,则α=.25.已知a为锐角,tan(90°﹣a)=,则a的度数为.26.°=.27.如果锐角α满足2cosα=,那么α=.28.sin60°的值为.29.计算:cos30°﹣sin60°=.30.∠A的余角为60°,则∠A的补角为°,tanA=.2016年12月14日特殊角的三角函数参考答案与试题解析一.填空题(共30小题)1.(2016•湘潭)计算cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.【点评】此题考查了特殊角的三角函数值,属于基础题,注意掌握特殊角的三角函数值,这是需要我们熟练记忆的内容.2.(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.3.(2016•闸北区一模)求值:sin60°﹣tan30°=.【分析】根据sin60°=,tan30°=得到原式=﹣,然后通分合并即可.【解答】解:原式=﹣=﹣=.故答案为.【点评】本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.4.(2016•淮阴区校级二模)2cos30°=.【分析】根据cos30°=,继而代入可得出答案.【解答】解:原式=.故答案为:.【点评】此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是掌握一些特殊角的三角函数值,需要我们熟练记忆,难度一般.5.(2016•厦门校级一模)如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A=30度.【分析】根据条件求出,即可得到cos∠A的值,再根据特殊角的三角函数值求出∠A的度数.【解答】解:∵∠C=90°,AC=5,AB=10,∴cosA===,∴∠A=30°,故答案为:30°.【点评】此题主要考查了锐角三角函数定义,以及特殊角的三角函数值,解决此题的关键是求出cosA.6.(2016•杨浦区一模)计算:sin60°﹣cot30°=【分析】根据特殊角的三角函数值计算.【解答】解:原式=﹣=﹣.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.7.(2016•富顺县校级一模)若tan(x+10°)=1,则锐角x的度数为20°.【分析】利用特殊角的三角函数值得出x+10°的值进而求出即可.【解答】解:∵tan(x+10°)=1,∴tan(x+10°)==,∴x+10°=30°,∴x=20°.故答案为:20°.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关角对应的函数值是解题关键.8.(2016•洪泽县一模)在等腰Rt△ABC中,AB=AC,则tanB=1.【分析】根据等腰直角三角形的性质,可得∠B,根据特殊角三角函数值,可得答案.【解答】解:由等腰Rt△ABC中,AB=AC,得∠B=45°.tanB=tan45°=1,故答案为:1.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.9.(2016•抚顺县一模)计算:sin45°+cos45°﹣tan30°sin60°=﹣.【分析】把特殊角是三角函数值代入计算即可.【解答】解:原式=+﹣×=﹣.故答案为:﹣.【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.10.(2016•普陀区一模)计算:sin245°+cot30°•tan60°=.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=sin245°+cot30°•tan60°=()2+×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.11.(2016•河西区模拟)计算cos245°+tan60°cos30°的值为2.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:cos245°+tan60°cos30°=()2+×=+=2.故答案为:2.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.(2016•江西模拟)计算:|sin60°•tan30°﹣1|=0.5.【分析】结合特殊角的三角函数值求解即可.【解答】解:原式=|•﹣1|=|﹣1|=|﹣0.5|=0.5.故答案为:0.5.【点评】本题考查了特殊角的三角函数值,解答本题的关键在于熟练掌握各特殊角的三角函数值.13.(2016•封开县二模)计算:1﹣2sin30°=0.【分析】根据特殊角的三角函数值进行计算即可.【解答】解:原式=1﹣2×=1﹣1=0,故答案为0.【点评】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.14.(2016春•沂源县期中)计算sin30°+cos245°=1.【分析】把特殊角的三角函数值代入计算即可.【解答】解:原式=+()2=+=1,故答案为:1.【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.15.(2016春•淮安校级期中)∠A是锐角,若cosA=,则∠A的余角度数为60°.【分析】结合特殊角的三角函数值进行求解即可.【解答】解:∵∠A是锐角,且cosA=,∴∠A=30°,∴∠A的余角的度数为:90°﹣30°=60°.故答案为:60°.【点评】本题考查了特殊角的三角函数值,解答本题的关键在于熟练掌握各特殊角的三角函数值.16.(2016春•会宁县校级月考)若2cosα=1,则锐角α=60度.【分析】根据特殊角的三角函数值求解.【解答】解:∵2cosα=1,∴cosα=,∴α=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.17.(2016秋•道外区校级月考)计算:sin230°+cos60°•sin30°=.【分析】直接利用特殊角的三角函数值进而代入数据得出答案.【解答】解:sin230°+cos60°•sin30°=+×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.(2016秋•安丘市校级月考)计算sin230°﹣cos45°tan60°+﹣tan45°.【分析】首先代入特殊角的三角函数值,然后进行二次根式的运算即可.【解答】解:原式=()2﹣×+﹣1=﹣+﹣1=【点评】本题考查了特殊角的三角函数值,正确进行二次根式的运算是关键.19.(2016秋•江阴市校级月考)已知锐角A满足关系式4sin2A﹣1=0,则sinA的值为.【分析】利用直接开平方法求得sinA=±,结合A是锐角可以推知sinA=.【解答】解:4sin2A﹣1=0,sin2A=,∴sinA=±,∴A是锐角,∴sinA>0,∴sinA=.故答案是:.【点评】本题考查了特殊角的三角函数值,解题时,注意∠A的取值范围,以防误解为sinA=±.20.(2016春•丰台区校级月考)若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.【分析】根据特殊角三角函数值,可得答案.【解答】解:由θ为三角形的一个锐角,且2sinθ﹣=0,得θ=60°.tanθ=tan60°=,故答案为:.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.21.(2016春•丰台区校级月考)计算:sin245°+cot60°•cos30°=1.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin245°+cot60°•cos30°=()2+×=+=1.故答案为:1.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.22.(2016春•上海校级月考)计算:cot30°+cot45°=+1.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=+1,故答案为:+1.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.23.(2015•闸北区一模)计算:2sin60°+tan45°=+1.【分析】根据特殊三角函数值,可得答案.【解答】解:原式=2×+1=+1,故答案为:+1.【点评】本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.24.(2015•锦江区一模)已知α是锐角,且tan(90°﹣α)=,则α=30°.【分析】先求出90°﹣α的度数,然后求出α的度数.【解答】解:∵tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.25.(2015•青岛模拟)已知a为锐角,tan(90°﹣a)=,则a的度数为30°.【分析】先根据α为锐角及tan60°=解答即可.【解答】解:∵α为锐角,tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°.故答案为:30°.【点评】本题主要考查特殊角的三角函数值,比较简单,只要熟记特殊角的三角函数值即可解答.26.(2015•冷水江市校级模拟)°=.【分析】分别根据绝对值、0指数幂、负整数指数幂及特殊角的三角函数值进行计算即可.【解答】解:原式=2﹣+1﹣+2×=2﹣+1﹣+=.故答案为:.【点评】本题考查的是绝对值、0指数幂、负整数指数幂及特殊角的三角函数值,熟知以上运算法则是解答此题的关键.27.(2015•石河子校级模拟)如果锐角α满足2cosα=,那么α=45°.【分析】先求出cosα的值,然后根据特殊角的三角函数值求出α的度数.【解答】解:∵2cosα=,∴cosα=,则α=45°.故答案为:45°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.28.(2015•武侯区模拟)sin60°的值为.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.29.(2015•徐汇区一模)计算:cos30°﹣sin60°=0.【分析】根据特殊三角函数值,可得实数,根据实数的运算,可得答案.【解答】解:原式=﹣=0,故答案为:0.【点评】本题考查了特殊三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.30.(2015•武进区一模)∠A的余角为60°,则∠A的补角为150°,tanA=.【分析】根据余角的定义,可得∠A,根据补缴的定义,可得∠A的补角,根据正切函数的定义,可得正切函数值.【解答】解:由∠A的余角为60°,得∠A=30°.∠A的补角为150°,tanA=,故答案为:150,.【点评】本题考查了余角、补角,利用了余角的定义、补角的定义,熟记特殊角三角函数值是解题关键.。
特殊三角形例题

1.三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定2.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是( ) A. 338 B. 24 C. 26 D. 303.若等腰△ABC 的腰长AB =2,顶角∠BAC =120°,以 BC 为边的正方形面积为( ) A. 3 B. 12 C.427 D. 316 4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A.42B.32C.42 或32D.37 或 33 8.已知等腰直角三角形的面积为16cm 2,那么斜边上的高为( ). A.4cm B.8cm C.4cm 和8cm D.2cm7.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2cmB.3 cmC.4 cmD.5 cm8.若一个三角形的两个角的平分线分别垂直对边,则这个三角形是( ) A 、等边三角形B 、等腰三角形C 、等腰直角三角形D 、直角三角形9.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是___.10.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为___.11.在△ABC 中,∠B =90°,两直角边AB =7,BC =24,三角形内有一点P 到各边的距离相等,则这个距离是___.12.在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____. 13.如图2,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).14.已知两条线段长分别为5cm 、12cm ,当第三条线段长为___时,这三条线段可以组成一个直角三角形,其面积是___.15.如图:在△ABC 中,E 是BC 边上的一点,EF 垂直BC 交BA 于D ,交CA 的延长线于F ,若AD=AF.则△ABC 是不是等腰三角形?请说明理由.图1D 图216.如图:在△ABC 中,∠ACB=90°,CE ⊥AB 于E ,D 是AB 是一点,且AD=AC ,AF 平分∠CAB 交CE 于F ,交BC 于G (1)说明CG=CF (2)说明DF ∥BC17.如图,已知AB AC =,若CE BD =,说明:GE GD =18.如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A 的仰角为30°,已知侧角仪高DC =1.4m , BC =30米,请帮助小明计算出树高AB .(3取1.732,结果保留 三个有效数字)19.如图,甲船以16海里/时的速度离开港口,向东南航行, 乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后 分别到达B 、A 两点,且知AB =30海里,问乙船每小时航行多少 海里?20.去年某省将地处A 、B 两地的两所大学合并成了一所综合性 大学,为了方便A 、B 两地师生的交往,学校准备在相距2km 的A 、 B 两地之间修筑一条笔直公路(即图中的线段AB ),经测量,在A 地 的北偏东60°方向、B 地的西偏北45°方向C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)BABCDE FG16题21.如图6,折叠长方形一边AD ,点D 落在BC 边的点F 处, BC =10cm ,AB =8cm ,求:(1)FC 的长;(2)EF 的长.22.为了丰富少年儿童的业余生活,某社区要在AB 所在的直线建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB =25km ,CA =15km ,DB =10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?23.如图8,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,能否使CE =2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.,24.如图,在Rt △ABC 中,∠A=90°,D 为斜边BC 中点,DE ⊥DF , 试说明222CF BE EF +=的理由图8图6。
特殊三角形章节必考点题型归纳

特殊三角形二十个考点归纳总结考点1轴对称图形的识别解决此类问题关键是掌握如果一个图形沿一条直线折丧,直线两旁的部分能够互相重合,这个图形叫做轴 对称图形.例题1 2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,全国多家医院纷纷选派医护人员 驰援武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是( )功盘 ⑥曲A.协和医院B.湘雅医院C.齐鲁医院D.华西医院【分析】利用轴对称图形的定义进行解答即可.【解析】工、不是轴对称图形,故此选项不合题意:不是轴对称图形,故此选项不符合题意:C 、是轴对称图形,故此选项符合题意;。
、不是轴对称图形,故此选项不合题意;故选:C.变式1 下列交通指示标识中,是轴对称图形的有( )【分析】根据轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合解答.【解析】第一、二、四个图形是轴对称图形,第三个图形不是轴对称图形,故选:C.【小结】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 变式2 下列与防疫有关的图案中不是轴对称图形的有( )A A ® A 当心辐射I I 当心感染I I 必须戴防护手套]I 小心腐蚀A. 1个B. 2个C. 3个D. 4个A.1个B. 2个C. 3个D. 4个【分析】根据轴对称图形定义进行分析即可.【解析】第一个图案和第二个图案是轴对称图形,第三个图案和第四个图案不是轴对称图形,则不是轴对称图形的有2个,故选:B.【小结】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.变式3 下列图形中,是轴对称图形的有()个.①角②线段③等腰三角形④等边三角形⑤扇形⑥圆⑦平行四边形A. 4个B. 5个C. 6个D. 7个【分析】直接利用轴对称图形的定义分析得出答案.【解析】①角②线段③等腰三角形④等边三角形⑤扇形⑥圆⑦平行四边形中只有平行四边形不是轴对称图形.故轴对称图形有6个.故选:C.【小结】此题主要考查了轴对称变换,正确把握轴对称图形的定义是解题关键.考点2轴对称的性质与运用轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.例题2 如图,尸为内一点,分别画出点尸关于。
特殊三角形

特殊三角形知识定位特殊三角形在初中几何或者竞赛中占据非常大的地位,不管三解形还是特殊三角形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。
特殊三角形的判定和性质是证明有关三角形问题的基础,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中特殊三角形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理三角形类型定义性质判定等腰三角形有两条边相等的三角形是等腰三角形,其中相等的两条边分别叫做腰,另一条边叫做底边,两腰的夹角叫顶角,腰和底边的夹角为底角1.等腰三角形是对称图形,顶角平分线所在直线为它的对称轴2.等腰三角形两底角相等,即在同一个等腰三角形中,等边对等角3.等腰三角形的顶角平分线,底边上的中线和高线互相重合,简称等腰三角形的三线合一1.(定义法)有两条边相等的三角形是等腰三角形2.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,即,在同一个三角形中,等角对等边等边三角形三条边都相等的三角形是等边三角形,它是特殊的等腰三角形,也叫正三角形1.等边三角形的内角都相等,且为60°2.等边三角形是轴对称图形,且有三条对称轴3.等边三角形每条边上的中线,高线和所对角的角平分线三线合一,他们所在的直线都是等边三角形的对称轴1.三条边都相等的三角形是等边三角形2.三个内角都等于60°的三角形是等边三角形3.有一个角是60°的等腰三角形是等边三角形直角三角形有一个角是直角的三角形是直角三角形,即“R t△”1.直角三角形的两锐角互余2.直角三角形斜边上的中线等于斜边的一半3.直角三角形中30°角所对的直角边等于斜边的一半4.直角三角形中两条直角边的平方和等于斜边的平方(勾股定理)1.有一个角是直角的三角形是直角三角形2.有两个角互余的三角形是直角三角形3.如果一个三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形(勾股定理逆定理)2、等腰三角形(1)有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。
八年级数学上册第2章特殊三角形B卷浙教版

14.如图,Rt△ABC中,∠ABC=90°,AB=
BC,直线l1,l2,l3分别通过A26,B,C三点,且 l1∥l2∥l3 . 若l1与l2的距离为4,l2与l3的距离为6,
则Rt△ABC的面积为
.
15.已知 CD 是△ABC 的边 AB 上的高,若 CD= 3,AD=1, AB=2AC,则 BC 的长为 2 3或 2 7 .
16.已知△ABC是腰长为1的等腰直角三角形,
以Rt△ABC 的斜边AC为直角边,画第二个等腰
△ACD,再以Rt△ACD的210 斜边AD为直角边,画 第三个等腰Rt△ADE,…,依此类推,第20个
等腰直角三角形的斜边长是
.
解析:第一个等腰直角三角形的斜边为 2, 第二个等腰直角三角形的斜边为 2=( 2)2, 第三个等腰直角三角形的斜边为 2 2=( 2)3, 第四个等腰直角三角形的斜边为 4=( 2)4,… 第 20 个等腰直角三角形的斜边为( 2)20=210.
(3)拓展结论,设计新题 若△ABC的边长为10,AE=2,求CD的长.
解:(1)理由:∵△ABC 是等边三角形,E 为 AB 的中点, ∴∠ABC=∠ACB=60°,∠BCE=12∠ACB=30°,AE=BE, ∵ED=EC,∴∠D=∠BCE=30°,∵∠ABC=∠D+∠BED, ∴∠BED=30°=∠D,∴BE=DB,∴AE=DB;
(2)理由:∵△ABC是等边三角形, ∴∠ABC=∠ACB=∠A=60°,∴∠DBE= 120°,∵EF∥BC,∴∠AEF=∠ABC, ∠AFE=∠ACB, ∠FEC=∠DCE,∠A=∠AEF=∠AFE= 60°,
∴∠FEC=∠D,在△EFC 和△DBE 中,∠ ∠EFFECC= =∠ ∠DDB,E, CF=EB,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册第二章 特殊三角形一、将军饮马例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( )A 、3√10B 、10√3C 、9D 、9√2 【变式训练】1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2B 、2√3C 、4D 、8√332、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是OA ,OB 上的动点,则△PCD 周长的最小值为3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2,OD=6,点C ,D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为4、如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1)已知AB=3,DE=2,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; (2)请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值;(3)根据(2)中的规律和结论,请构图求出代数式√x 2+4+√(8−x )2+16的最小值二、等腰三角形中的分类讨论例2(1)已知等腰三角形的两边长分别为8cm 和10cm ,则它的周长为(2)已知等腰三角形的两边长分别为8cm 和10cm ,则它的腰长为 (3)已知等腰三角形的周长为28cm 和8cm ,则它的底边为 【变式训练】1、已知等腰三角形的两边长分别为3cm 和7cm ,则周长为2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数5、已知等腰三角形底边为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为6、在三角形ABC 中,AB=AC ,AB 边上的垂直平分线与AC 所在的直线相交所得的锐角为40°,则底角∠B 的度数为EBCADP第2题 BO A P C D 第1题 B O A CN 第3题 D Ey =−34x +6 7、如图,A 、B 是4×5的网格中的格点,网格中每个小正方形的边长都是单位1,请在图中清晰地标出使以A 、B 、C 为顶点的三角形是等腰三角形的所有格点C 的位置三、两圆一线定等腰例3在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有 个 【变式训练】1、在平面直角坐标系xOy 中,已知点A (1,√3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则符合条件的点P 的个数为( )A .5B .6C .7D .82、在平面直角坐标系中,若点A (2,0),点B (0,1),在坐标轴上找一点C ,使得△ABC 是等腰三角形,这样的点C 可以找到 个.3、在坐标平面内有一点A (2,−√3),O 为原点,在x 轴上找一点B ,使O ,A ,B 为顶点的三角形为等腰三角形,写出B 点坐标4、平面直角坐标系中,已知点A (4,2),B (4,-3),试在y 轴上找一点P ,使△APB 为等腰三角形,求点P 的坐标5、如图1,已知一次函数 分别与x 、y 轴交于A 、B 两点,过点B 的直线BC 交x 轴负半轴与点C ,且OC=12OB .(1)求直线BC 的函数表达式;(2)如图2,若△ABC 中,∠ACB 的平分线CF 与∠BAE 的平分线AF 相交于点F ,求证:∠AFC=12∠ABC ; (3)在x 轴上是否存在点P ,使△ABP 为等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由ABxyO四、折叠问题 例4:如图,在矩形ABCD 中,AB=6,BC=8,将矩形折叠,使得点D 落在线段BC 的点F 处,则线段DE 的长为【变式训练】1、如图,在矩形ABCD 中,AB=6,BC=8,将矩形折叠,使得点B 落在对角线AC 的点F 处,则线段BE 的长为2、如图,在矩形ABCD 中,AB=6,BC=8,沿EF 将矩形折叠,使A 、C 重合,若,则折痕EF 的长为3、如图,在矩形ABCD 中,AB=6,BC=8,沿AC 将矩形折叠,使得点B 落在点E 处,则线段EF 的长为4、如图,将边长为4的正方形纸片,置于平面直角坐标系内,顶点A 在坐标原点,AB 在x 轴正方向上,E 、F 分别是AD 、BC 的中点,M 在DC 上,将△ADM 沿折痕AM 折叠,使点D 折叠后恰好落在EF 上的P 点处.(1)求点M 、P 的坐标;(2)求折痕AM 所在直线的解析式;(3)设点H 为直线AM 上的点,是否存在这样的点H ,使得以H 、A 、P 为顶点的三角形为等腰三角形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.例5 如图,在△ABC 中,BD 、CE 分别是边AC 、AB 上的高线. (1)如果BD=CE ,那么△ABC 是等腰三角形,请说明理由;(2)如果∠A=60°,取BC 中点F ,连结点D 、E 、F 得到△DEF ,请判断该三角形的形状,并说明理由;E D C A B FE F D C A B 第1题 E F G D C A B 第2题 FE D C AB 第3题(3)如果点G是ED的中点,求证:FG⊥DE【变式训练】1、如图,点M是Rt△ABC斜边BC的中点,点P、Q分别在AB、AC上,且PM⊥QM.(1)如图1,若P、Q分别是AB、AC的中点,求证:PQ2=PB2+QC2;(2)如图2,若P、Q分别是线段AB、AC的动点(不与端点重合)(1)中的结论还成立吗?若成立请给与证明,若不成立请说明理由2、问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:△ACD≌△BCE;(2)填空:∠AEB的度数为;拓展探究:如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,点M 为AB的中点,连接BE、CM、EM,求证:CM=EM.全等之三垂直(K 型图)例1 如图,已知AC ⊥CF ,EF ⊥CF ,AB ⊥BE ,AB=BE 求证:AC=BF,BC=EF1、如图,已知,AC ⊥CF ,EF ⊥CF ,AB ⊥CE ,AC=CF 求证:AB=CE2、已知,AC ⊥CF ,EF ⊥CF ,AG ⊥CE ,AG=CE 求证:AG=CF3、如图: 已知,AE ⊥BD ,CD ⊥BD ,∠ABC=90°,AB=AC ,求证:AE=BD ,BE=CD4、如图,点A 是直线在第一象限内的一点;连接OA ,以OA 为斜边向上作等腰直角三角形OAB ,若点A 的横坐标为4,则点B 的坐标为5、已知:如图,点B,C,E 在同一条直线上,∠B=∠E=60°,∠ACF=60°,且AB=CE 证明:△ACB ≌△CFE全等之手拉手模型例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。
(4) △AGB ≌△DFBy =12x +3 EAB D CG FEC ABGFEC A60°60°60°A EH F GED(5)△EGB≌△CFB(6)BH平分∠AHC(7)GF∥AC1、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60。
(4)AE与DC的交点设为H,BH平分∠AHC2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60。
(4)AE与DC的交点设为H,BH平分∠AHC3、如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?4、如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H. 问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?5、两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE=a连接AE与CD.问(1)△ABE≌△DBC是否成立?(2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度?(4)HB是否平分∠AHC?钢架中的等腰三角形例 1 如图钢架中,∠A=10°,焊上等长的钢条来加固钢架.若AB=BC=CD=DE…一直作下去,那么图中这样的钢条至多需要根1、如图钢架中,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…至多需要8根加固钢架,若P1A=P1P2,则∠A= .2、如图钢架BAC中,焊上等长的钢条来加固钢架,若P1A=P1P2,量得∠BP5P4=100°,则∠A=()度.A.10 B.20 C.15 D.253、如图钢架BAC中,焊上等长的钢条P1P2,P2P3,P3P4,P4P5来加固钢架,若P1A=P1P2,则∠A的取值范围.4、如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是H GA DCEHDABCE。