电缆的抗干扰技术

合集下载

双绞线抗干扰及抗串扰原理

双绞线抗干扰及抗串扰原理

双绞线抗干扰及抗串扰原理一、双绞线传输原理监控领域中视频信号传输可分为非平衡式和平衡式两种传输方式。

同轴电缆属于非平衡传输线,采用一线一地的方式传输,双绞线采用两线不接地的方式传输,属于平衡传输线。

要用双绞线传输视频信号,必须在发送端将非平衡信号转换为平衡信号,在接收端再将平衡信号转换为非平衡信号。

一个基本的双绞线视频传输系统如图1所示。

图中的A1是差分信号发送放大器,完成非平衡到平衡的转换,A2是差分信号接收放大器,完成平衡到非平衡的转换。

图1二、双绞线(超五类双绞线)消除干扰的原理在双绞线中,干扰主要来自以下两方面:第一,外部干扰。

第二,同一电缆内部对线之间的相互串扰。

下面,我们对双绞线消除干扰的原理进行分析。

1、双绞线对外部干扰的抑制干扰信号对平行线的干扰,见图2。

Us为干扰信号源,干扰电流Is在双线的两条导线L1、L2上产生的干扰电流分别是I1和I2。

由于L1距离干扰源较近,因此,I1>I2,I=I1―I2≠0,有干扰电流存在。

图2干扰信号对扭绞双线回路的干扰,见图3。

与图2不同的是,双线回路在中点位置进行了一次扭绞。

在L1上存在干扰电流I11和I12,在L2上存在干扰电流I21和I22, 干扰电流I=I21+I22-I11-I12,由于两段线路的条件相同,所以,总干扰电流I=0。

所以只要设置合理的绞距,就能达到消除干扰的目的。

图32、同一电缆内部各线对之间的串扰2.1 两个未绞双线回路间的串扰,见图4。

其中Ue为主串回路,Us为被串回路。

导线L1上的电流I1在被串回路L3和L4中产生感应电流I31和I41 ,I41>I31,在被串回路中形成串扰电流I11=I41-I31,同样,导线L2上的电流I2在被串回路L3和L4中产生感应电流I32和I42,I42>I32,在被串回路中形成串扰电流I12=I32-I42,总干扰电流I=I11+I12,由于L1与L3、L4的距离比L2较近,I=I11+I12>0,在回路Us中形成干扰。

同轴电缆为什么抗干扰能力强

同轴电缆为什么抗干扰能力强

同轴电缆为什么抗干扰能力强同轴电缆为什么抗干扰能力强?2010-08-08 19:43 1、同轴电缆同轴电缆具有价格较便宜、铺设较方便的优点(相对于光纤而言),所以,一般在小范围的监控系统中,由于传输距离很近,使用同轴电缆直接传送监控图象对图象质量的损伤不大,能满足实际要求。

但是,根据对同轴电缆自身特性的分析,当信号在同轴电缆内传输时其受到的衰减与传输距离和信号本身的频率有关。

一般来讲,信号频率越高,衰减越大。

视频信号的带宽很大,达到6MHz,并且,图象的色彩部分被调制在频率高端,这样,视频信号在同轴电缆内传输时不仅信号整体幅度受到衰减,而且各频率分量衰减量相差很大,特别是色彩部分衰减最大。

所以,同轴电缆只适合于近距离传输图象信号,当传输距离达到200米左右时,图象质量将会明显下降,特别是色彩变得暗淡,有失真感。

在工程实际中,为了延长传输距离,要使用同轴放大器。

同轴放大器对视频信号具有一定的放大,并且还能通过均衡调整对不同频率成分分别进行不同大小的补偿,以使接收端输出的视频信号失真尽量小。

但是,同轴放大器并不能无限制级联,一般在一个点到点系统中同轴放大器最多只能级联2到3个,否则无法保证视频传输质量,并且调整起来也很困难。

因此,在监控系统中使用同轴电缆时,为了保证有较好的图象质量,一般将传输距离范围限制在四、五百米左右。

另外,同轴电缆在监控系统中传输图象信号还存在着一些缺点:1)同轴电缆本身受气候变化影响大,图象质量受到一定影响;2)同轴电缆较粗,在密集监控应用时布线不太方便;3)同轴电缆一般只能传视频信号,如果系统中需要同时传输控制数据、音频等信号时,则需要另外布线;4)同轴电缆抗干扰能力有限,无法应用于强干扰环境;5)同轴放大器还存在着调整困难的缺点。

2、双绞线双绞线的使用由来已久,电话传输使用的就是双绞线,在很多工业控制系统中和干扰较大的场所以及远距离传输中都使用了双绞线,我们今天广泛使用的局域网也是使用双绞线对。

对绞线 抗干扰原理

对绞线 抗干扰原理

对绞线抗干扰原理绞线是一种用于传输信号的电缆,它具有抗干扰的特性。

它的原理是通过两根或多根导线以相互绞合的方式排列在一起,以降低外部电磁干扰对信号传输的影响。

这种设计使得绞线在电信号传输中表现出较低的传输损耗和较高的抗干扰性能。

绞线的抗干扰原理有以下几个方面:1. 相互干扰的抵消:绞线中的每根导线都会受到来自其他导线的干扰,但是由于它们相互绞合在一起,因此它们的干扰信号也会相互抵消。

这种相互干扰的抵消有助于降低干扰对信号品质的影响。

2. 电磁辐射的减少:通过绞线将信号线束在一起,可以减少电磁辐射的产生和传播。

因为电流在绞线中的路径是相互绞合的,电磁辐射的发生会被限制在绞线的局部区域内,进而减少对附近设备和电路的干扰。

3. 互感效应的利用:由于绞线中的导线都是互相靠近的,它们之间会产生互感效应。

互感效应使得绞线的电信号在传输过程中更加稳定,因为它可以提供对抗噪声和干扰的效果。

以上原理使得绞线在许多领域中被广泛应用,特别是在网络、通信和音频设备中。

通过使用绞线,可以有效地减少外部干扰信号对信号传输质量的影响,保证数据传输的准确性和可靠性。

为了最大限度地发挥绞线的抗干扰能力,我们在使用绞线的过程中可以采取以下几个指导措施:1. 选择合适的绞线类型:根据实际需要选择适合的绞线类型,以确保绞线的抗干扰能力符合要求。

不同的绞线类型具有不同的抗干扰性能,因此我们需要根据具体的应用场景来选择最合适的绞线类型。

2. 保持绞线完整性:绞线在使用过程中应尽量避免受到物理损坏,例如切割、弯曲过度等。

损坏的绞线会导致电信号的泄露和损耗,从而降低绞线的抗干扰能力。

3. 避免与其他电源和干扰源的靠近:保持绞线与其他电源和干扰源的一定距离,以减少外部干扰对信号传输的影响。

如果必须靠近其他电源或干扰源,可以采取屏蔽措施,例如使用屏蔽罩或屏蔽袋。

4. 定期检测和维护:定期检测和维护绞线的连接和接地状态,确保其良好的工作状态。

不良的连接或接地状态会导致信号传输的质量下降,从而影响绞线的抗干扰性能。

双绞线抗干扰及抗串扰原理

双绞线抗干扰及抗串扰原理

双绞线抗干扰及抗串扰原理一、双绞线传输原理双绞线传输器的基本原理 单端信号—差分信号—双绞线--差分信号—单端信号。

无论是有源传输器还是无源传输器都是这个原理。

同轴电缆属于屏蔽导体,因此可以支持千兆赫以上的频率。

正因为信号经由中央导线传送,而外层屏蔽则连接地线,所以同轴电缆被视为“非平衡”的线路系统视频信号传输可分为非平衡式和平衡式两种传输方式。

视频线传输是属于非平衡传输方式,双绞线传输是属于平衡传输方式,所以要用双绞线传输视频信号,必须在在摄像机输出时将非平衡的视频信号转换为平衡视频信号,在接收端再将平衡视频信号转换为非平衡视频信号。

一个基本的双绞线视频传输系统如图1所示。

图中的A1是差分信号发送放大器,完成非平衡信号到平衡信号的转换,A2是差分信号接收放大器,完成平衡信号到非平衡信号的转换。

图1二、双绞线消除干扰的原理在双绞线中,干扰主要来自以下两方面:第一,外部干扰。

第二,同一电缆内部对线之间的相互串扰。

1、双绞线对外部干扰的抑制1.1 干扰信号对平行线的干扰,见图2。

Us为干扰信号源,干扰电流Is在双线的两条导线L1、L2上产生的干扰电流分别是I1和I2。

由于L1距离干扰源较近,因此,I1>I2,I=I1―I2≠0,有干扰电流存在。

1.2 干扰信号对扭绞双线回路的干扰见图3。

与图2不同的是,双线回路在中点位置进行了一次扭绞。

在L1上存在干扰电流I11和I12,在L2上存在干扰电流I21和I22, 干扰电流I=I21+I22-I11-I12,由于两段线路的条件相同,所以,总干扰电流I=0。

所以只要设置合理的绞距,就能达到消除干扰的目的。

图32、同一电缆内部各线对之间的串扰2.1 两个未绞双线回路间的串扰见图4。

其中Ue为主串回路,Us为被串回路。

导线L1上的电流I1在被串回路L3和L4中产生感应电流I31和I41 ,I41>I31,在被串回路中形成串扰电流I11=I41-I31,同样,导线L2上的电流I2在被串回路L3和L4中产生感应电流I32和I42,I42>I32,在被串回路中形成串扰电流I12=I32-I42,总干扰电流I=I11+I12,由于L1与L3、L4的距离比L2较近,I=I11+I12>0,在回路Us中形成干扰。

低频连接器电缆组件的高频干扰分析和抑制技术

低频连接器电缆组件的高频干扰分析和抑制技术

低频连接器电缆组件的高频干扰分析和抑制技术引言:随着现代电子技术的快速发展,高频干扰问题也日益凸显。

在电子设备中,低频连接器电缆组件的高频干扰已成为制约设备性能提升的重要因素。

因此,研究低频连接器电缆组件的高频干扰分析和抑制技术具有重要的理论和应用价值。

1. 高频干扰的来源和影响1.1 高频干扰的来源高频干扰主要来自于电子设备内部其他部件的工作信号,以及外部环境电磁辐射等。

其中,电子设备内部的高频信号是主要的干扰源,如中央处理器、时钟信号等。

1.2 高频干扰的影响高频干扰会对低频连接器电缆组件的正常工作产生不利影响,主要表现为信号失真、传输速率下降、误码率增加等问题,从而导致设备性能下降以及对系统稳定性的影响。

2. 高频干扰的分析方法2.1 高频干扰的测量通过使用频谱分析仪等专业设备对电子设备的高频干扰进行测量,可以得到干扰信号的频率、功率等特性参数。

2.2 高频干扰的模拟仿真利用计算机仿真软件对低频连接器电缆组件的高频干扰进行模拟,可以帮助分析和评估不同设计方案对干扰抑制的效果。

3. 低频连接器电缆组件的高频干扰抑制技术3.1 设计规范和防护措施在低频连接器电缆组件的设计中,应遵循相关的设计规范和标准,采取适当的防护措施,如适当的屏蔽、接地等,以降低干扰的影响。

3.2 电磁兼容性设计通过合理的电磁兼容性设计,包括信号布线、地线设计等,可以减小高频干扰的传播路径,从而降低对低频连接器电缆组件的干扰。

3.3 滤波技术利用滤波器等设备对噪声进行滤波处理,可以有效地降低高频干扰对信号的影响,并提高系统的抗干扰能力。

3.4 可调谐抑制技术利用可调谐滤波器等技术,实现对不同频率的高频干扰进行抑制,从而提高低频连接器电缆组件的抗干扰能力。

4. 高频干扰抑制技术的实际应用4.1 工业自动化领域在工业自动化领域中,低频连接器电缆组件的高频干扰抑制技术可以提高系统的稳定性和可靠性,减小因高频干扰引起的故障率。

4.2 通信网络领域在通信网络领域中,高频干扰对低频连接器电缆组件的影响可能导致通信质量下降,采用高频干扰抑制技术可以提高通信系统的性能和稳定性。

电缆敷设过程中减小干扰的方法

电缆敷设过程中减小干扰的方法

减少干扰1. 严格按照电缆传输的性质进行分类,将高压动力、低压动力、控制信号、模拟量信号分层,均衡每层电缆桥架的电缆数量,避免不同信号的电缆相互干扰,这能直接的最大限度地减少干扰源。

2. 施工前将需敷设的电缆盘集中堆放在各自的电缆盘支架上,将电缆盘上的规格、型号、电压等级与需敷设的电缆进行对照,以免放错电缆,以免必须带屏蔽的信号电缆没有屏蔽,造成干扰。

3. 在低压动力层桥架敷设400V动力电缆,在控制电缆层桥架敷设控制电缆;在电缆托盘内敷设低电平电缆包括屏蔽控制电缆、计算机预制电缆;在专用小线槽内敷设计算机通讯电缆和计算机光缆等,低电平电缆与强电电缆间须隔开一定的敷设距离,以免强电电缆影响低电平电缆的正常运行和造成干扰。

4. 控制电缆与高压电力电缆并行敷设、或在110千伏及以上电压配电装置内敷设,而且当二次回路为晶体管控制或保护设备时,采用以下降低干扰的措施:一般选用具有金属屏蔽的控制电缆;a.与高压电力电缆并行敷设的控制电缆,在可能范围内应尽量远离;b.配电装置内不宜采用地面式无屏蔽的槽沟;c.配电装置内的电缆沟路径选择,在没有其他条件限制时,宜距离耦合电容器、避雷器、避雷针位置远一些;必要时,可沿控制电缆并行敷设专用屏蔽线或附加金属罩,也可选用绞对线型的控制电缆。

5 在电缆终端头、电缆接头、拐弯处、夹层内、隧道及竖井的两端、人井内等地方,电缆上应装设标志牌。

标志牌上应注明线路编号。

当无编号时,应写明电缆型号、规格及起迄地点;并联使用的电缆应有顺序号。

标志牌的字迹应清晰不易脱落。

标志牌规格宜统一。

标志牌应能防腐,挂装应牢固。

6 电缆终端热缩管采用不同颜色以区分动力、控制及信号电缆。

在每个柜进线绑扎时将动力电缆、电源电缆与控制电缆及信号电缆分开绑扎,避免相互干扰。

电动门的动力电缆(380V AC)与控制电缆、信号电缆不得共用一根保护管。

电缆接线过程中减小干扰的方法:外部接线有可能会给DCS控制系统带进无线电和电磁干扰,使用双绞线可以降低这些干扰的影响。

消除干扰的常用方法

消除干扰的常用方法

消除干扰的常用方法消除干扰的常用方法干扰是指在信号传输过程中,由于各种原因引起的信号失真或丢失,从而影响到信号的正确传输和接收。

在现代通讯技术中,干扰是一个普遍存在的问题。

为了保证通讯质量,我们需要采取一些措施来消除干扰。

下面介绍几种常用的消除干扰的方法。

一、屏蔽法屏蔽法是指通过在传输线路上设置屏蔽层来隔离外部电磁场对信号的影响。

屏蔽层可以采用金属箔、金属网、金属编织管等材料制成。

在电缆或导线周围包覆一层这样的材料,可以有效地阻挡外部电磁波对信号的影响。

二、滤波法滤波法是指通过滤波器将频率范围内的干扰信号滤除,从而使被传输的信号不受影响。

滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型。

根据需要选择合适类型和参数的滤波器,可以有效地消除干扰信号。

三、隔离法隔离法是指通过隔离传输线路和干扰源之间的物理接触,从而减少干扰。

常用的隔离方法有电磁屏蔽、光电隔离和变压器隔离等。

在实际应用中,根据需要选择合适的隔离方法可以有效地消除干扰。

四、增益控制法增益控制法是指通过调节信号放大器的增益来控制信号强度,从而减少干扰。

在实际应用中,为了保证通讯质量,通常会设置一个合适的增益范围,在此范围内调节增益可以有效地消除干扰。

五、接地法接地法是指将系统中所有设备都接到同一地线上,从而减少因不同设备之间的接地差异引起的干扰。

在实际应用中,要注意保证接地点之间的电阻值小于规定值,并且避免出现环形接地等问题。

六、抗干扰设计抗干扰设计是指在系统设计阶段就考虑到可能存在的各种干扰因素,并采取相应的措施来减少干扰。

常用的抗干扰设计措施包括信号调制、编码、差分传输、对称布局等。

在实际应用中,采用合适的抗干扰设计可以有效地提高系统的抗干扰能力。

七、综合应用在实际应用中,由于各种原因可能同时存在多种干扰因素,因此需要综合运用以上各种方法来消除干扰。

例如,在设计通讯系统时可以采用隔离法和屏蔽法相结合的方式;在调试过程中可以采用滤波法和增益控制法相结合的方式。

提升电缆抗干扰性能的方法研究

提升电缆抗干扰性能的方法研究

提升电缆抗干扰性能的方法研究在当今高度信息化的时代,电缆作为信息传输的重要载体,其抗干扰性能的优劣直接影响着信号传输的质量和可靠性。

无论是在工业生产、通信领域,还是在日常生活中,我们都希望电缆能够稳定、准确地传输信号,不受外界干扰的影响。

然而,实际情况中,电缆常常会受到各种干扰因素的困扰,导致信号失真、误码率增加等问题。

因此,研究提升电缆抗干扰性能的方法具有重要的现实意义。

一、电缆干扰的来源要提升电缆的抗干扰性能,首先需要了解干扰的来源。

电缆干扰主要来自以下几个方面:1、电磁辐射干扰电磁辐射干扰是指周围的电子设备、电气设备等产生的电磁波对电缆信号产生的干扰。

例如,附近的高压输电线路、无线电发射台、电焊机等设备在工作时会向外辐射电磁波,这些电磁波可能会耦合到电缆上,影响电缆内的信号传输。

2、静电耦合干扰当电缆与其他带电物体之间存在电容耦合时,就会产生静电耦合干扰。

这种干扰通常在干燥的环境中较为明显,例如在冬季,人体与物体摩擦产生的静电可能会通过电容耦合的方式影响电缆的信号。

3、电磁感应干扰当电缆附近存在变化的磁场时,会在电缆中产生感应电动势,从而形成电磁感应干扰。

例如,电机的转动、变压器的工作等都会产生变化的磁场,可能会对附近的电缆造成干扰。

4、接地回路干扰如果电缆的接地系统不合理,可能会形成接地回路,导致电流在回路中流动,从而产生干扰电压。

这种干扰在多个设备共用接地系统时较为常见。

二、提升电缆抗干扰性能的方法针对上述干扰来源,可以采取以下方法来提升电缆的抗干扰性能:1、合理布线合理的布线是减少电缆干扰的重要措施之一。

在布线时,应尽量避免电缆与强电线路平行敷设,如果无法避免,应保持足够的间距。

同时,应尽量减少电缆的弯曲和交叉,以降低信号反射和衰减。

此外,对于不同类型的信号电缆,应分别进行敷设,避免相互干扰。

2、屏蔽技术屏蔽是一种常用的抗干扰技术。

通过在电缆外层包裹一层金属屏蔽层,可以有效地阻挡外界电磁波的侵入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆的抗干扰技术
1、双绞线
双绞线是为了增强抵抗来自相邻线缆的干扰,同时降低自身信号对外界的干扰而诞生的技术,通常用于信号传输。

双绞线可使相邻两个环间的感应磁场相互抵消,从而起到抗干扰的作用。

双绞电缆内,不同线对具有不同的“节距”。

其目的是为了不受邻近线缆的干扰。

一般来说,捻绞越密其抗干扰能力就越强。

2、编织屏蔽线
在绝缘体外侧设置与导体同样材料的屏蔽层,使电磁力的影响被屏蔽层吸收。

其中编制屏蔽是较常使用的抗外部干扰的结构。

这是对于范围宽广的频带都有效的抗干扰技术。

抗干扰强度取决于屏蔽层的包覆率。

使用大量的铜丝(像衣物的纱线那样),支数越高抗干扰越强。

但是,为了提高抗干扰效果一味地提高包覆率,会使电缆变得僵硬。

因此,通常屏蔽的包覆率约为70~90%(最高不超过96%)。

3、缠带屏蔽线
相较编制屏蔽缠带屏蔽是100%包覆率的抗干扰技术,用PET上覆铝箔的屏蔽带缠绕线缆。

但在高频带可能无效。

用PET与铝箔的屏蔽带缠绕的方法,材料及制造的成本都比编织屏蔽低,但电缆较僵硬。

并且如上所述,高频带部分效果较差。

针对高频干扰,可采用磁性屏蔽带电缆。

但这种技术太昂贵,仅用于特殊的电线中。

(MISUMI的NASWS采用电磁屏蔽)来自oitek。

相关文档
最新文档