贵阳市2018年初中毕业生学业适应性考试 数学试卷 (图片版)

合集下载

贵州省贵阳市2018年中考数学试题卷(word版,含答案)

贵州省贵阳市2018年中考数学试题卷(word版,含答案)

秘密★启用前贵阳市2018 年初中毕业生学业(升学)考试试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共4 页,三个答题,共25 小题,满分150 分,考试时间为120 分钟.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.可以使用科学计算器.一、选这题(以下每个小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3 分,共30 分)1.当x =-1时,代数式3x +1的值是(B )(A)-1(B)-2(C)-4(D)-4【解】3⨯(-1)+1=-22.如图,在∆ABC 中有四条线段DE,BE,EF,FG ,其中有一条线段是∆ABC 的中线,则该线段是( B )(A)线段DE (B)线段BE (C)线段EF (D)线段FG第2 题第3 题第5 题3.如图是一个几何体的主视图和俯视图,则这个几何体是(A )(A)三棱柱(B)正方体(C)三棱锥(D)长方体4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( D )(A)抽取乙校初二年级学生进行调查(B)在丙校随机抽取600 名学生进行调查(C)随机抽取150 名老师进行调查(D)在四个学校各随机抽取150 名学生进行调查5.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF =3,那么菱形ABCD 的周长为(A )(A)24(B)18 (C)12(D)9【解】E、F 分别是AC、AB 的中点且EF =3∴BC = 2EF = 6四边形ABCD 是菱形∴AB =BC =CD =DA =6∴菱形ABCD 的周长为6⨯ 4 = 24 故选A6.如图,数轴上有三个点A、B、C ,若点A、B 表示的数互为相反数,则图中点C 对应的数是(C )(A)-2(B)0 (C)1(D)4【解】记点A、B、C 对应的数分别为a、b、ca、b互为相反数∴a +b = 0由图可知:b -a = 6∴c= 17.如图,A、B、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( B )(A)1(B)1 (C)23(D)33【解】图解8.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( A )(A)1(B)1(C)1(D)2 12 10 6 5【解】见图∵两个棋子不在同一条网格线上∴两个棋子必在对角线上,如图:有6 条对角线供这两个棋子摆放,考虑每条对角线两端点皆可摆放黑、白棋子,故有6×2=12种可能,而满足题意的只有一种可能,从而恰好摆放成如图所示位置的概率是1 129.一次函数y =kx -1的图像经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为(C )(A)(-5,3)(B)(1,-3)(C)(2,2)(D)(5,-1)【解】∵y 的值随x 值的增大而增大∴k > 0(A)(-5,3)→k =y +1=3+1=-4< 0 x - 5 5(B)(1,-3)→k =y +1=-3+1=-2 < 0 x 1(C)(2,2)→k =y +1=2 +1=3> 0 x 2 2(D)(5,-1)→k =y +1=-1+1= 0 x 510.已知二次函数y =-x2 +x +6及一次函数y =-x+m ,将该二次函数在x 轴上方的图像沿x 轴翻折到x 轴下方,图像的其余部分不变,得到一个新函数(如图所示),当直线y =-x+m 与新图像有4 个交点时,m的取值范围是(D )(A)-25<m < 3 4(B)-25<m < 2 4(C)- 2 <m < 3 (D)- 6 <m <-2【解】图解故选D二、填空题(每小题 4 分,共 20 分)11.某班 50 名学生在 2018 年适应性考试中,数学成绩在 100~110 分这个分数段 的频率为 0.2,则该班在这个分数段的学生为 10 人.【解】 频数 = 频率 ⇒ 频数 = 频率 ⨯ 总数 = 50 ⨯ 0.2 = 10人总数12.如图,过 x 轴上任意一点 P 作 y 轴的平行线,分别与反比例函数 y = 3( x > 0) ,xy = - 6( x > 0) 的图像交于 A 点和 B 点,若 C 为 y 轴任意一点,连接 AB 、BC ,则x9∆ABC 的面积为 .2【解】13.如图,点 M 、N 分别是正五边形 ABCDE 的两边 AB 、BC 上的点,且 AM = BN , 点 O 是正五边形的中心,则 ∠MON 的度数是 度.⎨【解】方法一:特殊位置,即 OM ⊥ AB ,ON ⊥ BC 时, ∠MON =360︒= 72︒ 5方法二:一般位置,作 OP ⊥ AB ,OQ ⊥ BC ,如图所示:易得: Rt ∆OPM ≌ Rt ∆OQN ,则 ∠POM = ∠QON∠POQ = ∠POM + ∠MOQ 由∠NOM = ∠NOQ + ∠MOQ∴ ∠MON = ∠POQ =360︒= 72︒ 514.已知关于 x 的不等式组 ⎧5 - 3x ≥ -1 ⎩a - x < 0 【解】由 5 - 3x ≥ -1 得: x ≤ 2由 a - x < 0 得: x > a无解,则 a 的取值范围是 .当 a < 2 时,不等式组有解,即 a < x ≤ 2 ,如图:当 a = 2 时,不等式组有解,即 x = 2 ,如图:当 a > 2 时,不等式组无解,如图:综上所述: a > 2 .15.如图,在 ∆ABC 中, BC = 6 , BC 边上的高为 4,在 ∆ABC 的内部作一个矩形 EFGH ,使 EF 在 BC 边上,另外两个顶点分别在 AB 、AC 边上,则对角线 EG 长12 13 的最小值为.13【解】作 AM ⊥ BC 于点 M ,交 DG 于点 N ,设 DE = x ,由题意知: AM = 4,BC = 6 如图:∵四边形 DEFG 是矩形 ∴ DG ∥ EF ∴ ∆ADG ∽ ∆ABC∴AN = DG 即AM BC 4 - x = DG ⇒ DG = 12 - 3x4 6 2EG =DE 2 + DG 2 =x 2 + (12 - 3x )2 = 在 Rt ∆EDG 中13 ( x - 24 )2 + 1442 9 13 13∴当 x = 24 时, EG min = 13 ( 24 - 24 )2 + 144 = 144 =12 13 13 9 13 13 13 13 13三、解答题(本大题10 个小题,共100 分)17.(本题满分10 分)在6·26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300 人,现从中各随机抽取20 名同学的测试成绩进行调查分析,成绩如下:初一:68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67初二:69 97 96 89 98 100 99 100 95 10099 69 97 100 99 94 79 99 98 79(1)根据上述数据,将下列表格补充完成整:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共135 人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.初二年级总体掌握禁毒知识水平较好,因为平均数和中位数都高于初一年级.18.(本题满分8 分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形 和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m = 7 ,n = 4 ,求拼成矩形的面积.【解】(1)拼成矩形的周长=m +n +m -n = 2m(2)拼成举行的哦面积=(m -n)(m +n) = (7 -4)⨯ (7 + 4) = 3319.(本题满分 8 分)如图①,在 Rt ∆ABC 中,以下是小亮探究 间关系的方法:a sin A 与b 之sin B图① 图②s in A = a ,sin B = b∴ c = c a,c =c b ∴ a = b sin A sin B sin A sin B根据你掌握的三角函数知识,在图②的锐角 ∆ABC 中,探究 之间的关系,并写出探究过程.a sin A 、b sin B、 csin C【解】作 CM ⊥ AB 于点 M ,作 AN ⊥ BC 于点 N ,如图所示:在 Rt ∆AMC 中,sin A =CM AC= CMb⇒ CM = b ⋅ s in A 在 Rt ∆BMC 中,sin B =CM BC = CMa⇒ CM = a ⋅ s in B∴ b ⋅ sin A = a ⋅ sin B∴ b sin B = a sin A在 Rt ∆ANC 中, sin C =ANAC在 Rt ∆ANB 中, sin B = AN AB=AN⇒ AN = b ⋅ sin C b= AN ⇒ AN = c ⋅ s in Bc∴ b ⋅ sin C = c ⋅ sin B∴ b sin B∴ a sin A =c sin C= b sin B= c sin C20.(本题满分10 分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭 赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10 元,用 480 元购买乙种树苗的棵数恰好与用360 元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50 棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500 元,那么他们最多可购买多少棵乙种树苗?【解】(1)设甲种树苗每棵的价格是x 元,由题意知:乙种树苗每棵的价格是x +10元.则 480 =360 ,解得:x = 30x +10 x即,甲、乙两种树苗每棵的价格分别是30 元、40元(2)设他们购买乙种树苗y 棵,则购买甲种树苗50 -y 棵.由(1)知:甲种树苗每棵30 元,乙种树苗每棵40 元甲种树苗降低10%后为:30⨯(1-10%)= 27 元由题意知:27⨯(50 -y)+40y ≤1500 解得:y ≤150 ≈ 11.5413所以,他们最多可以购买11 棵乙种树苗.21.(本题满分10 分)如图,在平行四边形ABCD 中,AE 是BC 边上的高,点 F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称,(1)求证:∆AEF 是等边三角形;(2)若AB = 2 ,求∆AFD 的面积.证明(1):∵四边形ABCD 是平行四边形∴AD ∥BC∵AE ⊥BC∴AE ⊥AD 即∠EAD = 90︒在Rt∆EAD 中∵F 是ED 的中点∴AF =1 ED =EF2∵AE 与AF 关于AG 对称∴AE =AF∴AE =AF =EF∴∆AEF 是等边三角形(3)由(1)知∆AEF 是等边三角形,则∠EAF =∠AEF =60︒,∠EAG =∠FAG = 30︒ 在Rt∆EAD 中,∠ADE = 30︒∵AB 与AG 关于AE 对称∴∠BAE =∠GAE = 30︒在Rt∆AEB 中,AB = 2则AE =AB⋅cos∠BAE =2⨯cos30︒=3在Rt∆EAD 中,AD =AE ⋅tan ∠AEF = 3 ⨯tan 60︒= 3∴S =1 S=1 ⨯1 ⨯AE ⨯AD =1 ⨯1 ⨯ 3 ⨯3 =3 3∆AFD 2 ∆AED 2 2 2 2 422.(本题满分10 分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分 别标有数字1,2,3,4,图②是一个正六边形棋盘.现通过掷骰子的方式玩跳棋 游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和 是几,就从图②中的A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一 次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C 处的概率是;C 处的概率.【解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是 6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点C 处的数字是 8所以,随机掷一次骰子,则棋子跳动到点C 处的概率是1 .4(2)随机掷两次骰子,棋子最终跳动到点C 处的数字是14,所以,随机掷两次骰子,棋子最终跳动到点C 处的概率是3 .16⎪ ⎪ ⎨b 23.(本题满分 10 分)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好 者,一滑雪者从山坡滑下,测得滑行距离 y (单位:m )与滑行时间 x (单位:s )之间的关系可以近似的用二次函数来表示.距离大约 800m ,他需要多少时间才能到达终点?(2)将得到的二次函数图像补充完整后,向左平移 2 个单位,再向上平移 5 个 单位,求平移后的函数表达. 【解】(1)设二次函数表达式为: y = ax 2 + bx + c ,则⎧0 = c ⎪ ⎨4 = a + b + c ⎩12 = 4a + 2b + c ⎧a = 2解得: ⎪ = 2 ,故 y = 2 x 2+ 2 x ,x > 0 ⎩c = 0(2)由(1)知: y = 2 x 2 + 2 x向左平移 2 各单位得: y = 2( x + 2)2 + 2( x + 2) = 2 x 2 + 10 x + 12向上平移 5 个单位得: y = 2 x 2 + 10 x + 12 + 5 = 2 x 2 + 10 x + 1723.(本题满分10分)如图,AB 为⊙O 的直径,且AB = 4 ,点C在半圆上,OC ⊥AB , 垂足为点O ,P 为半圆上任意一点,过P 点作PE ⊥OC 于点E,设∆OPE 的内心为M ,连接OM、PM .(1)求∠OMP 的度数;(2)当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长.【解】(1)∵PE ⊥OC∴∠PEO = 90︒ ∴∠EPO +∠EOP = 90︒ ∵M 是∆OPE 的内心∴∠EOM =∠POM,∠EPM =∠OPM∴∠POM +∠OPM =1 (∠EPO +∠EOP) = 45︒2在∆POM 中,∠OMP =180︒- (∠POM +∠OPM ) =180︒- 45︒=135︒(2)连接CM ,作过O、M、C 三点的外接圆,即⊙N ,连接NC、NO ,在⊙N的优弧上任取一点H ,连接HC、HO .如图所示:由题意知:OP =OC,∠POM =∠COM,OM =OM∴∆POM ≌∆COM∴∠OMP =∠OMC =135︒在⊙N 的内接四边形CMOH 中,∠H =180︒-∠OMC =180︒-135︒= 45︒∴∠N =2⨯ 45︒= 90︒由题意知:OC =1 AB =1 ⨯ 4 = 22 2在等腰直角三角形CNO 中,NC =NO由勾股定理得:NC2 +NO2 =OC2 即2N C2 = 22 ⇒NC = 2当点P在上运动时,点M 在上运动90︒⨯π⨯∴的长为:180︒∵与关于OC 对称2=2π2∴当点P 在上运动时,点M 所在弧上的运动路径长与当点P 在上运动时,点M 在上运动的路径长相等∴当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长为:2⨯2π=2π224.(本题满分12 分)如图,在矩形ABCD 中,AB = 2,AD = 的一点,且BP = 2CP .3,P 是BC 边上(1)用尺规在图①中作出CD 边上的中点E ,连接AE、BE(保留作图痕迹,不 写作法);(2)如图②,在(1)的条件下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并延长交AB 的延长线于点F ,连接AP ,不添加辅助线,∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向或平移方向和平移距离)【解】(1)分别以D、C 为圆心,以相同且大于1 DC =2接MN 交DC 于点E ,即为DC 的中点,如下图:3为半径作圆相交于M、N 两点,连2(2)由题意及(1)知:EC =1 AB =1 ⨯ 2 = 12 2在Rt∆BCE 中,BC = 3∴tan ∠BEC =BC =3EC ∴∠BEC = 60︒由勾股定理得:EB =EC2 +BC2 =12 + ( 3)2 = 2同理:AE = 2∴AE =AB =EB∴∠AEB =∠ABE =∠BAE = 60︒∴∠AEB =∠BEC = 60︒∴EB 是否平分∠AEC .(3)∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形.理由如下:∵BP = 2CP,AD =BC =3∴BP = 2 3 ,CP =33 3在Rt∆ECP 中,tan ∠EPC =EC =3PC∴∠ECP = 60︒ ∴∠BPF = 60︒由勾股定理得:EP = EC2 +CP2 = 12 + ( 3)2 =2 33 3∴EP =PB由题意知:∠C =∠ABP = 90︒∵BP=AB=2 CP EC∴∆ABP ∽∆ECP∴∠APB = 60︒∴∠BPF =∠APB = 60︒∵∠ABP =∠FBP = 90︒,BP =BP∴Rt∆ABP ≌Rt∆FBP∵∠APB =∠CPE = 60︒∴∠EPA =180︒- (∠APB +∠CPE)= 60︒∴∠APB =∠APE又AP =AP∴Rt∆ABP ≌Rt∆AEP∴Rt∆ABP ≌Rt∆AEP ≌Rt∆FBP∴∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形.-: APFB PFP 120. ;:APFB P 120.PF3D=:EFIDJf FDEC_ -- -JSJ DSSB1FAB FA3 25.(本题满分 12 分)如图,在平面直角坐标系 xoy 中,点 A 是反比例函数y = m - m 2 x ( x > 0,m > 1) 图像上一点,点 A 的横坐标为 m ,点 B (0,- m ) 是 y 轴负半轴上的一点,连接 AB , AC ⊥ AB ,交 y 于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴平行线交 AE 于点 E . (1)当 m = 3 时,求点 A 的坐标; (2) DE = ,设点 D 的坐标为( x ,y ),求 y 关于 x 的函数关系式和自变量的取值范围;(3)连接 BD ,过点 A 作 BD 的平行线,与(2)中的函数图像交于点 F ,当 m 为 何值时,以 A 、B 、D 、F 为顶点的四边形是平行四边形?【解】(1)当 m = 3 时, x A = 3 ,则 y A =m 3 - m 2 x A33 - 32= = 6 3故: A (3,6)(2)作 AF ⊥ y 轴于点 F ,则 ∠CFA = 90︒ .由题意知: A (m , m 2 - m ),B (0,- m )C A ⊥ AB ∴ ∠CAB = 90︒∴ ∠CAB = ∠CFA = 90︒∴ ∠ABC + ∠FAB = ∠FAB + ∠CAF = 90︒∴ ∠CAF = ∠ABC∴ Rt ∆AFC ∽ Rt ∆BFA∴ FA = CF ,即 m= CF ∴ C F = 1 FB AF m 2 - m - (-m ) mAD = AC ,∠E = ∠AFC = 90︒,∠CAF = ∠DAE最大最全最精的教育资源网 ⎨ ∴ Rt ∆AFC ≌ Rt ∆AED ∴ AE = AF = m ,DE = CF = 1 ∴ D (2m ,m 2 - m - 1)消去 m 得: y = 1 x 2 - 1x - 1,x > 24 2⎧x = 2m ∴ ⎨ ⎩ y = m 2- m - 1综上: DE = 1,y = 1 x 2 - 1x - 1,x > 24 2 (3) x > 2, A (m , m 2 - m ),B (0,- m ) , D (2m ,m 2 - m - 1)方法一:利用平行四边形对角线互相平分以及中点坐标公式 当AB 为对角线时⎧x A + x B = x D + x F⎨⎧m + 0 = 即 22m + x F 2⇒ F (-m ,1 - m ) ⎩ y A + y B = y D + y F ⎩m - m + (-m ) = m - m - 1 + y F则1 - m = 1 (-m )2 - 1(-m ) - 1 ⇒ m = 3 ±17 (舍)4 2(考虑到二次函数图像不完整,只有x > 2 部分,故此情况不用写) 当 AD 为对角线时:⎧x A + x D = x B + x F⎧m + 2m = 0 + x F 即(3 221)⎨⎩ y A + y D = y B + y F ⎨⎩m 2 - m + m 2 ⇒ F - m - 1 = -m + y F最大最全最精的教育资源网 m ,m- m -最大最全最精的教育资源网 F F 2m 2 - m - 1 = 1 (3m )2 - 1(3m ) - 1 ⇒ m = 0(舍)或m = 24 2综上:当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形. 方法二:坐标平移法(对边相等+点平移方向相同)⎧x A - x F = x B - x D ⎨⎧m- x F = 0 - 2m 即⎨⇒ F (3m ,2m 2 - m - 1) ⎩ y A - y F = y B - y D ⎩m 2 - m - y = -m - (m 2- m - 1)代入 y = 1 x 2 - 1 x - 1 得 2m 2 - m - 1 = 1 (3m )2 - 1(3m ) - 1 ⇒ m = 0(舍)或m = 24 2 4 2⎧x A - x F = x D - x B 或⎨ ⎧m - x F = 2m - 0 即⎨⇒ F (-m ,1 - m ) ⎩ y A - y F = y D - y B ⎩m 2- m - y = m 2- m -1 - (-m )代入y = 1 x 2 - 1 x - 1 1 - m = 1 (-m )2 - 1(-m ) - 1 ⇒ m = 3 ±17 (舍)4 2 4 2(考虑到二次函数图像不完整,只有x > 2 部分,故此情况不用写)综上:当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形. 方法三:官方参考答案(过程相对复杂)将 F 点坐标代入代入 y = 1 x 2 - 1x - 1 得 m = 0(舍)或m = 24 2所以,当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形.。

〖汇总3套试卷〗贵阳市某达标中学2018年七年级下学期数学期末适应性试题

〖汇总3套试卷〗贵阳市某达标中学2018年七年级下学期数学期末适应性试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,点E 在AB 的延长线上,下列条件中不能判断AB //CD 的是( )A .∠1=∠2B .∠3=∠4C .∠C =∠CBED .∠C +∠ABC =180°【答案】B 【解析】根据平行线的判定分别进行分析可得答案.【详解】A 、根据内错角相等,两直线平行可得AB ∥CD ,故此选项不合题意;B 、根据内错角相等,两直线平行可得AD ∥BC ,故此选项符合题意;C 、根据内错角相等,两直线平行可得AB ∥CD ,故此选项不合题意;D 、根据同旁内角互补,两直线平行可得AB ∥CD ,故此选项不合题意;故选B .【点睛】此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.2.若ABC ∆中,90A ∠=︒,且30B C ∠-∠=︒,那么C ∠的度数为( )A .30B .40︒C .50︒D .60︒【答案】A【解析】根据三角形的内角和定理进行计算即可得解.【详解】∵90A ∠=︒∴+1809090B C ∠∠=︒-︒=︒∵30B C ∠-∠=︒∴6030B C ∠=︒∠=︒,,故选:A.【点睛】本题主要考查了三角形的内角和定理,熟练掌握角的和差计算是解决本题的关键.3.在中,,于,平分交于,则下列结论一定成立的是( )A.B.C.D.【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.4.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D,C两点分别落在点D′,C′的位置,∠DEF=∠D′EF,并利用量角器量得∠EFB=66°,则∠AED′的度数为()A.66°B.132°C.48°D.38°【答案】C【解析】先根据平角的定义求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【详解】解:∵∠EFB=66°,∴∠EFC=180°-66°=114°,∵四边形ABCD是长方形,∴∠DEF=180°-∠EFC=180°-114°=66°,∵沿EF 折叠D 和D′重合,∴∠D′EF=∠DEF=66°,∴∠AED′=180°-66°-66°=48°.故选C .【点睛】本题考查了折叠性质,矩形性质,平行线的性质的应用,解题时注意:两直线平行,同旁内角互补. 5.下列四个数中,是无理数的是( )A .2πB .227CD .2【答案】A【解析】试题分析:根据无理数是无限不循环小数,可得A.2π是无理数,B .227,C D .2是有理数,故选A .考点:无理数6.要使等式(x ﹣y )2+M=(x+y )2成立,整式M 应是( )A .2xyB .4xyC .﹣4xyD .﹣2xy 【答案】B【解析】根据加数与和的关系得到:M=(x+y )2﹣(x ﹣y )2,对右边的式子化简即可.【详解】由题意得:M=(x+y )2﹣(x ﹣y )2=4xy .故选B .【点睛】本题考查了完全平方公式,熟练掌握公式是解题的关键.7.在下列各组条件中,不能说明ABC DEF ∆∆≌的是( )A .AB=DE ,∠B=∠E ,∠C=∠FB .AB=DE ,∠A=∠D ,∠B=∠EC .AC=DF ,BC=EF ,∠A=∠DD .AB=DE ,BC=EF ,AC=ED 【答案】C【解析】根据各个选项和全等三角形的判定可以解答本题.【详解】AB=DE,∠B=∠E,∠C=∠F,根据AAS 可以判定△ABC ≌△DEF ,故选项A 不符合题意;AB=DE,∠A=∠D,∠B=∠E,根据ASA 可以可以判定△ABC ≌△DEF ,故选项B 不符合题意;AC=DF,BC=EF,∠A=∠D,根据SSA 不可以判定△ABC ≌△DEF ,故选项C 符合题意;AB=DE,BC=EF,AC=ED,根据SSS 可以可以判定△ABC ≌△DEF ,故选项D 不符合题意;故选C.此题考查全等三角形的判定,解题关键在于掌握判定定理.8.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED的度数为( )A.108°B.120°C.126°D.144°【答案】C【解析】解:∵AE平分∠BAC∴∠=∠=36BAE CAEED AC∴∠+∠=180CAE DEADEA∴∠=-=18036144AED AEB BED∠+∠+∠=360∴∠=--=36014490126BED故选C.9.在探究平行线的判定——基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行时,老师布置了这样的任务:请同学们分组在学案上(如图),用直尺和三角尺画出过点P与直线AB平行的直线PQ;并思考直尺和三角尺在画图过程中所起的作用.小菲和小明所在的小组是这样做的:他们选取直尺和含有45°角的三角尺,用平移三角尺的画图方法画出AB的平行线PQ,并将实际画图过程抽象出平面几何图形(如图).以下是小菲和小明所在小组关于直尺和三角尺作用的讨论:①在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°②由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中QP为截线③初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角④在画图过程中,直尺可以由直线CD代替⑤在“三线八角图”中,因为AB和CD是截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”其中,正确的是()A.①②⑤B.①③④C.②④⑤D.③④⑤【答案】B【解析】这种画法就是画同位角∠DMB和∠DEP相等,从而判断PQ∥AB,从而根据平行线的判定定理对各小题进行判断.【详解】在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°,所以①正确;由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中CD为截线,所以②错误;初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角,所以③正确;在画图过程中,直尺可以由直线CD代替,所以④正确;⑤在“三线八角图”中,因为AB和PQ是一组平行线,CD为截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,所以⑤错误.故选:B.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的判定.10.如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做()A.代入法B.换元法C.数形结合D.分类讨论【答案】C【解析】本题利用实数与数轴上的点对应关系结合数学思想即可求解答.表示点P ,这是利用直观的图形--数轴表示抽象的无理数,∴说明问题的方式体现的数学思想方法叫做数形结合,∴A ,B ,D 的说法显然不正确.故选:C .【点睛】本题考查的是数学思想方法,做这类题可用逐个排除法,显然A ,B ,D 所说方法不对.二、填空题题11.由不同生产商提供10套校服参加比选,甲、乙、两三个同学分别参加比选,比选后结果是:每套校服至少有一人选中,且每人都选中了其中的6套校服.如果将其中只有1人选中的校服称作“不受欢迎校服”,2人选中的校服称作“颇受欢迎校服”,3人都选中的校服称作“最受欢迎校服”,则“不受欢迎校服”比“最受欢迎校服”多________________套.【答案】1【解析】设“最受欢迎校服”的套数为x, “颇受欢迎校服”的套数为y,“不受欢迎校服”的套数为z,根据题意列出三元一次方程组,再得到“不受欢迎校服”比“最受欢迎校服”多的套数.【详解】设“最受欢迎校服”的套数为x, “颇受欢迎校服”的套数为y,“不受欢迎校服”的套数为z,根据题意可得103263x y z x y z ++=⎧⎨++=⨯⎩①② ②-①得1x+y=8③①-③得z-x=1即“不受欢迎校服”比“最受欢迎校服”多1套故答案为:1.【点睛】此题主要考查三元一次方程组的应用,解题的关键是根据题意找到数量关系得到方程组求解. 12.若(a-2)0=1,则a 的取值范围是___________.【答案】a≠2【解析】根据a 0=2,(a≠0),可得底数不为0,可得答案.【详解】(a-2)0=2,∴a-2≠0,a≠2,故答案为a≠2.【点睛】本题考查了零指数幂,任何非0的0次幂都等于2.13.如果关于x,y的方程组2421mx y nx ny m+=⎧⎨-=-⎩的解是11xy=⎧⎨=-⎩,则m=______.【答案】3【解析】把x、y的值代入原方程组可转化成关于m、n的二元一次方程组,解方程组即可求出m、n的值.【详解】把11xy=⎧⎨=-⎩代入方程组2421mx y nx ny m+=⎧⎨-=-⎩,得2421m nn m-=⎧⎨+=-⎩①②,把①代入②,得4+m−2=2m−1,解得31mn=⎧⎨=⎩,故答案为:3【点睛】本题考查了方程组的解的定义,正确理解定义是关键.14.若单项式﹣2x a﹣1y3与3x﹣b y2a+b是同类项,则b a的值为_____.【答案】1【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值,再代入代数式计算即可.【详解】∵﹣2x a﹣1y3与3x﹣b y2a+b是同类项,∴132a ba b-=-⎧⎨=+⎩,解得:21 ab=⎧⎨=-⎩,∴b a=(﹣1)2=1,故答案为:1.【点睛】本题考查了同类项:所含字母相同,并且相同字母的指数相同的项叫同类项.15.观察下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有___________个点.【答案】2n+1【解析】由已知图形中点的个数知点的个数是2的序数倍与1的和,据此可得.【详解】∵第1个图形中点的个数8=2×1+1,第2个图形中点的个数10=2×2+1,第3个图形中点的个数12=2×3+1,第4个图形中点的个数14=2×4+1,……∴第n 个图形中点的个数为2n+1,故答案为:2n+1.【点睛】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律. 16.因式分解:32x xy -= ▲ .【答案】x (x ﹣y )(x+y ).【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).17.关于x 、y 的二元一次方程组325x y x ay +=⎧⎨-=⎩的解是1x b y =⎧⎨=⎩,则b a 的值为______. 【答案】1. 【解析】分析:将方程组的解1x b y =⎧⎨=⎩代入方程组325x y x ay +=⎧⎨-=⎩,就可得到关于a 、b 的二元一次方程组,解得a 、b 的值,即可求a b 的值.详解:∵关于x 、y 的二元一次方程组325x y x ay +=⎧⎨-=⎩的解是1x b y =⎧⎨=⎩,∴1325b b a +=⎧⎨-=⎩,解得:a=﹣1,b=2,∴a b =(﹣1)2=1.故答案为1.点睛:本题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了解二元一次方程组.三、解答题18.有甲、乙两个长方形纸片,边长如图所示()0m >,面积分别为S 甲和S 乙.(1)①计算:=S 甲______,=S 乙______;②用“<”“=”或“>”填空:S 甲______S 乙(2)若一个正方形纸片的周长与乙长方形的周长相等,面积为S 正.①该正方形的边长是______(用含m 的代数式表示);②小方同学发现:S 正与S 乙的差与m 无关.请判断小方的发现是否正确,并通过计算说明你的理由.【答案】 (1)①21227m m ++,21024m m ++; ②>;(2)①5m + ;②正确,理由见解析.【解析】(1)①根据长方形面积公式列式计算;②用作差法比较大小即可;(2)①求出乙长方形的周长,即可求出该正方形的边长;②列式计算S 正与S 乙的差,可知与m 无关.【详解】解:(1)①2=(m+3)(m+9)=m 1227S m ++甲,2=(m+4)(m+6)=m 1024S m ++乙;故答案为21227m m ++,21024m m ++;②∵0m >,∴22=m 1227(m 1024)230S S m m m ++-++=+>甲乙-,∴S S >甲乙,故答案为>;(2)①∵正方形的周长=乙长方形的周长=2(m+4+m+6)=4m+20,∴该正方形的边长是:5m +;②正确,理由:∵2222(5)(m 1024)m 1025m 10241S S m m m m -=+-++=++---=乙正,∴S 正与S 乙的差是1,与m 无关.【点睛】本题主要考查了整式乘法的应用,比较基础,能够根据题意列出解题所需的代数式是解题关键.19.先化简,再求值,(x+1)(x-1)-(x-2)2,其中x=1 4【答案】1x﹣5,﹣1【解析】利用平方差公式和完全平方公式进行化简,然后代入求值即可. 解:(x+1)(x﹣1)﹣(x﹣2)2=x2﹣1﹣x2+1x﹣1=1x﹣5;当x=14时,原式=1×14﹣5=﹣1.20.已知2a﹣3x+1=0,3b﹣2x﹣16=0.(1)用含x的代数式分别表示a,b;(2)当a≤4<b时,求x的取值范围.【答案】(1)312xa-=,2163xb+=;(2)﹣2<x≤1.【解析】(1)直接利用已知将原式变形求出答案;(2)利用a≤4<b得出关于x的不等式求出答案.【详解】解:(1)由2a﹣1x+1=0,得312xa-=,由1b﹣2x﹣16=0,得2163xb+ =;(2)∵a≤4<b,∴312xa-=≤4,2163xb+=>4,解得:﹣2<x≤1.【点睛】此题主要考查了不等式的性质,直接将原式变形是解题关键.21.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n个等式:(n为正整数).(2+⋯+(3-【答案】(1)1=;(2)9;(3>【解析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n 个等式为(1)(1)1n n n n +++-=; 故答案为:(1)(1)1n n n n +++-=;(2)原式21321009910011019=-+-+⋯+-=-=-=;(3)18171817-=+,19181918-=+,19181817<++, ∴18171918->-.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.22.已知:如图,直线a b ∥,直线c 与直线a 、b 分别相交于C 、D 两点,直线d 与直线a 、b 分别相交于A 、B 两点,点P 在直线AB 上运动(不与A 、B 两点重合).(1)如图1,当点P 在线段AB 上运动时,总有:CPD PCA PDB ∠=∠+∠,请说明理由: (2)如图2,当点P 在线段AB 的延长线上运动时,CPD ∠、PCA ∠、PDB ∠之间有怎样的数量关系,并说明理由:(3)如图3,当点P 在线段BA 的延长线上运动时,CPD ∠、PCA ∠、PDB ∠之间又有怎样的数量关系(只需直接给出结论)?【答案】(1)见解析;(2)CPD PCA PDB ∠=∠-∠,见解析;(3)CPD PDB PCA ∠=∠-∠,见解析.【解析】(1)过点P 作a 的平行线,根据平行线的性质进行求解;(2)过点P 作b 的平行线PE ,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC 与DP 交于点F ,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【详解】解:(1)证明:如图1,过点P 作PE a ,则1CPE ∠=∠.∵a b ,PE a ,∴PE b ,∴2DPE ∠=∠,∴312∠=∠+∠,即CPD PCA PDB ∠=∠+∠;(2)CPD PCA PDB ∠=∠-∠.理由:如图2,过点P 作PE b ,则2EPD ∠=∠,∵直线a b ,∴a PE ,∴1EPC ∠=∠,∵3EPC EPD ∠=∠-∠,∴312∠=∠-∠,即CPD PCA PDB ∠=∠-∠;(3)CPD PDB PCA ∠=∠-∠.证明:如图3,设直线AC 与DP 交于点F ,∵PFA ∠是PCF ∆的外角,∴13PFA ∠=∠+∠,∵a b ,∴2PFA ∠=∠,∴213∠=∠+∠,∴321∠=∠-∠,即CPD PDB PCA ∠=∠-∠.【点睛】本题考查了平行线的性质,根据题意作出平行线,利用两直线平行,内错角相等进行推导是解题的关键.23.如图,已知,∠B = 25︒,∠BCD = 45︒,∠CDE = 30︒,∠E = 10︒.证明AB∥EF。

2018年贵州省贵阳市中学考试数学试卷含问题详解解析汇报版

2018年贵州省贵阳市中学考试数学试卷含问题详解解析汇报版

实用文档2018年贵州省贵阳市中考数学试卷一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确.请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1.(3.00分)(2018?贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4D.﹣42.(3.00分)(2018?贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()FG.线段BE C.线段EF DA.线段DE B.线段贵阳)如图是一个几何体的主视图和俯视图,则这个几何?分)(20183.(3.00)体是(.长方体DC.正方体.三棱锥A.三棱柱B贵阳)在“生命安全”主题教育活动中,为了解甲、乙、?分)(2018(4.3.00你认为最丁四所学校学生对生命安全知识掌握情况,丙、小丽制定了如下方案,)合理的是(.抽取乙校初二年级学生进行调查A名学生进行调查.在丙校随机抽取600B名老师进行调查150C.随机抽取名学生进行调査150D.在四个学校各随机抽取,∥的中点,是中,贵阳)如图,在菱形2018分)(5.3.00(?ABCDEACEFCB 实用文档交AB于点F,如果EF=3,那么菱形ABCD的周长为()9D.C.12 A.24 B.18表示的B,若点A、贵阳)如图,数轴上有三个点A、B、C20186.(3.00分)(?)C对应的数是(数互为相反数,则图中点41 D.2 B.0 C.A.﹣是小正方形的顶点,且每个小正方、C?贵阳)如图,A、B7.(3.00分)(2018)tan∠BAC的值为(形的边长为1,则.D.A.B1 C.贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放?8.(3.00分)(2018黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示)位置的概率是(.D.A B.C.x2018yP,且的值随?贵阳)一次函数y=kx﹣1的图象经过点3.009.(分)()P 值的增大而增大,则点的坐标可以为())()3 C.2,2 D.1(5,﹣,﹣(B),(﹣A.53 .12,及一次函数﹣贵阳)已知二次函数2018分)(10.3.00(?y=x+x+6y=x+m﹣轴下方,图象的其余部分不变,xx将该二次函数在轴上方的图象沿x轴翻折到实用文档与y=﹣x+m得到一个新函数(如图所示),请你在图中画出这个新图象,当直线)新图象有4个交点时,m的取值范围是(2m<﹣D2<m<3 .﹣6<2 mA.﹣<<3 B.﹣<m<C.﹣分)分,共20二、填空題(每小题4年适应性考试中,数学成2018分)(2018?贵阳)某班50名学生在(11.4.00 0.2100?110分这个分数段的频率为,则该班在这个分数段的学生为绩在人.轴的平行线,分xy轴上任意一点P作(12.4.00分)(2018?贵阳)如图,过为>0)的图象交于A点和B点,若Cx,x别与反比例函数y=(>0)y=﹣(的面积为ABC,则△.ABy轴任意一点.连接、BC13.(4.00分)(2018?贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.实用文档的x的不等式组a无解,则.(4.00分)(2018?贵阳)已知关于14.取值范围是15.(4.00分)(2018?贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.三、解答題(本大題10个小题,共100分)16.(10.00分)(2018?贵阳)在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:初一6810107988108109997991096初二:69979169981009910090100996997100999479999879(1)根据上述数据,将下列表格补充完成.整理、描述数据:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数22412151初二人数22分析数据:样本数据的平均数、中位数、满分率如表:年级平均教中位教满分率25%93初一90.1实用文档20%初二92.8得出结论:)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共(2人;)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.3(的正方形纸板沿虚线剪成两个m2018?贵阳)如图,将边长为17.(8.00分)(将剩下的三块拼成新的的小正方形纸板后,拿掉边长为n小正方形和两个矩形,矩形.的代数式表示拼成矩形的周长;nm或(1)用含,求拼成矩形的面积.,n=4(2)m=7与中,以下是小亮探究△ABC贵阳)如图①,在8.00分)(2018?(18.Rt之间关系的方法:sinB=,∵sinA=c=c=∴,=∴、探究中,、ABC根据你掌握的三角函数知识.在图②的锐角△之间的关系,并写出探究过程.实用文档19.(10.00分)(2018?贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?20.(10.00分)(2018?贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.贵阳)图①是一枚质地均匀的正四面体形状的骰子,每2018?(10.00分)(21.,图②是一个正六边形棋盘,现通过掷骰子的4,23,个面上分别标有数字1,方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)第点开始沿着顺时针方向连续跳动几个顶点,的数字之和是几,就从图②中的A 二次从第一次的终点处开始,按第一次的方法跳动.处的概率是C(1)达机掷一次骰子,则棋子跳动到点处的C)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点(2率.贵阳)六盘水市梅花山国际滑雪自建成以来,吸引大批201810.00分)(?(22.xcmy 滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离(单位:)与滑行时间实用文档(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123……24滑行距离y/cm4120(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.23.(10.00分)(2018?贵阳)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.24.(12.00分)(2018?贵阳)如图,在矩形ABCD中,AB═2,AD=,P是BC.BP=2CP 边上的一点,且(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)实用文档25.(12.00分)(2018?贵阳)如图,在平面直角坐标系xOy中,点A是反比例),﹣mB(0图象上一点,点A的横坐标为m,点>y=函数(x>0,m1),使D,延长CA到点⊥AB,交y轴于点C是y轴负半轴上的一点,连接AB,AC.EAE 于点D作y轴平行线交x得AD=AC,过点A作AE平行于轴,过点的坐标;时,求点A(1)当m=3的函数关系式和自变量xy关于,求D的坐标为(x,y)2()DE= ,设点的取值范围;为m)中的函数图象交于点F,当2A3()连接BD,过点作BD的平行线,与(为顶点的四边形是平行四边形?F、、AB、D何值时,以实用文档2018年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确.请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1.(3.00分)(2018?贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4D.﹣4【分析】把x的值代入解答即可.【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.2.(3.00分)(2018?贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()FG.线段BE C.线段EF DA.线段DE B.线段根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判【分析】断即可得.的中线,是△ABCBE【解答】解:根据三角形中线的定义知线段.故选:B解题的关键是掌握三角形一边的中点与此本题主要考查三角形的中线,【点评】边所对顶点的连线叫做三角形的中线.贵阳)如图是一个几何体的主视图和俯视图,则这个几何?分)3.00(2018(3.)体是(实用文档.长方体D.正方体C.三棱锥.三棱柱A B根据三视图得出几何体为三棱柱即可.【分析】解:由主视图和俯视图可得几何体为三棱柱,【解答】.故选:A考查根据作三视图的规则来作出三【点评】本题考点是简单空间图形的三视图,左视高平齐,长对正;主视、“主视、俯视个视图的能力,三视图的投影规则是:.三视图是高考的新增考点,不时出现在高考试题中,应予宽相等”左视、俯视以重视.贵阳)在“生命安全”主题教育活动中,为了解甲、乙、?分)(20184.(3.00你认为最小丽制定了如下方案,丙、丁四所学校学生对生命安全知识掌握情况,)合理的是(.抽取乙校初二年级学生进行调查A名学生进行调查600B.在丙校随机抽取名老师进行调查.随机抽取150C名学生进行调査.在四个学校各随机抽取150D根据抽样调查的具体性和代表性解答即可.【分析】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在【解答】名学生进行调査最具有具体性和代表性,150四个学校各随机抽取.D故选:此题考查抽样调查,关键是理解抽样调查的具体性和代表性.【点评】,CBEF∥的中点,中,2018(?贵阳)如图,在菱形ABCDE是AC分)(5.3.00)ABCDEF=3FAB交于点,如果,那么菱形的周长为(实用文档9..12 D24 B.18 CA.问题得解.=4BCABCD的周长长为EF长的2倍,那么菱形BC【分析】易得中点,ACE是【解答】解:∵,FAB于点EF∥BC,交∵的中位线,ABCEF是△∴,BC∴EF=,BC=6∴.6=24ABCD的周长是4×∴菱形.A故选:本题考查的是三角形中位线的性质及菱形的周长公式,题目比较简单.【点评】表示的A、BA、B、C,若点分)6.(3.00(2018?贵阳)如图,数轴上有三个点)C数互为相反数,则图中点对应的数是(4.C.1 D.﹣A2 B.0点对应的数.【分析】首先确定原点位置,进而可得C表示的数互为相反数,A、B【解答】解:∵点的中点处,∴原点在线段AB,对应的数是1∴点C.C故选:此题主要考查了数轴,关键是正确确定原点位置.【点评】是小正方形的顶点,且每个小正方C、2018(?贵阳)如图,AB、分)(7.3.00)BACtan1形的边长为,则∠的值为(实用文档.DC.A.B.1的长,利用勾股定理的逆定理得到△,AC【分析】连接BC,由网格求出AB,BC为等腰直角三角形,即可求出所求.ABC,解:连接BC【解答】222,=ACAB由网格可得AB=BC=,AC=,即+BC为等腰直角三角形,∴△ABC°,∴∠BAC=45,∠BAC=1则tan.故选:B此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练【点评】掌握勾股定理是解本题的关键.贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放2018?(3.00分)(8.黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示)位置的概率是(..B C.D.A先找出符合的所有情况,再得出选项即可.【分析】,【解答】解:共有5+4+3=12,所以恰好摆放成如图所示位置的概率是.A故选:实用文档【点评】本题考查了列表法与树形图法,能找出符合的所有情况是解此题的关键.9.(3.00分)(2018?贵阳)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【解答】解:∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,,不符合题意;0k=﹣<)代入y=kx﹣1得到:A、把点(﹣5,3,不符合题意;02<﹣1得到:k=﹣B、把点(1,﹣3)代入y=kx,符合题意;0k=﹣1得到:>C、把点(2,2)代入y=kx,不符合题意;k=0y=kx﹣1得到:D、把点(5,﹣1)代入.C故选:根据题意求得一次函数的性质,【点评】考查了一次函数图象上点的坐标特征,是解题的关键.0k>2,﹣x+m﹣xy=+x+6及一次函数?10.(3.00分)(2018贵阳)已知二次函数y=轴下方,图象的其余部分不变,轴翻折到x将该二次函数在x轴上方的图象沿x 与﹣x+m得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=)个交点时,m的取值范围是(新图象有42m<﹣6<.﹣m<<2 C2<m3 D.﹣<.﹣3 m.﹣A<<B2,再利用折叠的性(,02Ax【分析】如图,解方程﹣+x+6=0得(﹣,)B3),0实用文档2﹣x﹣6(﹣2≤x﹣3),即y=x≤3),然质求出折叠部分的解析式为y=(x+2)(x 后求出直线?y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=y=x﹣x+m 与新图象有4个交点时,m的取值范围.2+x+6=0,解得x=﹣2,x=3,则时,解:如图,当y=0﹣xA(﹣2,0),【解答】21B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),2﹣x﹣6(﹣2≤x≤即y=x3),当直线?y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;22﹣xx)有唯一公共点时,方程6﹣(﹣2≤x≤﹣当直线y=x+m与抛物线y=x3﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.故选:D.2cb,+bx+c(a轴的交点:把求二次函数【点评】本题考查了抛物线与xy=ax,也考查的一元二次方程.x与轴的交点坐标问题转化为解关于x是常数,a≠0)了二次函数图象与几何变换.分)204分,共二、填空題(每小题年适应性考试中,数学成201850?贵阳)某班名学生在(.11(4.00分)201810 ,则该班在这个分数段的学生为分这个分数段的频率为绩在100?1100.2人.=即频率(或者百分比)【分析】频率是指每个对象出现的次数与总次数的比值,实用文档频数÷数据总数,进而得出即可.总数×频率,=【解答】解:∵频数.0.2=10∴可得此分数段的人数为:50×.故答案为:10此题主要考查了频数与频率,利用频率求法得出是解题关键.【点评】轴的平行线,分作y分)(4.00(2018?贵阳)如图,过x轴上任意一点P12.为点,若C)的图象交于A点和B00别与反比例函数y=(x>),y=﹣(x>ABC 的面积为.y轴任意一点.连接AB、BC,则△【分析】设出点P坐标,分别表示点AB坐标,表示△ABC面积.【解答】解:设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)==S+SS∴OPBAPO△△ABC△故答案为:本题也可直接套用结论k的几何意义,【点评】本题考查反比例函数中比例系数求解.、分别是正五边形ABCDE的两边ABNM?(4.00.13(分)2018贵阳)如图,点、度.AM=BNBC上的点.且,点的度数是MONO是正五边形的中心,则∠72实用文档,证明、OC,根据正多边形的中心角的计算公式求出∠AOB【分析】连接OA、OB,得到答案.BON=∠AOM≌△△AOMBON,根据全等三角形的性质得到∠,OB、OC【解答】解:连接OA、°,=72∠AOB=,OB=OCAOB=∠BOC,OA=OB,∵∠,∴∠OAB=∠OBC中,在△AOM和△BON,BONAOM≌△∴△,∠AOM∴∠BON=°,AOB=72∴∠MON=∠.72故答案为:全掌握正多边形与圆的关系、【点评】本题考查的是正多边形和圆的有关计算,等三角形的判定定理和性质定理是解题的关键.的(2018?无解,则a贵阳)已知关于x的不等式组分)(14.4.00.2 a取值范围是≥a当作已知条件求出各不等式的解集,再根据不等式组无解求出a先把【分析】的取值范围即可.实用文档,【解答】解:,由①得:x≤2,由②得:x>a∵不等式组无解,,2a≥∴.2a≥故答案为:同大取【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:大;同小取小;大小小大中间找;大大小小解没了.,在△边上的高为4中,BC=6,BC?15.(4.00分)(2018贵阳)如图,在△ABC 边AC边上,另外两个顶点分别在AB、BCABC的内部作一个矩形EFGH,使EF在.长的最小值为上,则对角线EG【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,则AP=4﹣x,证△ADG∽△ABC得=,据此知EF=DG=(4﹣x),由EG==可得答案.,DGQ于点,交于点PBCAQ【解答】解:如图,作⊥∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,实用文档设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,,,即=∴=,)则EF=DG=(4﹣xEG=∴==,=,时,EG∴当x=取得最小值,最小值为故答案为:解题的关键是掌握矩形的性质、本题主要考查相似三角形的判定与性质,【点评】相似三角形的判定与性质及二次函数的性质及勾股定理.分)10个小题,共100三、解答題(本大題国际禁毒日到来之际,贵阳市教育局为贵阳)在6.262018(10.00分)(?16.某的知识竞赛.“关爱生命,了普及禁毒知识,提高禁毒意识,举办了拒绝毒品”名同学的测试成绩进行20校初一、初二年级分别有300人,现从中各随机抽取调查分折,成绩如下:8810089859488初一:68100100796710097100909877949692初二:69979169981009910090100996997100999479999879(1)根据上述数据,将下列表格补充完成.整理、描述数据:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数22412实用文档151初二人数22分析数据:样本数据的平均数、中位数、满分率如表:满分率平均教年级中位教25%初一9390.120%92.8 初二99得出结论:)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共(2人;135)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.3()根据中位数的定义求解可得;1【分析】()用初一、初二的总人数分别乘以其满分率,求和即可得;(2)根据平均数和中位数的意义解答可得.(3、、7969【解答】解:(1)由题意知初二年级的分数从小到大排列为69、、69,、10010099999897949079、、91、、97、、98、、99、、99、、100、、100分,97.5所以初二年级成绩的中位数为补全表格如下:满分中位年平均25%90.193初一20%初二9992.8300初二年级学生在本次测试成绩中可以得到满分的人数共)估计该校初一、(2人,×20%=135×25%+300;故答案为:135)初二年级掌握禁毒知识的总体水平较好,3(且初二年级成绩的说明初二年级平均水平高,∵初二年级的平均成绩比初一高,中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.样本估解题的关键是熟练掌握数据的整理、【点评】本题主要考查频数分布表,计总体思想的运用、平均数和中位数的意义.实用文档17.(8.00分)(2018?贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.)根据题意和矩形的性质列出代数式解答即可.(1【分析】代入矩形的长与宽中,再利用矩形的面积公式解答即可.,n=42)把m=7(,﹣n1)矩形的长为:m【解答】解:(,m+n矩形的宽为:;4m矩形的周长为:,)﹣nm2)矩形的面积为(m+n)((.×3=33nm﹣)=11,把m=7n=4代入(m+n)(关键是根据题意和矩形的性质列出代数式解答.【点评】此题考查列代数式问题,与△ABC中,以下是小亮探究分)(2018?贵阳)如图①,在Rt8.0018.(之间关系的方法:sinB=sinA=,∵c=,∴c==∴、探究中,ABC根据你掌握的三角函数知识.在图②的锐角△、之间的关系,并写出探究过程.实用文档中,,在直角三角形ABD,BE⊥AC作【分析】三式相等,理由为:过AAD⊥BC中,利用锐角三角函数定,在直角三角形ADC利用锐角三角函数定义表示出AD,两者相等即可得证.义表示出AD,理由为:==【解答】解:,AC,作AD⊥BCBE⊥过A,ABD中,sinB=AD=csinB,即△在Rt,在Rt△ADCAD=bsinC中,sinC=,即,csinB=bsinC,即=∴,=同理可得.则==熟练掌握锐角三角函数定义是解本题的关键.【点评】此题考查了解直角三角形,贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的?分)(19.10.00(201810贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵元购买甲种树苗的棵数相同.480元,用元购买乙种树苗的棵数恰好与用360)求甲、乙两种树苗每棵的价格各是多少元?1(棵,此时,甲种树502()在实际帮扶中,他们决定再次购买甲、乙两种树苗共,乙种树苗的售价不变,如果再次购买两种10%苗的售价比第一次购买时降低了元,那么他们最多可购买多少棵乙种树苗?1500树苗的总费用不超过实用文档【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,=.x=30解得:是原方程的解,x=30经检验,.x+10=30+10=40元.40答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是棵乙种树苗,依题意有y(2)设他们可购买,+40y≤1500)(50﹣y)×(301﹣10%,11y解得≤为整数,y∵.11∴y最大为棵乙种树苗.11答:他们最多可购买找到合适的等量关系和不等关系是考查了分式方程的应用,分析题意,【点评】解决问题的关键边上的高,在平行四边形ABCD中,AE是BC?10.0020.(分)(2018贵阳)如图,对称.关于对称,与ABAG关于AEAE与AFAG的中点,是点FDE是等边三角形;AEF(1)求证:△的面积.)若(2AB=2AFD,求△实用文档中ADF是ADEBC∥AD证△为直角三角形,由【分析】(1)先根据轴对称性质及,即可得证;AE=AFAG对称知,再结合AE与AF关于点知AF=EF对称知∠关于AGAFAE对称、AE与2)由△AEF是等边三角形且AB与AG关于(,从而得出答案.知AE=AF=DF=、AH=EAG=30°,据此由AB=2对称,AG关于AE1【解答】解:()∵AB与,AE⊥BC∴是平行四边形,∵四边形ABCD,∥BC∴AD°,,即∠DAE=90∴AE⊥AD的中线,ADE的中点,即AF是Rt△∵点F是DE,AF=EF=DF∴对称,与AF关于AG∵AE,∴AE=AF,则AE=AF=EF是等边三角形;∴△AEF,H)记2AG、EF交点为(对称,关于AGAE∵△AEF是等边三角形,且与AF,EAG=30∴∠°,AG⊥EF对称,AGAB∵与关于AE实用文档°,°,∠AEB=90∴∠BAE=∠GAE=30,AB=2∵,∴BE=1、DF=AF=AE=,AH=、则EH=AE=.∴S=××=ADF△°角的直角三角形,解题的关键是掌握直角三角形30【点评】本题主要考查含轴对称的性质及平行四边形的性质等知等边三角形的判定与性质、有关的性质、识点.贵阳)图①是一枚质地均匀的正四面体形状的骰子,每?(21.10.00分)(2018,图②是一个正六边形棋盘,现通过掷骰子的2,43,1个面上分别标有数字,方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)第就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,的数字之和是几,二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【分析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)利用列表法统计即可;【解答】解:(1)随机掷一次骰子,则棋子跳动到点C处的概率是,;故答案为:)2(实用文档C种情形,所以棋子最终跳动到点,有316种可能,和为14可以到达点C共有.处的概率为种可能,如果一个事件有n【点评】本题考查列表法与树状图,概率公式等知识,)AA的概率P(而且这些事件的可能性相同,其中事件A出现m种结果,那么事件.=贵阳)六盘水市梅花山国际滑雪自建成以来,吸引大批(2018?22.(10.00分)x (单位:cm)与滑行时间滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y)之间的关系可以近似的用二次函数来表示.(单位:s…31滑行时间x/s02…40滑行距离y/cm1224(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.【分析】(1)利用待定系数法求出函数解析式,再求出y=80000时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【解答】解:(1)∵该抛物线过点(0,0),2+bx,∴设抛物线解析式为y=ax将(1,4)、(2,12)代入,得:实用文档,,解得:2,y=2x+2x所以抛物线的解析式为2,2x+2x=80000当y=80000时,,解得:x=199.500625(负值舍去)才能到达终点;即他需要199.500625s22,x+﹣)(2)∵y=2x+2x=2(2x+2+(个单位后函数解析式我诶)y=2∴向左平移2个单位,再向上平移52.)x++﹣+5=2(解题的关键是掌握待定系数法求函数解本题主要考查二次函数的应用,【点评】析式及函数图象平移的规律.在半圆上,CAB=4,点O分)23.(10.00(2018?贵阳)如图,AB为⊙的直径,且OPEE,设△P⊥AB,垂足为点O,P为半圆上任意一点,过点作PE⊥OC于点OC.PM的内心为M,连接OM、的度数;(1)求∠OMP所经过的路径长.时,求内心MBP在半圆上从点运动到点A2()当点,再用三角形的内角和定理即MPEMPO=MOP=【分析】(1)先判断出∠∠MOC,∠∠可得出结论;°,进而2CMO=135内,先求出∠和扇形)分两种情况,当点M在扇形BOCAOC (°,最后用弧长公式即可得出结论.判断出点M的轨迹,再求出∠OO'C=90解:【解答】,的内心为OPE)∵△(1M实用文档∴∠MOP=∠MOC,∠MPO=∠MPE,,)EOP+∠OPE(∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣∴∠°,PEO=90⊥OC,即∠∵PE°,°)=135°﹣(180°﹣90∠(∠EOP+OPE)=180∴∠PMO=180°﹣,OM=OMOP=OC(2)如图,∵,,MOC而∠MOP=∠,OCM∴△OPM≌△°,PMO=135∴∠CMO=∠;)(和所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上内时,在扇形BOC点M,,O′O′、过CM、O三点作⊙O′,连OC,DA,DO在优弧CO取点D,连°,∵∠CMO=135°,=45°﹣∴∠CDO=180135°,′∴∠COO=90°,而OA=4cm,′OO=OC=×4=2∴=OMCπ(=cm),的长∴弧的长为同理:点Mπcm,在扇形ONCAOC内时,同①的方法得,弧.cmπ=2π×所经过的路径长为所以内心M2表示弧所n表示弧长,ll=本题考查了弧长的计算公式:【点评】,其中对的圆心角的度数.同时考查了三角形内心的性质、三角形全等的判定与性质、的运动轨迹,圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I实用文档属于中考选择题中的压轴题.BC是,PAB═2,AD=.24(12.00分)(2018?贵阳)如图,在矩形ABCD中,.BP=2CP 边上的一点,且(保留作图痕迹,不写BEAE、(1)用尺规在图①中作出CD边上的中点E,连接;作法),并说明理由;是否平分∠AEC(2)如图②,在(1)的条体下,判断EB,APEP并廷长交AB的廷长线于点F,连接((3)如图③,在2)的条件下,连接组成一个等腰三角能否由都经过不添加辅助线,△PFBP点的两次变换与△PAE形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)。

2018年贵阳中考数学适应性考试后模拟(二)

2018年贵阳中考数学适应性考试后模拟(二)

2018年贵阳中考数学模拟(二)一.选择题(共10小题)1.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数2.如图所示图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(﹣2,﹣3),Q(3,﹣2)B.P(2,﹣3)Q(3,2)C.P(2,3),Q(﹣4,)D.P(﹣2,3),Q(﹣3,﹣2)4.下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况()A.B.C.D.5.如图所示的几何体的主视图是()A. B. C. D.6.如图,三个方格代表三位数的数字,且甲、乙两人分别将3、6的号码排列如下,然后等机会在两组1﹣﹣9的9个号码中各选出一个数,将它们分别在两个空格中填上,则排出的数甲大于乙的概率是()A.B.C.D.7.一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或148.一次数学检测中,有5名学生的成绩分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是()A.87.2,89 B.89,89 C.87.2,78 D.90,939.如图,四边形ABCD中,∠A=∠C=90°,∠B=60°,AD=1,BC=2,则四边形ABCD的面积是()A.B.3 C.D.410.如图,四边形ABCD中,AB=4,BC=6,AB⊥BC,BC⊥CD,E为AD的中点,F为线段BE 上的点,且FE=BE,则点F到边CD的距离是()A.3 B.C.4 D.二.填空题(共5小题)11.⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.12.分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为.13.已知一个多边形的内角和是外角和的2倍,此多边形是边形.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)= ;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)= .15.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的.三.解答题(共10小题)16.解不等式组,并求出它的所有整数解.17.某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.次数01234人数361312(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.18.某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,其余资金用于在毕业晚会上给43位同学每人购买一件纪念品,纪念品为文化衫或相册.已知每件文化衫比每本相册贵6元,用202元恰好可以买到3件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有几种购买文化衫和相册的方案?哪种方案用于布置毕业晚会会场的资金更充足?19.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.20.如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为130m的正方形,且每一个侧面与底面成65°角(即∠ABC=65°),这座金字塔原来有多高(结果取整数)?(参考数据:sin65°=0.9,cos65°=0.4,tan65°=2.1)21.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.23.如图,直线y=x+b与双曲线y=(k是常数,k≠0)在第一象限内交于点A(1,2),且与x 轴、y轴分别交于B,C两点.点P在x轴.(1)求直线和双曲线的解析式;(2)若△BCP的面积等于2,求P点的坐标;(3)求PA+PC的最短距离.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△A BC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.25.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.2017年贵阳中考数学模拟(二)参考答案与试题解析一.选择题(共10小题)3.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(﹣2,﹣3),Q(3,﹣2)B.P(2,﹣3)Q(3,2)C.P(2,3),Q(﹣4,)D.P(﹣2,3),Q(﹣3,﹣2)【解答】解:A、∵(﹣2)×(﹣3)≠3×(﹣2),故点P,Q不在同一反比例函数图象上;B、∵2×(﹣3)≠3×2,故点P,Q不在同一反比例函数图象上;C、∵2×3=(﹣4)×(),故点P,Q在同一反比例函数图象上;D、∵(﹣2)×3≠(﹣3)×(﹣2),故点P,Q不在同一反比例函数图象上;故选:C.4.下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况()A.B.C.D.【解答】解:根据常识判断,苹果下落过程中的速度是随时间的增大逐渐增大的,A、速度随时间的增大变小,故本选项错误;B、速度随时间的增大而增大,故本选项正确;C、速度随时间的增大变小,故本选项错误;D、速度随时间的增大不变,故本选项错误.故选:B.5.如图所示的几何体的主视图是()A. B. C. D.【解答】解:从几何体的正面看可得图形.故选:B.6.如图,三个方格代表三位数的数字,且甲、乙两人分别将3、6的号码排列如下,然后等机会在两组1﹣﹣9的9个号码中各选出一个数,将它们分别在两个空格中填上,则排出的数甲大于乙的概率是()A.B.C.D.【解答】解:因为每个格中可填入1到9共9个数,所以共有9×9=81种情况,当乙中填入1到5时,甲始终大于乙,共有5×9=45种情况,当乙中填入6时,甲中填入4、5、6、7、8、9、时甲大于1,共有6种情况,故甲大于乙的情况共有45+6=51种情况,故排出的数甲大于乙的概率是=.故选:B.7.一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或14【解答】解:由一元二次方程x2﹣7x+12=0,得(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,解得x=3,或x=4;∴等腰三角形的两腰长是3或4;①当等腰三角形的腰长是3时,3+3=6,构不成三角形,所以不合题意,舍去;②当等腰三角形的腰长是4时,0<6<8,所以能构成三角形,所以该等腰三角形的周长=6+4+4=14;故选:C.8.一次数学检测中,有5名学生的成绩分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是()A.87.2,89 B.89,89 C.87.2,78 D.90,93【解答】解:这5名学生的成绩重新排列为:78、86、89、90、93,则平均数为:=87.2,中位数为89,故选:A.9.如图,四边形ABCD中,∠A=∠C=90°,∠B=60°,AD=1,BC=2,则四边形ABCD的面积是()A.B.3 C.D.4【解答】解:如图所示,延长BA,CD交于点E,∵∠A=∠C=90°,∠B=60°,∴∠E=30°,∴Rt△ADE中,AE===,Rt△BCE中,CE=tan60°×BC=×2=2,∴四边形ABCD的面积=S△BCE﹣S△ADE=×2×2﹣×1×=2﹣=,故选:A.10.如图,四边形ABCD中,AB=4,BC=6,AB⊥BC,BC⊥CD,E为AD的中点,F为线段BE 上的点,且FE=BE,则点F到边CD的距离是()A.3 B.C.4 D.【解答】解:如图所示,过E作EG⊥CD于G,过F作FH⊥CD于H,过E作EQ⊥BC于Q,则EG∥FH∥BC,AB∥EQ∥CD,四边形CHPQ是矩形,∵AB∥EQ∥CD,∴,∵E是AD的中点,∴BQ=CQ=3,∴HP=CQ=3,∵FP∥BQ,∴,∵FE=BE,∴FP=BQ=1,∴FH=1+3=4.故选:C.二.填空题(共5小题)11.⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是4≤OP≤5 .【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.故答案为:4≤OP≤5.12.分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为.【解答】解:如图所示:由树状图可知,共有12中可能的情况,两个数的和为正数的共有4种情况,所以所取两个数的和为正数的概率为=.故答案为:.13.已知一个多边形的内角和是外角和的2倍,此多边形是六边形.【解答】解:设这个多边形的边数为n,∴(n﹣2)•180°=2×360°,解得:n=6,故答案为:六.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)= x8﹣1 ;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)= x n+1﹣1 .【解答】解:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1则(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1.(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.故答案是:x8﹣1;x n+1﹣1.15.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的.【解答】解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,,∴S△AFG:S△ABC=4:9,S△AEH:S△ABC=1:9,∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC.故答案为.三.解答题(共10小题)16.解不等式组,并求出它的所有整数解.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,所以不等式组的整数解为﹣1、0、1、2.17.某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.次数01234人数361312(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.【解答】解:(1)6÷12%=50(人),50﹣(3+6+13+12)=16(人).答:一周“主动做家务事”3次的人数是16人;(2)(3+6+13)÷50=22÷50=0.44.答:抽到的学生一周“主动做家务事”不多于2次的概率是0.44;(3)500×=160(人).答:估计全校学生一周“主动做家务事”3次的人数是160人.18.某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,其余资金用于在毕业晚会上给43位同学每人购买一件纪念品,纪念品为文化衫或相册.已知每件文化衫比每本相册贵6元,用202元恰好可以买到3件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有几种购买文化衫和相册的方案?哪种方案用于布置毕业晚会会场的资金更充足?【解答】解:(1)设每件文化衫和每本相册的价格分别为x元和y元,则,解得:.答:每件文化衫和每本相册的价格分别为29元和23元.(2)设购买文化衫a件,购买相册(43﹣a)本,且某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,则:1050≤29a+23(43﹣a)≤1065,解得≤a≤,因为a为正整数,所以a=11,12,即有2种方案:第一种方案:购买文化衫11件,相册32本;第二种方案:购买文化衫12件,相册31本;因为文化衫比相册贵,所以第一种方案布置毕业晚会会场的资金更充足.19.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:=.20.如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为130m的正方形,且每一个侧面与底面成65°角(即∠ABC=65°),这座金字塔原来有多高(结果取整数)?(参考数据:sin65°=0.9,cos65°=0.4,tan65°=2.1)【解答】解:∵底部是边长为130m的正方形,∴BC=×130=65m,∵AC⊥BC,∠ABC=65°,∴AC=BC•tan65°≈65×2.1445≈139m.答:这个金字塔原来有139米高.21.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.【解答】(1)证明:连接OE,则∠BOE=2∠BDE,又∠A=2∠BDE,∴∠BOE=∠A,∵∠C=∠ABD,∠A=∠BOE,∴△ABD∽△OCE∴∠ADB=∠OEC,又∵AB是直径,∴∠OEC=∠ADB=90°∴CE与⊙O相切;(2)解:连接EB,则∠A=∠BED,∵∠A=∠BOE,∴∠BED=∠BOE,在△BOE和△BEF中,∠BEF=∠BOE,∠EBF=∠OBE,∴△OBE∽△EBF,∴=,则=,∵OB=OE,∴EB=EF,∴=,∵BF=2,EF=,∴=,∴OB=.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.23.如图,直线y=x+b与双曲线y=(k是常数,k≠0)在第一象限内交于点A(1,2),且与x 轴、y轴分别交于B,C两点.点P在x轴.(1)求直线和双曲线的解析式;(2)若△BCP的面积等于2,求P点的坐标;(3)求PA+PC的最短距离.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).(3)如图,作C关于x轴的对称点C′,则C(0,﹣1).此时PA+PC最短,最短距离是.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△A BC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= 2.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【解答】(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴=,∴PB2=PA•PC=12,∴PB=2;故答案为:2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.25.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),。

贵阳市2018年初中毕业生学业(升学)考试试题卷 数学

贵阳市2018年初中毕业生学业(升学)考试试题卷 数学

贵阳市2018年初中毕业生学业(升学)考试试题卷数学一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分)1. 当x=-1时,代数式3x+1的值是( )A. -1B. -2C. -3D. -42. 如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线..,则该线段是( )A. 线段DEB. 线段BEC. 线段EFD. 线段FG第2题图3. 如图是一个几何体的主视图和俯视图,则这个几何体是( )A. 三棱柱B. 正方体C. 三棱锥D. 长方体第3题图4. 在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握的情况,小丽制定了如下调查方案,你认为最合理的是( )A. 抽取乙校初二年级学生进行调查B. 在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查D. 在四个学校各随机抽取150名学生进行调查5. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )A. 24B. 18C. 12D. 9第5题图6. 如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是( )第6题图A. -2B. 0C. 1D. 47. 如图,A ,B ,C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( )A. 12B. 1C. 33D. 3第7题图8. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是( ) A.112 B. 110 C. 16 D. 25第8题图9. 一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A. (-5,3)B. (1,-3)C. (2,2)D. (5,-1)10. 已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )第10题图A. -254<m <3B. -254<m <-2 C. -2<m <3 D. -6<m <-2二、填空题(每小题4分,共20分)11. 某班50名学生在2018年适应性考试中,数学成绩在100~110分这个分数段的频率为0.2,则该班在这个分数段的学生为________人.12. 如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数y =3x (x >0),y =-6x(x >0)的图象交于A 点和B 点,若C 为y 轴上任意一点,连接AC ,BC ,则△ABC 的面积为________.第12题图13. 如图,点M ,N 分别是正五边形ABCDE 的两边AB ,BC 上的点,且AM =BN ,点O 是正五边形的中心,则∠MON 的度数是________度.第13题图14. 已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x ≥-1a -x <0无解,则a 的取值范围是________.15. 如图,在△ABC 中,BC =6,BC 边上的高为4,在△ABC 的内部作一个矩形EFGH ,使EF 在BC 边上,另外两个顶点分别在AB ,AC 边上,则对角线EG 长的最小值为________.第15题图三、解答题(本大题10小题,共100分) 16. (本题满分10分)在6·26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高学生禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛,某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67 初二:69 97 96 89 98 100 99 100 95 100 99 69 97 100 99 94 79 99 98 79 (1)根据上述数据,将下列表格补充完整;分析数据:样本数据的平均数、中位数、满分率如下表:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共_____人; (3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.17. (本题满分8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小方形纸板后,再将剩下的三块拼成一个新矩形.第17题图(1)用含m 或n 的代数式表示拼成的矩形周长; (2)当m =7,n =4时,求拼成的矩形面积.18. (本题满分8分)如图①,在Rt △ABC 中,以下是小亮探索a sinA 与bsinB 之间关系的方法:∵sinA =a c ,sinB =bc ,∴c =a sinA ,c =bsinB ,∴a sinA =b sinB. 根据你掌握的三角函数知识,在图②的锐角△ABC 中,探索a sinA ,b sin B ,csinC 之间的关系,并写出探索过程.第18题图19. (本题满分10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种,已知乙种树苗价格比甲种树苗贵10元,则480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵树相同.(1)求甲、乙两种树苗每棵的价格各是多少元;(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价保持不变.如果此次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?20. (本题满分10分)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.第20题图21. (本题满分10分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏.规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是_____;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.图①图②第21题图22. (本题满分10分)六盘水市梅花山国际滑雪场自建成以来,吸引了大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似地用二次函数来表示,现测得一组数据,如下表所示.(1)840米,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后所得函数的表达式.23. (本题满分10分)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM,PM.第23题图(1)求∠OMP 的度数;(2)当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长.24. (本题满分12分)如图,在矩形ABCD 中,AB =2,AD =3,P 是BC 边上的一点,且BP =2CP .(1)用尺规在图①中作出CD 边上的中点E ,连接AE ,BE (保留作图痕迹,不写作法); (2)如图②,在(1)的条件下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并延长交AB 的延长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△P AE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向、旋转角或平移方向和平移距离);如果不能,也请说明理由.第24题图25. (本题满分12分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =m 3-m 2x (x >0,m >1)图象上一点,点A 的横坐标m ,点B (0,-m )是y 轴负半轴上的一点,连接AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使AD =AC ,过点A 作AE 平行于x 轴,过点D 作y 轴的平行线交AE 于点E .第25题图(1)当m=3时,求点A的坐标;(2)DE=________:设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m为何值时,以A,B,D,F为顶点的四边形是平行四边形?2018贵阳市数学中考试题解析1. B【解析】把x=-1代入,得3x+1=3×(-1)+1=-3+1=-2,故选B.2. B【解析】三角形的中线是三角形的顶点与对边中点所连接的线段,故选B.3. A【解析】横放着的三棱锥的主视图与俯视图符合题意,故选A.4. D【解析】调查的对象是四所学校学生对生命安全知识掌握的情况,故应该从四所学校随机抽取学生进行调查,故选D.5. A【解析】∵点E是AC的中点,EF∥CB,∴EF是△ACB的中位线,∴BC=2EF =6,在菱形ABCD中,AB=BC=CD=AD,则菱形ABCD的周长为4BC=4×6=24,故选A.6. C【解析】∵A,B表示的数互为相反数,∴如解图所示,线段AB的中点O即是原点,点C在原点右边距离原点1个单位,∴点C对应的数是1,故选C.第6题解图7. B【解析】如解图,连接BC,则AB=BC=5,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∠BAC=45°,∴tan∠BAC=1,故选B.第7题解图8. A【解析】第8题解图如解图所示,围棋摆放共有12种等可能结果,恰好摆成如图所示位置的概率是1 12,故选A.9. C第9题解图【解析】由一次函数的解析为y=kx-1可知,该一次函数与y轴的交点为(0,-1),如解图所示,将选项中的四个点标注在坐标系中,观察可知只有当一次函数经过点(2,2)的时候,y值才随x值的增大而增大.故选C.10. D第10题解图【解析】∵抛物线y =-x 2+x +6=-(x -3)(x +2),∴抛物线与x 轴的交点为(-2,0)和(3,0),∵抛物线y =-x 2+x +6=-(x -12)2+254,∴顶点为(12,254),则对折后抛物线的顶点为(12,-254).对折后中间部分解析式为:y =(x -12)2-254=x 2-x -6(-2<x <3),当y =-x +m 与y =(x -12)2-254(-2<x <3)只有1个交点时,-x +m =x 2-x -6有两个相等的实数解,即方程x 2-(m +6)=0的判别式b 2-4ac =02-4×1×(-m -6)=0,解得m =-6,此时y =-x -6记作l 1,l 1与新图象有三个交点,将l 1向右移动得到直线l ,l 与图象的交点数量变为4个,当l 经过点(-2,0)的时候,交点数量为3个,此时m =-2,当l 与x 轴的交点在AB 之间(不含A 、B 点)时,l 与图象有2个交点,l 过点B 或者在B 点的右侧,最多只有1个交点.故m 的取值范围是-6<m <-2,故选D.11. 10 【解析】50×0.2=10.12. 92 【解析】根据题意,得△AOP 的面积为32,△BOP 的面积为3,故△ABC 的面积为32+3=92. 13. 72第13题解图 【解析】如解图,连接OA 、OB ,则OA =OB ,∠OAM =∠OBN ,∵AM =BN ,∴△OAM ≌△OBN (SAS ),∴∠AOM =∠BON ,∴∠MON =∠AOB =360°5=72°.14. a ≥2 【解析】5-3x ≥-1①,解不等式①,得x ≤2;a -x <0②,解不等式②,得x >a ,∵原不等式组无解,∴a ≥2.15.121313第15题解图【解析】如解图,过A 作AD ⊥BC 于点D ,交HG 于点M ,设EF =x ,GF =y ,则HG =x ,AM =4-y ,∵HG ∥BC ,∴△AHG ∽△ABC ,∴AM AD =HG BC ,即4-y 4=x 6,∴y =4-23x ,∴EG 2=x 2+y 2=139x 2-163x +16(0<x <6),当x =--1632×139=2413时,EG 2有最小值,EG 2=139×(2413)2-163×2413+16=14413,∴EG 的最小值为14413=121313. 16. 解:(1)97.5;【解法提示】把第二组数据按由小到大的顺序排列为69,69,79,79,89,94,95,96,97,97,98,98,99,99,99,99,100,100,100,100,共有20个数据,中位数是第10和11个数字分别为97与98,则中位数为:97+982=97.5.(2)135;【解法提示】初一得满分人数为:300×25%=75;初二得满分的人数为:300×20%=60;75+60=135.(3)答:初二的总体水平好,因为其平均数,中位数都比初一高.17. 解:(1)剩下部分图形的面积为m 2-n 2=(m +n )(m -n ),故拼成的矩形的长和宽分别是m +n 和m -n ,矩形的周长为2[(m +n )+(m -n )]=2(m +n +m -n )=4m ;(2)S =(m +n )(m -n )=m 2-n 2=72-42=33.18. 解:a sinA =b sinB =csinC.证明:如解图,过A 作AD ⊥BC 于点D , ∵在Rt △ABD 中,有AD =c ·sinB , 在Rt △ACD 中,有AD =b ·sinC ,第18题解图∴c ·sinB =b ·sinC , ∴b sinB =c sinC, 同理,b sinB =a sinA, ∴a sinA =b sinB =c sinC. 19. 解:(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元,由题意得,360x =480x +10,解得:x =30, 经检验:x =30时原分式方程的分母均不为0,且符合题意,故x =30是原分式方程的解,x +10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元; (2)设购买乙种树苗m 棵,则购买甲种树苗(50-m )棵,根据题意得, 30(1-10%)(50-m )+40m ≤1500,解得:m ≤11713,答:他们最多可购买11棵乙种树苗.第20题图20.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∵AE ⊥BC , ∴AE ⊥AD , ∴∠DAE =90°,∵点F 是DE 的中点, ∴AF =EF ,∵AE 与AF 关于AG 对称,∴AE =AF , ∴AE =AF =EF ,∴△AEF 是等边三角形;(2)解:∵△AEF 是等边三角形, ∴∠EAF =∠AEF =60°, ∵AE 与AF 关于AG 对称, ∴∠EAG =∠F AG =30°, ∵AB 与AG 关于AE 对称, ∴∠BAE =∠EAG =30°,∵AB =2,∴AE =AB ·cos 30°=3, ∴AD =AE ·tan ∠AED =3tan 60°=3, S △AED =12AE ·AD =332,∵F 是D 的中点,∴S ΔAFD =12S △AED =334.21. 解:(1)14;【解法提示】随机掷一次骰子,朝上三个面的点数和可能是:1+2+3=6;1+2+4=7;1+3+4=8;2+3+4=9,共有4种等可能结果,其中只有和为8的一种结果棋子跳动到点C ,所以P (棋子跳动到C 处)=14.列表分析如下:共有16种等可能结果,其中棋子最终跳到C 点是和为14的三种等可能结果,∴P (棋子最终跳动到点C 处)=316.22. 解:(1)设二次函数的表达式为:y =ax 2+bx +c (a ≠0),则 ⎩⎪⎨⎪⎧0=c 4=a +b +c 12=4a +2b +c ,解得,⎩⎪⎨⎪⎧a =2b =2c =0, ∴二次函数的解析式为:y =2x 2+2x ,当y =840时,有y =2x 2+2x =840,解得:x 1=20,x 2=-21(舍), 答:他需要20s 时间才能到达终点.(2)∵原函数解析式为:y =2x 2+2x =2(x +12)2-12,∴顶点坐标为(-12,-12),∴把原函数图象向左平移2个单位,再向下平移5个单位后顶点坐标为 (-52,-112), ∴平移后函数的表达式为:y =2(x +52)2-112,即y =2x 2+10x +7.23.解:(1)∵M 是△OPE 的内心,∴PM 、OM 分别平分∠EPO 、∠EOP , ∴∠MPO +∠MOP =12(∠OPE +∠POE ),∵PE ⊥OC ,∴∠OPE +∠POE =90°, ∴∠MPO +∠MOP =45°,∴∠OMP =180°-(∠MPO +∠MOP )=135°;第23题解图(2)如解图,连接MC , 在△OMP 和△OMC 中,∵⎩⎪⎨⎪⎧OP =OC ∠MOP =∠MOC OM =OM, ∴△OMP ≌△OMC (SAS ), ∴∠OMC =∠OMP =135°,①当P 点从B 点运动到C 点时M 点运动的轨迹是:以AC 的中点F 为圆心,AC 长的一半为半径的14圆弧(从O 到C ),其路径长:l 1=14×2π·FC =14×2π×2=22π;②当P 点从C 点运动到A 点时M 点运动的轨迹是:以BC 的中点G 为圆心,BC 长的一半为半径的14圆弧(从C 到O ),其路径长:l 2=14×2π·GC =14×2π×2=22π,∴整个运动路径为l =l 1+l 2=2π.24. 解:(1)作图如解图;第24题解图(2)EB 平分∠AEC ;证明:∵DE =CE =12AB =1,AD =3,∴tan ∠AED =ADDE=3,∴∠AED =60°, 同理,∠CEB =60°, ∴∠AEB =60°, 即EB 平分∠AEC ;(3)△PFB 能由都经过P 点的两次变换与△P AE 组成一个等腰三角形,理由如下: ∵BP =2CP ,BC =AD =3, ∴CP =33, ∵tan ∠CEP =CP CE =33,∴∠CEP =30°,∴EP =2CP ,∠BEF =30°, ∴EP =BP ,∵∠AED =180°-∠AEB -∠BEC =60°, ∴∠AEP =90°, ∵DC ∥AF ,∴△PEC ∽△PFB , ∴CE BF =PC PB =12, ∴BF =2CE =AB ,∵PB ⊥AF , ∴P A =PF ,∴Rt △P AE ≌Rt △PFB (HL ),∴△PFB 能由都经过P 点的两次变换与△P AE 组成一个等腰三角形.方法一:△PFB 绕点P 点顺时针旋转120°,再沿PE 翻折,就可与△P AE 组成一个等腰三角形.方法二:把△PFB 沿PB 翻折,再绕点P ,按逆时针方向旋转240°,就可与△P AE 组成一个等腰三角形.25.解:(1)把x =m 代入y =m 3-m 2x 中,得y =m 2-m ,∴A (m ,m 2-m ), ∵m =3, ∴A (3,6);(2)∵△DAE ≌△CAN , ∴AE =AN =m ,∵D (x ,y ),A (m ,m 2-m ),DE =1,∴⎩⎪⎨⎪⎧x -m =m ①m 2-m -y =1②, 由①,得m =12x ③,把③代入②,得14x 2-12x -y =1,∴y =14x 2-12x -1,∵m >1,m =12x ,∴x >2;【解法提示】延长EA 交y 轴于点N ,则ON =m 2-m ,AN =m ,∵OB =m ,∴BN =m 2-m +m =m 2,由△ACN ∽△ABN ,得AN 2=CN ·BN ,即m 2=CN ·m 2,∴CN =1,∵AC =AD ,∠CNA =∠DEA ,∠DAE =∠CAN ,∴△DAE ≌△CAN ,∴DE =CN =1.(3)∵x >2,∴直线AN 与二次函数y =14x 2-12x -1(x >2)只有一个交点,如解图所示,设直线AF 交y 轴于点M ,过点F 作FQ ∥y 轴交AE 的延长线于点Q ,过点D 作DH ∥x轴交y 轴于点H ,则∠FQA -∠BHD =90°,当四边形ABDF 是平行四边形时,AF =DB , ∵FQ ∥y 轴,∴∠HMF =∠AFQ ,第25题解图∵AF ∥BD ,∴∠HMF =∠HBD , ∴∠AFQ =∠DBH , ∴△FQA ≌△BHD , ∴AQ =DH =2m , FQ =BH ,∴点F 的横坐标为3m ,纵坐标为94m 2-32m -1,∴FQ =94m 2-32m -1-(m 2-m )=54m 2-12m -1,∵D (2m ,m 2-m -1),B (0,-m ),∴BH =m 2-m -1-(-m )=m 2-1.∴54m 2-12m -1=m 2-1. 解得:m =2或m =0(舍去);∴当m =2时,以A ,B ,D ,F 为顶点的四边形是平行四边形.。

贵阳市2018年初三 数学 适应性考试试题卷Word版

贵阳市2018年初三 数学 适应性考试试题卷Word版

贵阳市2018年初中毕业生学业适应性考试试题卷数 学一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,用2B 铅笔在答题卡相应位置作答,每小题3分,共30分)1. 在△ABC 中,过点A 作BC 边上的高,作法正确的是( )2.已知,a = -2+(-10),b = -2-(-10),c =)101(2-⨯-,下列判断正确的是( ) (A)a >b >c (B)b >c >a (C)c >b >a (D)a >c >b 3.在综合实践活动中,小明、小亮小颖、小菁四位同学用投掷枚图钉的方法估计钉尖朝 上的概率,他们实验次数分别为20次、50次、150次、200次其中,哪位同学的实验相对科学( ) (A)小明 (B)小亮 (C)小颖 (D)小菁4.如图,甲、乙都是由3个大小相同的小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数.下列说法正确的是( ) (A)主视图相同 (B)左视图相同 (C)主视图、左视图均相同 (D)主视图、左视图均不相同5.如图是某校举行“校园开放日”活动当天参与各社团人数的人物的外区百分比统计图,其中参加“生物奥秘”比“趣味化学”社团的25人数多20人,则参加社团的总人数有( )(A)100人 (B)200人 (C)400人 (D)800人6.关于x 的一元二次方程:x 2—2x +k =0根的情况,下列判断正确的是( ) (A)方程没有实数根(B)方程有两个不相等的实数根 (C)方程有两个相等的实数根(D) 方程实数根的情况与k 的取值有关 7.在 ABCD 中,AB =7,AC =6,则对角线BD 的取值范围是( ) (A)8<BD <20 (B)6<BD <7 (C)4<BD <10 (D)1<BD <138.如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,表达式中的h ,k ,m , n 都是常数,则下列关系不正确的是( ) (A)h <0,k <0 (B)m <0,π<0 (C)h =m (D)k =n9.如图,⊙O 的内接正六边形的面积为36cm 2,则⊙O 的周长为( )(A)πcm (B)2πcm (C)4πcm (D)8πcm10.如图,将一个腰长为3的等腰直角三角板的直角顶点放在点A (-1,-1)处,直角边AB , AC 分别平行于坐标轴,若反比例函数)0(y <=x xk的图象与△ABC 的边有公共点,则k 的取值范围是( )(A)-1≤k≤0 (B)0≤k≤24 (C)1≤k≤425(D)1≤k≤24(第8题) (第9题)(第10题)二、填空题(每小题4分,共20分)11.分式方程132=-x x的解为x = .12.如图,在⊙O 中半径OC 与弦AB 垂直,垂足为点D ,若CD =1,OA =3, 则弦AB 的长为 .13.永辉超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:测试项目 创新能力 综合知识 语言表达 测试成绩(分)708092测试项目创新能力综合知识 语言表达将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是 分.14.如果两个变量x ,y 之间的函数关系如图所示,观察图象,函数值y 的取值范围是 .15.《九章算术》中,赵爽利用“弦图”(如图①)证明了勾股定理,类比此方法研究等边三角形(如图②):在等边三角形ABC 中,如果∠B 4D =∠CBE =∠ACF ,那么△ABD 的三边存在一定的数量关系,设BD =a ,AD =b ,AB =c ,则这三边a , b , c 满足的等量关系是 .三、解答题(本大题10小题,共100分)16.(本题满分10分)解一元一次不等式组⎪⎪⎩⎪⎪⎨⎧≥<-+≤12332356x x x x x请结合题意填空,完成本题解答. 步骤一:解不等式①,得x ≤3; 步骤二:解不等式②,得 ; 步骤三:解不等式③,得x ≥2;步骤四:把不等式①,②和③的解集在数轴上表示出来:步骤五:所以原不等式组的解集为 . 17.(本题满分10分)某校八年级有500名学生,体育老师为了了解全年级学生明年体育中考选考跳绳的意向,请小红、小明分别进行抽样调查.(1)小红调查了甲班全体同学的意向并绘制了扇形统计图如图①,小明调查了乙班全体同学的意向并绘制了扇形统计图如图②.由此他们得到一个结论:“甲班选考跳绳的人数比乙班选考跳绳的人数多”,你认为这个结论是否图①图②正确,说明理由. (2)小亮同学也加入了此次调查,他调查了八年级各班学号为5的倍数的同学共95人,其中选考跳绳的有76人.你认为小红、小明和小亮三人哪位同学的调查结果能较好地反映该校八年级同学选考跳绳的意向,说明理由.(3)请估计八年级有选考跳绳意向的学生人数.18.(本题满分10分)如图,已知E 为 ABCD 的DC 边延长线上的一点,且CE =CD ,连接AE 分别交BC ,BD 于点F ,G . (1)求证:△AFB ≌△EFC ; (2)若AE =12,求FG 的长. 19.(本题满分10分) 如图,在3×3的方格纸中,点A , B , C , D , E 分别位于格点上.(1) 从A ,D . E 三点中任意取一点,以所取的这一点及B ,C 为顶点画三角形,则所画三角形是直角三角形的概率是 ;(2)从A ,D ,E 三点中先后任意取两个不同的点,以所取的这两点及B ,C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表的方法求解).20. (本题满分8分) 如图,小军要从A 处过马路到B 处,现有两种路线选择,线路①:横穿马路沿直线AB 到达:线路②:沿折线AC ,CD ,DB 经人行斑马线到达.已知AC =52m ,∠A =30°,∠B =50°,马路边线与直线AB 互相垂直若小军遵守交通规则选择安全线路②,和线路①相比,他多走了多少路程? (sin 50°≈0.76,tan 50°≈1.19精确到lm )21.(本题满分8分)李老师在给学生上“探索规律”一课时,组织学生分别用火柴棍连续搭建了如图所示的正三角形和正方形,学生搭建正三角形和正方形共用了176根火柴棍,正三角形的个数比正方形的个数多12个,求搭建的正三角形和正方形的个数分别是多少?22.(本题满分10分)现有一根铝合金型材长为18m,用它制作一个如图所示的长方形窗户的框架,若恰好用完整条铝合金型材,设高度AB长为xm,窗户的总面积为Sm.(1)试求出S与x的函数表达式;(2)已知窗户的高度不能低于2m.且高度AB的长必须小于宽度BC的长,求此时窗户总面积s的最大值和最小值.23.(本题满分10分) 如图,半圆O的直径AB=6,弦CD的长为3,点C,D在半圆AB上运动,D点在AC上且不与A点重合,但C点可与B点重合.(1)若⌒AD的长为43π时,求BC的长;(2)取CD的中点M,在CD运动的过程中,求点M到AB的距离的最小值.24.(本题满分12分)(1)如图①,菱形OABC位于平面直角坐标系中,其中0A=8, ∠AOC=60°,点D是对角线OB,AC的交点,将菱形折叠,折痕经过点D,且点B的对应点B' 落在x轴上,此时B' 点的坐标为 ;(2)如图②,正方形OABC位于平面直角坐标系中,其中0A=8. M点为0A的中点,将正方形折叠,使点B与点M重合,请利用尺规作图作出此时的折痕(保留作图痕迹,不写作法),并计算出这条折痕的长;(3)如图③,矩形0ABC位于平面直角坐标系中,其中0A=8, AB=6,点P在y轴上,点2在边AB 上,将矩形沿线段PQ折叠,使点B的对应点B' 落在x轴上,其中AQ=AB,求点P的坐标.25.(本题满分12分)如图,一次函数y =k 1x +3(k 1>0)的图象与坐标轴交于A ,B 两点,与反比例函数xk y 2=(k 2>0) 的图象交于M ,N 两点,作MC ⊥y 轴,重足为点C ,作ND ⊥y 轴,重足为点D ,已知CM =1. (1) k 2-k 1= ;(2)若21=AN AM ,求反比例函数的表达式; (3)在(2)的条件下,设点P 是x 轴上一点,将线段DP 绕点P 按顺时针或逆时针方向旋转90°得到线段PQ .当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出点Q 的坐标;如果不能,请说明理由.。

2018年贵州省贵阳市中考数学试卷(含答案与解析)

2018年贵州省贵阳市中考数学试卷(含答案与解析)

数学试卷 第1页(共44页) 数学试卷 第2页(共44页)绝密★启用前贵州省贵阳市2018年初中毕业生学业(升学)考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.当时1x =-,代数式31x +的值是( )A .1-B .2-C .3-D .4-2.如图,在ABC △中有四条线段DE ,BE ,EF ,FG ,其中有一条线段是ABC △的中线,则该线段是( )A .线段DEB .线段BEC .线段EFD .线段FG3.如图是一个几何体的主视图和俯视图,则这个几何体是( )主视图俯视图A .三棱柱B .正方体C .三棱锥D .长方体4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握的情况.小丽制定了如下调查方案,你认为最合理的是( )A .抽取乙校初二年级学生进行调查B .在丙校随机抽取600名学生进行调查C .随机抽取150名老师进行调查D .在四个学校各随机抽取150名学生进行调査5.如图,在菱形ABCD 中,E 是AC 的中点,EF CB ∥,交AB 于点F ,如果3EF =,那么菱形ABCD 的周长为( )A .24B .18C .12D .96.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .2-B .0C .1D .4 7.如图,A ,B ,C 是小正方形的顶点,且每个小正方形的边长为1,则tan BAC ∠的值为( )A .12B .1 CD8.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是( )A .112B .110C .16D .259.一次函数1y kx =-的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(5,3)-B .(1,3)-C .(2,2)D .(5,1)-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共44页) 数学试卷 第4页(共44页)10.已知二次函数26y x x =-++及一次函数y x m =-+.将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象(如图所示).当直线y x m =-+与新图象有4个交点时,m 的取值范围是 ( )A .2534m -<< B .2524m -<<- C .23m -<<D .62m --<<第Ⅱ卷(非选择题 共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上) 11.某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为 人.12.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数3y x=(0x >),6y x=-(0x >)的图象交于A 点和B 点,若C 为y 轴任意一点.连接AC ,BC 则ABC△的面积为 .13.如图,点M ,N 分别是正五边形ABCDE 的两边AB ,BC 上的点,且AM BN =,点O 是正五边形的中心,则MON ∠的度数是 度.14.已知关于x 的不等式组531,0x a x --⎧⎨-⎩≥<无解,则a 的取值范围是 .15.如图,在ABC △中,6BC =,BC 边上的高为4,在ABC △的内部作一个矩形EFGH ,使EF 在BC 边上,另外两个顶点分别在AB ,AC 边上,则对角线EG 长的最小值为 .三、解答题(本大题共10小题,共100分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)在626⋅国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高学生禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下: 初一: 68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67 初二:69 97 96 89 98 100 99 100 95 100 996997100999479999879(1)根据上述数据,将下列表格补充完整;得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共 人; (3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.数学试卷 第5页(共44页) 数学试卷 第6页(共44页)17.(本小题满分8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形.拿掉边长为n 的小正方形纸板后,再将剩下的三块拼成一个新矩形. (1)用含m 或n 的代数式表示拼成的矩形周长; (2)当7m =,4n =,求拼成的矩形面积.18.(本小题满分8分)如图1,在Rt ABC △中,以下是小亮探索sin a A 与sin b B之间关系的方法:图1图2∵sin a A c =,sin b B c =,∴sin a c A =,sin b c B =,∴sin sin a b A B=. 根据你掌握的三角函数知识,在图2的锐角ABC △中,探究sin a A ,sin bB ,sin c C之间的关系,并写出探索过程.19.(本小题满分10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价保持不变.如果此次购买两种树苗的总费用不超过1 500元,那么他们最多可购买多少棵乙种树苗?20.(本小题满分10分) 如图,在平行四边形ABCD 中,AE 是BC 边上的高,点F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称. (1)求证:AEF △是等边三角形; (2)若2AB =,求AFD △的面积.21.(本小题满分10分)图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图2是一个正六边形棋盘.现通过掷骰子的方式玩跳棋游戏.规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图2中的A 点开始沿着顺时针方向连续跳动几个顶点.第二次从第一次的终点处开始,按第一次的方法跳动.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共44页) 数学试卷 第8页(共44页)图1图2(1)随机掷一次骰子,则棋子跳动到点C 处的概率是 ;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C 处的概率.22.(本小题满分10分)六盘水市梅花山国际滑雪场自建成以来,吸引了大批滑雪爱好者.一滑雪者从山坡滑下,测得滑行距离y (单位:m )与滑行时间x (单位:s )之间的关系可以近似地用二次(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840米,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后所得函数的表达式.23.(本小题满分10分)如图,AB 为O e 的直径,且4AB =,点C 在半圆上,OC AB ⊥,垂足为点O ,P 为半圆上任意一点,过P 点作PE OC ⊥于点E .设OPE △的内心为M ,连接OM ,PM . (1)求OMP ∠的度数;(2)当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长.24.(本小题满分12分)如图,在矩形ABCD 中,2AB =,AD ,P 是BC 边上的一点,且2BP CP =. (1)用尺规在图1中作出CD 边上的中点E ,连接AE 、BE (保留作图痕迹,不写作法); (2)如图2,在(1)的条体下,判断EB 是否平分AEC ∠,并说明理由;(3)如图3,在(2)的条件下,连接EP 并延长交AB 的延长线于点F ,连接AP .不添加辅助线,PFB △能否由都经过P 点的两次变换与PAE △组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离);如果不能,也请说明理由.图1图2图325.(本小题满分12分)如图,在平面直角坐标系xOy 中,点A 是反比例函数32m m y x-=(0x >,1m >)图象上一点,点A 的横坐标为m ,点B (,)m 0-是y 轴负半轴上的一点,连接AB ,AC AB ⊥,交y 轴于点C ,延长CA 到点D ,使得AD AC =.过点A 作AE 平行于x 轴,过点D 作y轴平行线交AE 于点E.(1)当3m =时,求点A 的坐标; (2)DE = ;设点D 的坐标为(),x y ,求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A ,B ,D ,F 为顶点的四边形是平行四边形?5 / 22贵州省贵阳市2018年初中毕业生学业(升学)考试一、选择题 1.【答案】B【解析】解:把1x =-代入31312x +=-+=-,故选:B . 【考点】代数式求值,运算法则. 2.【答案】B【解析】解:根据三角形中线的定义知线段BE 是ABC △的中线,故选:B . 【考点】三角形的中线. 3.【答案】A【解析】解:由主视图和俯视图可得几何体为三棱柱,故选:A . 【考点】空间图形的三视图. 4.【答案】D【解析】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D . 【考点】抽样调查. 5.【答案】A【解析】解:∵E 是AC 中点, ∵EF BC ∥,交AB 于点F , ∴EF 是ABC △的中位线, ∴12EF BC =, ∴6BC =,∴菱形ABCD 的周长是4624⨯=.故选:A . 【考点】三角形中位线的性质及菱形的周长公式. 6.【答案】C【解析】解:∵点A 、B 表示的数互为相反数, ∴原点在线段AB 的中点处, ∴点C 对应的数是1,故选:C . 【考点】数轴,正确确定原点位置. 7.【答案】B【解析】解:连接BC ,由网格可得AB BC =AC 即222AB BC AC +=,6∴ABC △为等腰直角三角形,∴45BAC ∠=,则tan 1BAC ∠=,故选:B .【考点】锐角三角函数的定义,解直角三角形,以及勾股定理. 8.【答案】A【解析】解:共有54312++=, 所以恰好摆放成如图所示位置的概率是112,故选:A . 【考点】列表法与树形图法. 9.【答案】C【解析】解:∵一次函数1y kx =-的图象的y 的值随x 值的增大而增大, ∴0k >,A 、把点()5,3-代入1y kx =-得到:405k =-<,不符合题意;B 、把点(1,)3-代入1y kx =-得到:20k =-<,不符合题意;C 、把点(2,2)代入1y kx =-得到:302k =>,符合题意;D 、把点(5,1)-代入1y kx =-得到:=0k ,不符合题意;故选C . 【考点】一次函数图象上点的坐标特征,一次函数的性质. 10.【答案】D【解析】解:如图,当0y =时,260x x -++=,解得12x =-,23x =,则0()2,A ﹣,()3,0B , 将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为()(3)2y x x =+-, 即26y x x =--(23x -≤≤),当直线y x m =-+经过点0()2,A -时,20m +=,解得2m =-;当直线y x m =-+与抛物线26y x x =--(23x -≤≤)有唯一公共点时,方程26x x x m --=-+有相等的实数解,解得6m =-,所以当直线y x m =-+与新图象有4个交点时,m 的取值范围为62m -<<-.故选:D .7 / 22【考点】抛物线与x 轴的交点二次函数图象与几何变换. 二.填空题 11.【答案】10【解析】解:∵=⨯频数总数频率, ∴可得此分数段的人数为:500.210⨯=. 故答案为:10. 【考点】频数与频率. 12.【答案】92【解析】解:设点P 坐标为(),0a ,则点A 坐标为()3,a a ,B 点坐标为(6,)a a -,111316922222ABC APO OPB S S S AP OP BP OP a a a a =+=+=+=△△△.故答案为:92. 【考点】反比例函数中比例系数k 的几何意义. 13.【答案】72【解析】解:连接OA 、OB 、OC ,360725AOB ︒∠==︒, ∵AOB BOC ∠=∠,OA OB =,OB OC =, ∴OAB OBC ∠=∠, 在AOM △和BON △中,OA OB OAM OBN AM BN =⎧⎪=⎨⎪=⎩∠∠ ∴AOM BON △≌△, ∴BON AOM ∠=∠,∴72MON AOB ∠=∠=︒,故答案为:72.8【考点】正多边形和圆的有关计算. 14.【答案】2a ≥【解析】解:530x a x -⎧⎨-⎩﹣1 ①②≥<,由①得:2x ≤, 由②得:x a >, ∵不等式组无解,∴2a ≥,故答案为:2a ≥. 【考点】一元一次不等式组. 15.【解析】解:如图,作AQ BC ⊥于点Q ,交DG 于点P ,∵四边形DEFG 是矩形, ∴AQ DG ⊥,GF PQ =, 设GF PQ x ==,则4AP x =-, 由DG BC ∥知ADG ABC △∽△, ∴AP DG AQ BC =,即446x DG-=, 则342()EF DG x ==-,∴EG ,===,9 / 22∴当1613x =时,EG 取得最小值,,【考点】相似三角形的判定与性质. 三、解答题16.【答案】(1)补全表格如下:(2)135人(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一, ∴初二年级掌握禁毒知识的总体水平较好.【解析】解:(1)由题意知初二年级的分数从小到大排列为69、69、69、79、79、90、91、94、97、97、98、98、99、99、99、99、100、100、100、100, 所以初二年级成绩的中位数为97.5分; 补全表格如下: (2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共30025%30020%135⨯+⨯=人;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一, ∴初二年级掌握禁毒知识的总体水平较好. 【考点】本频数分布表.17.【答案】解:(1)矩形的长为:m n -, 矩形的宽为:m n +, 矩形的周长为:4m ;(2)矩形的面积为()()m n m n +-,10把7m =,4n =代入()()11333m n m n +-=⨯=. 【解析】解:(1)矩形的长为:m n -, 矩形的宽为:m n +, 矩形的周长为:4m ;(2)矩形的面积为()()m n m n +-,把7m =,4n =代入()()11333m n m n +-=⨯=. 【考点】列代数式问题. 18.【答案】sin sin sin a b cA B C==,理由为: 过A 作AD BC ⊥,BE AC ⊥, 在Rt ABD △中,sin ADB c=,即sin AD c B =, 在Rt ADC △中,sin ADC b=,即sin AD b C =, ∴sin sin c B b C =,即sin sin b cB C=, 同理可得sin sin a cA C=, 则sin sin sin a b cA B C==.【解析】sin sin sin a b cA B C==,理由为: 过A 作AD BC ⊥,BE AC ⊥, 在Rt ABD △中,sin ADB c=,即sin AD c B =, 在Rt ADC △中,sin ADC b=,即sin AD b C =, ∴sin sin c B b C =,即sin sin b cB C=,11 / 22同理可得sin sin a cA C=, 则sin sin sin a b cA B C==.【考点】直角三角形.19.【答案】(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(0)1x +元,依题意有48036010x x=+, 解得:30x =.经检验,30x =是原方程的解,10301040x +=+=.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元. (2)设他们可购买y 棵乙种树苗,依题意有30110%50()()401500y y ⨯--+≤, 解得71113y ≤,∵y 为整数, ∴y 最大为11.答:他们最多可购买11棵乙种树苗.【解析】解:(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(0)1x +元,依题意有48036010x x=+, 解得:30x =.经检验,30x =是原方程的解,10301040x +=+=.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元. 答:他们最多可购买11棵乙种树苗. 【考点】分式方程的应用.20.【答案】(1)∵AB 与AG 关于AE 对称,∵四边形ABCD 是平行四边形, ∴AD BC ∥,∴AE AD ⊥,即90DAE ∠=,∵点F 是DE 的中点,即AF 是Rt ADE △的中线, ∴AF EF DF ==, ∵AE 与AF 关于AG 对称, ∴AE AF =, 则AE AF EF ==, ∴AEF △是等边三角形;(2 【解析】解:(1)∵AB 与AG 关于AE 对称, ∴AE BC ⊥,∵四边形ABCD 是平行四边形, ∴AD BC ∥,∴AE AD ⊥,即90DAE ∠=︒,∵点F 是DE 的中点,即AF 是Rt ADE △的中线, ∴AF EF DF ==, ∵AE 与AF 关于AG 对称, ∴AE AF =, 则AE AF EF ==, ∴AEF △是等边三角形; (2)记AG 、EF 交点为H ,∵AEF △是等边三角形,且AE 与AF 关于AG 对称, ∴30EAG ∠=,AG EF ⊥, ∵AB 与AG 关于AE 对称,∴30BAE GAE ∠=∠=,90AEB ∠=,13 / 22∴1BE =、DF AF AE ===则12EH AE ==32AH =,∴1322ADF S ==△ 【考点】直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质. 21.【答案】解:(1)随机掷一次骰子,则棋子跳动到点C 处的概率是14, 故答案为:14; (2)共有16种可能,和为14可以到达点C ,有3种情形,所以棋子最终跳动到点C 处的概率为316. 【解析】解:(1)随机掷一次骰子,则棋子跳动到点C 处的概率是14, 故答案为:14; (2)共有16种可能,和为14可以到达点C ,有3种情形,所以棋子最终跳动到点C 处的概率为316. 【考点】列表法与树状图,概率公式.22.【答案】解:(1)∵该抛物线过点(0,0), ∴设抛物线解析式为2y ax bx =+, 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为222y x x =+, 当80000y =时,22280000x x +=, 解得:199.500625x =(负值舍去), 即他需要199.500625s 才能到达终点;(2)∵2211222)22y x x x =+=+-(,∴向左平移2个单位,再向上平移5个单位后函数解析式为221159225222)(22()y x x =++-+=++.【解析】解:(1)∵该抛物线过点(0,0), ∴设抛物线解析式为2y ax bx =+, 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为222y x x =+, 当80000y =时,22280000x x +=, 解得:199.500625x =(负值舍去), 即他需要199.500625s 才能到达终点;(2)∵2211222)22y x x x =+=+-(,∴向左平移2个单位,再向上平移5个单位后函数解析式为221159225222)(22()y x x =++-+=++.【考点】二次函数的应用.23.【答案】解:(1)∵OPE △的内心为M , ∴MOP MOC ∠=∠,MPO MPE ∠=∠,15 / 22∴11801802()PMO MPO MOP EOP OPE ∠=-∠-∠=-∠+∠,∵PE OC ⊥,即90PEO ∠=,∴11180180180901352()()2PMO EOP OPE ∠=-∠+∠=--=,(2)如图,∵OP OC =,OM OM =, 而MOP MOC ∠=∠, ∴OPM OCM △≌△, ∴135CMO PMO ∠=∠=︒,所以点M 在以OC 为弦,并且所对的圆周角为135°的两段劣弧上(OMC 和ONC ); 点M 在扇形BOC 内时,过C 、M 、O 三点作O ',连O C ',O O ', 在优弧CO 取点D ,连DA ,DO , ∵135CMO ∠=︒,∴18013545CDO ∠=︒-︒=︒, ∴90CO O '∠=,而4cm OA =,∴4O O '==, ∴弧OMC 的长=90π180⨯(cm ),同理:点M 在扇形AOC 内时,同①的方法得,弧ONCcm , 所以内心M所经过的路径长为2cm =. 【解析】解:(1)∵OPE △的内心为M , ∴MOP MOC ∠=∠,MPO MPE ∠=∠,∴11801802()PMO MPO MOP EOP OPE ∠=-∠-∠=-∠+∠,∵PE OC ⊥,即90PEO ∠=,∴11180180180901352()()2PMO EOP OPE ∠=-∠+∠=--=,(2)如图,∵OP OC =,OM OM =, 而MOP MOC ∠=∠, ∴OPM OCM △≌△, ∴135CMO PMO ∠=∠=︒,所以点M 在以OC 为弦,并且所对的圆周角为135°的两段劣弧上(OMC 和ONC ); 点M 在扇形BOC 内时,过C 、M 、O 三点作O ',连O C ',O O ', 在优弧CO 取点D ,连DA ,DO , ∵135CMO ∠=︒,∴18013545CDO ∠=︒-︒=︒, ∴90CO O '∠=,而4cm OA =,∴4O O '==, ∴弧OMC 的长(cm ),同理:点M 在扇形AOC 内时,同①的方法得,弧ONCcm , 所以内心M所经过的路径长为2cm =.【考点】弧长的计算公式,三角形内心的性质,三角形全等的判定与性质,圆周角定理和圆的内接四边形的性质.24.【答案】解:(1)依题意作出图形如图①所示, (2)EB 是平分AEC ∠,理由: ∵四边形ABCD 是矩形,∴90C D ∠=∠=︒,2CD AB ==,BC AD == ∵点E 是CD 的中点,∴112DE CE CD ===,在ADE △和BCE △中,90AD BC C D DE CE =⎧⎪==⎨⎪=⎩∠∠,∴ADE BCE △≌△, ∴AED BEC ∠=∠,在Rt ADE △中,AD =1DE =,∴tan ADAED DE∠=∴60AED ∠=︒, ∴60BCE AED ∠=∠=︒,∴18060AEB AED BEC BEC ∠=-∠-︒∠==∠,17 / 22∴BE 平分AEC ∠;(3)∵2BP CP =,BC =∴CP =,BP =, 在Rt CEP △中,tan CP CEP CE ∠==, ∴30CEP ∠=︒, ∴30BEP ∠=︒, ∴90AEP ∠=︒, ∵CD AB ∥,∴30F CEP ∠=∠=︒, 在Rt ABP △中,tan BP BAP AB ∠==, ∴30PAB ∠=︒,∴30EAP F PAB ∠==∠=∠︒, ∵CB AF ⊥, ∴AP FP =, ∴AEP FBP △≌△,∴PFB △能由都经过P 点的两次变换与PAE △组成一个等腰三角形,变换的方法为:将BPF △绕点B 顺时针旋转120和EPA △重合,①沿PF 折叠,②沿AE 折叠.【解释】(1)依题意作出图形如图①所示, (2)EB 是平分AEC ∠,理由: ∵四边形ABCD 是矩形,∴90C D ∠=∠=︒,2CD AB ==,BC AD == ∵点E 是CD 的中点,∴112DE CE CD ===,在ADE △和BCE △中,90AD BC C D DE CE =⎧⎪==⎨⎪=⎩∠∠,∴ADE BCE △≌△, ∴AED BEC ∠=∠,在Rt ADE △中,AD =1DE =,∴tan ADAED DE∠=∴60AED ∠=︒, ∴60BCE AED ∠=∠=︒,∴18060AEB AED BEC BEC ∠=-∠-︒∠==∠, ∴BE 平分AEC ∠;(3)∵2BP CP =,BC =∴CP =,BP =, 在Rt CEP △中,tan CP CEP CE ∠==, ∴30CEP ∠=︒, ∴30BEP ∠=︒, ∴90AEP ∠=︒, ∵CD AB ∥,∴30F CEP ∠=∠=︒, 在Rt ABP △中,tan BP BAP AB ∠==, ∴30PAB ∠=︒,∴30EAP F PAB ∠==∠=∠︒, ∵CB AF ⊥, ∴AP FP =, ∴AEP FBP △≌△,∴PFB △能由都经过P 点的两次变换与PAE △组成一个等腰三角形,变换的方法为:将BPF △绕点B 顺时针旋转120和EPA △重合,①沿PF 折叠,②沿AE 折叠.19 / 22【考点】矩形的性质,全等三角形的判定和性质,锐角三角函数,图形的变换. 25.【答案】解:(1)当3m =时,27918y x x-==, ∴当3x =时,y 6=, ∴点A 坐标为(3,6); (2)如图延长EA 交y 轴于点F , ∵DE x ∥轴,∴FCA EDA ∠=∠,CFA DEA ∠=∠, ∵AD AC =, ∴FCA EDA △≌△, ∴DE CF =,∵2(),A m m m -,()0,B m -,∴22()BF m m m m =--=-,AF m =, ∵Rt CAB △中,AF x ⊥轴, ∴AFC BFA △∽△, ∴2AF CF BF =, ∴22m CF m =,∴1CF =, ∴1DE =, 故答案为:1, 由上面步骤可知, 点E 坐标为22m,m (-m), ∴点D 坐标为22m,m -(m-1), ∴2m x =,21y m m =--,∴把12m x =代入21y m m =--, ∴211142y x x =--, 2x >;(3)由题意可知,AF BD ∥,当AD 、BF 为平行四边形对角线时,由平行四边形对角线互相平分可得A 、D 和B 、F 的横坐标、纵坐标之和分别相等, 设点F 坐标为(),a b , ∴02a m m +=+,22(1)b m m m m m +=-+---,∴3a m =,221b m m =--, 代入211142y x x =--, 22112133142m m m m --=⨯-⨯-(),解得12m =,20m =(舍去), 当FD 、AB 为平行四边形对角线时, 同理设点F 坐标为(),a b ,则a m =-,1b m =-,则F 点在y 轴左侧,由(2)可知,点D 所在图象不能在y 轴左侧 ∴此情况不存在,综上当2m =时,以A 、B 、D 、F 为顶点的四边形是平行四边形. 【解析】解:(1)当3m =时,27918y x x-==, ∴当3x =时,y 6=,21 / 22 ∴点A 坐标为(3,6);(2)如图延长EA 交y 轴于点F ,∵DE x ∥轴,∴FCA EDA ∠=∠,CFA DEA ∠=∠,∵AD AC =,∴FCA EDA △≌△,∴DE CF =,∵2(),A m m m -,()0,B m -,∴22()BF m m m m =--=-,AF m =,∵Rt CAB △中,AF x ⊥轴,∴AFC BFA △∽△,∴2AF CF BF =,∴22m CF m =,∴1CF =,∴1DE =,故答案为:1,由上面步骤可知,点E 坐标为22m,m (-m),∴点D 坐标为22m,m -(m-1),∴2m x =,21y m m =--, ∴把12m x =代入21y m m =--,22 ∴211142y x x =--, 2x >;(3)由题意可知,AF BD ∥,当AD 、BF 为平行四边形对角线时,由平行四边形对角线互相平分可得A 、D 和B 、F 的横坐标、纵坐标之和分别相等, 设点F 坐标为(),a b ,∴02a m m +=+,22(1)b m m m m m +=-+---,∴3a m =,221b m m =--, 代入211142y x x =--, 22112133142m m m m --=⨯-⨯-(), 解得12m =,20m =(舍去),当FD 、AB 为平行四边形对角线时,同理设点F 坐标为(),a b ,则a m =-,1b m =-,则F 点在y 轴左侧,由(2)可知,点D 所在图象不能在y 轴左侧 ∴此情况不存在,综上当2m =时,以A 、B 、D 、F 为顶点的四边形是平行四边形.【考点】三角形的全等、相似、平行四边形判定,用字母表示坐标.。

〖汇总3套试卷〗贵阳市2018年中考适应性考试数学试题

〖汇总3套试卷〗贵阳市2018年中考适应性考试数学试题
顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
故答案选B.
考点:二次函数的性质.
6.若点A(2, ),B(-3, ),C(-1, )三点在抛物线 的图象上,则 、 、 的大小关系是( )
A.
B.
C.
D.
【答案】C
【解析】首先求出二次函数 的图象的对称轴x= =2,且由a=1>0,可知其开口向上,然后由A(2, )中x=2,知 最小,再由B(-3, ),C(-1, )都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以 .总结可得 .
∴二元一次方程组 的解为
故选A.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
2.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )
A.4.5mB.4.8mC.5.5mD.6 m
【答案】D
【解析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
∵△ABC∽△EDC,
∴ ,
即 ,
解得:AB=6,
故选:D.
【点睛】
本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
【答案】1
【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.
综上所述,正确的结论有③④两个,故选B。
4.如图是某个几何体的三视图,该几何体是()
A.三棱柱B.三棱锥C.圆柱D.圆锥
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档