查看程序的进程和线程实验报告
线程实验报告

线程实验报告线程实验报告引言:线程是计算机科学中的一个重要概念,它是操作系统能够进行运算调度的最小单位。
线程的使用能够提高程序的并发性和响应性,使得程序能够更高效地利用计算机资源。
本次实验旨在通过编写一个简单的多线程程序,来探究线程的工作原理和应用。
实验目的:1. 了解线程的基本概念和特点;2. 掌握线程的创建、同步和销毁方法;3. 理解多线程编程的优势和挑战。
实验过程:1. 创建线程在实验开始时,我们首先需要创建线程。
在C++中,可以使用pthread库来实现。
通过调用pthread_create函数,我们可以创建一个新的线程,并将其与指定的函数进行绑定。
在实验中,我们创建了两个线程,分别执行不同的任务。
2. 线程同步在多线程编程中,线程之间的同步是一个重要的问题。
为了避免竞态条件和资源争用,我们需要使用互斥锁和条件变量等同步机制。
在本次实验中,我们使用了互斥锁来保护共享资源的访问,以及条件变量来实现线程之间的通信。
3. 线程销毁线程的销毁是一个关键的步骤。
在实验中,我们使用了pthread_join函数来等待线程的结束,并回收线程的资源。
这样可以确保线程的正确退出,避免资源泄漏和程序崩溃。
实验结果:通过实验,我们发现多线程编程具有以下优势:1. 提高程序的并发性:通过并行执行多个任务,可以提高程序的运行效率,减少等待时间。
2. 增强程序的响应性:多线程可以使程序具有更好的交互性,用户可以在任务执行的同时进行其他操作。
3. 充分利用计算机资源:多线程能够充分利用多核处理器的计算能力,提高系统的整体性能。
然而,多线程编程也存在一些挑战:1. 竞态条件:当多个线程同时访问共享资源时,可能会导致数据的不一致性和程序的错误。
2. 死锁和饥饿:线程之间的同步问题可能导致死锁和饥饿现象,使得程序无法正常执行。
3. 调试困难:多线程程序的调试比单线程程序更加困难,需要仔细分析线程之间的交互关系。
结论:通过本次实验,我们深入了解了线程的工作原理和应用。
linux进程与线程通讯实验报告

linux 进程与线程通讯实验报告操作系统实验一进程与线程—Linux 进程与线程通讯实验报告操作系统课程设计任务书篇二: 操作系统实验Linux 进程与线程通讯Linux 进程与线程通讯报告人:设计目的1、深刻理解线程和进程的概念2、掌握线程与进程在组成成分上的差别以及与其相适应的通讯方式和应用目标。
设计的内容1、以Linux 系统进程和线程机制为背景,掌握fork() 和clone() 系统调用的2、形式和功能以及与其相适应的高级通讯方式。
由fork 派生的子进程之间通过pipe 通讯,由clone 创建的线程之间通过共享内存通讯,对于后者需要考虑互斥问题。
3、以生产者-消费者问题为例,通过实验理解fork() 和clone() 两个系统调的区别。
程序要求能够创建4 个进程或线程,其中包括两个生产者和两个消费者,生产者和消费者之间能够传递数据。
4、设计准备1、fork 系统调用、pid=fork()创建一个子进程,子进程是父进程的完整复制,正常返回值为非负整数,对于 父进程来说该数大于 0,是子进程的编号 (pid); 对于子进程来说该数为 0。
正是利用反回值的差别可以决定二者不同的后继动作。
2、 clone 系统调用int clone(int (*fn)(void * arg), void *stack, int flags, void * arg);其中 fn 是轻进程所执行的函数, stack 是轻进程所使用的栈, flag 是CLONE_VM, CLONE_FS, CLONE_FILES,LONE_SIGHAND,CLONE_的组合,arg 是调用过程的对应参数。
Clone()的关键是flag 的设定,CLONE_V S 示子进程共享父进程内存,CLONE_F 表示子进程共3、 pipe 系统调用et_val=pipe(fd);参数定义为 int fd[2] 。
创建一个管道文件,返回两个文件描述符 fd[0] 和fd[1] 分别用于管道文件的读和写操作。
操作系统进程控制实验报告

操作系统进程控制实验报告一、实验目的操作系统进程控制是操作系统中的重要概念和核心功能之一。
本次实验的目的在于深入理解操作系统中进程的概念、状态及其转换,掌握进程创建、终止、阻塞和唤醒等操作的实现原理和方法,通过实际编程和调试,观察进程的行为和特性,从而提高对操作系统原理的理解和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验原理(一)进程的概念进程是操作系统中进行资源分配和调度的基本单位,它包含了程序代码、数据、堆栈等资源。
进程具有独立性、动态性和并发性等特点。
(二)进程的状态进程的状态通常包括就绪态、运行态和阻塞态。
就绪态表示进程已具备运行条件,等待被调度;运行态表示进程正在 CPU 上执行;阻塞态表示进程因等待某个事件而暂停执行。
(三)进程控制的基本操作1、进程创建:通过系统调用创建新的进程,为其分配资源并初始化。
2、进程终止:当进程完成任务或出现异常时,结束其执行并回收资源。
3、进程阻塞:进程在等待某个事件时,主动进入阻塞态。
4、进程唤醒:当等待的事件发生时,将阻塞的进程唤醒,使其进入就绪态。
四、实验内容与步骤(一)进程创建1、编写 C++程序,使用系统提供的函数创建新的进程。
2、在新进程中执行特定的任务,例如打印输出信息。
```cppinclude <windowsh>include <iostream>int main(){STARTUPINFO si;PROCESS_INFORMATION pi;ZeroMemory(&si, sizeof(si));sicb = sizeof(si);ZeroMemory(&pi, sizeof(pi));//创建新进程if (!CreateProcess(NULL, //应用程序名称"C:\\Path\\To\\Your\\ChildProcessexe",//命令行参数NULL, NULL, FALSE, 0, NULL, NULL, &si, &pi)){std::cerr <<"CreateProcess failed Error code: "<<GetLastError()<< std::endl;return 1;}//等待子进程结束WaitForSingleObject(pihProcess, INFINITE);//关闭进程和线程句柄CloseHandle(pihProcess);CloseHandle(pihThread);return 0;}```(二)进程终止1、在创建的进程中设置条件,当满足条件时主动终止进程。
计算机操作系统实验课实验报告

实验报告实验课程: 计算机操作系统学生姓名:XXX学号:XXXX专业班级:软件2014年12月25日目录实验一熟悉Windows XP中的进程和线程 (3)实验二进程调度 (7)实验三死锁避免—银行家算法的实现 (16)实验四存储管理 (22)实验一熟悉Windows XP中的进程和线程一、实验名称熟悉Windows XP中的进程和线程二、实验目的1、熟悉Windows中任务管理器的使用。
2、通过任务管理器识别操作系统中的进程和线程的相关信息。
3、掌握利用spy++.exe来察看Windows中各个任务的更详细信息。
三、实验结果分析1、启动操作系统自带的任务管理器:方法:直接按组合键Ctrl+Alt+Del,或者是在点击任务条上的“开始”“运行”,并输入“taskmgr.exe”。
2、调整任务管理器的“查看”中的相关设置,显示关于进程的以下各项信息,并完成下表:表一:统计进程的各项主要信息3、启动办公软件“Word”,在任务管理器中找到该软件的登记,并将其结束掉。
再从任务管理器中分别找到下列程序:winlogon.exe、lsass.exe、csrss.exe、smss.exe,试着结束它们,观察到的反应是任务管理器无法结束进程,原因是该系统是系统进程。
4、在任务管理器中找到进程“explorer.exe”,将之结束掉,并将桌面上你打开的所有窗口最小化,看看你的计算机系统起来什么样的变化桌面上图标菜单都消失了、得到的结论 explorer.exe是管理桌面图标的文件(说出explorer.exe进程的作用)。
5、运行“spy++.exe”应用软件,点击按钮“”,切换到进程显示栏上,查看进程“explorer.exe”的各项信息,并填写下表:进程:explorer.exe 中的各个线程6、注意某些线程前有“+”,如图所示:,说明二者之间的差异前有“+”其器线程下有窗口。
四、心得体会通过本次实验,我了解到了windows系统中进程的管理与操作,我了解了如何切出任务管理器,任务管理器应用与其他与进程相关的知识,明白了有些系统程序不能够关闭,系统中的进程与线程虽然很多,但是其中有许多关联,只要弄清楚其中的关联那么就能够运用好进程与线程,达到我们的目的。
进程管理实验报告_共10篇 .doc

★进程管理实验报告_共10篇范文一:_进程管理实验报告进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。
2.学习系统调用fork的使用方法。
3.学习系统调用exec族调用的使用方法。
2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。
#includepid_tfork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork调用返回值。
当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。
对于父进程fork返回子进程ID,而对于fork 子进程返回0,我们就是根据这个返回值来区分父子进程的。
2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。
将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。
而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。
3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。
为了调用系统程序,我们可以使用系统调用exec族调用。
Exec族调用有以下五个函数:intexecl(constchar*path,constchar*arg,?);intexeclp(constchar*file,constchar*arg,?);intexecle(constchar*path,constchar*arg,?);intexecv(constchar*path,constchar*argv[]);intexecvp(constchar*file,constchar*argv[]);exec族调用可以执行给定程序。
实验二查看程序的进程和线程

操作系统实验报告班级:计科0801 姓名:韩伟伟学号:08407106 时间:2011-4-14实验二查看程序的进程和线程一.实验目的1.通过进程创建、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解Windows 2000进程的“一生”,加深对进程概念的理解。
2.通过阅读和分析实验程序,观察进程创建和终止进程的程序设计方法。
二.实验属性设计三.实验内容1.编写一个C语言程序;2.通过进程查看器查看Windows系统中的进程、线程及其优先级;3.通过事件调试浏览器查看你自己编写的C语言程序进程的创建、撤消过程;4.参考讲义体会程序的执行过程。
四.实验步骤1.编写一个C语言程序。
#include <iostream>#include <stdio.h>using namespace std;int count(char *string){int i,number=0;for (i=0; string[i]; i++){if ( (string[i]>='a' && string[i]<='z') || (string[i]>='A' && string[i]<='Z') ){number++;}}return (number);}int main(){char word[100];cout<<"输入一个句子:";gets(word);cout<<"这个句子里有"<<count(word)<<"个字母。
"<<endl;return (0);}2.运行进程查看器,查看C语言程序的进程名、编号、进程属性、进程的线程及其优先级;3.通过事件调试浏览器查看你自己编写的C语言程序进程的创建、撤消过程;五.实验报告1.写出你编写的C语言程序所创建的进程名、线程名、进程标识、线程标识。
进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
查看程序的进程和线程实验报告

查看程序的进程和线程实验报告篇一:程序实验2:11-多线程编程---实验报告程序实验二:11-多线程编程实验专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c)1、软件功能描述创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。
2、程序流程设计3.部分程序代码注释(关键函数或代码)#include#include#include#define T_NUMBER 3#define P_NUMBER 5#define TIME 10.0void *thrd_func(void *arg ){(本文来自:小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg;int delay_time =0;int count =0;printf("Thread %d is staraing\n",thrd_num);for(count=0;count {delay_time =(int)(rand()*TIME/(RAND_MAX))+1;sleep(delay_time);printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time);}printf("%d finished\n",thrd_num);pthread_exit(NULL);}int main(){pthread_t thread[T_NUMBER];int no=0,res;void * thrd_ret;srand(time(NULL));for(no=0;no {res=pthread_create(&thread[no],NULL, thrd_func,(void*)no);if(res!=0){printf("Creay th %d faild\n",no);exit(res);}}printf("success\nwaiting\n");for(no=0;no {res=pthread_join(thread[no],&thrd_ret);if(!res){printf("t %d joined\n",no);}else{printf("T %djoined faild\n",no);}}return 0;}4.编译、运行方法及结果(抓屏)5.结果分析由运行结果可以看出,创建线程、释放资源按照顺序,而每个线程的运行和结束是独立与并行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
查看程序的进程和线程实验报告篇一:程序实验2:11-多线程编程---实验报告程序实验二:11-多线程编程实验专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c)1、软件功能描述创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。
2、程序流程设计3.部分程序代码注释(关键函数或代码)#include#include#include#define T_NUMBER 3#define P_NUMBER 5#define TIME 10.0void *thrd_func(void *arg ){(本文来自: 小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg;int delay_time =0;int count =0;printf("Thread %d is staraing\n",thrd_num);for(count=0;count {delay_time =(int)(rand()*TIME/(RAND_MAX))+1;sleep(delay_time);printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time);}printf("%d finished\n",thrd_num);pthread_exit(NULL);}int main(){pthread_t thread[T_NUMBER];int no=0,res;void * thrd_ret;srand(time(NULL));for(no=0;no {res=pthread_create(&thread[no],NULL, thrd_func,(void*)no);if(res!=0){printf("Creay th %d faild\n",no);exit(res);}}printf("success\nwaiting\n");for(no=0;no {res=pthread_join(thread[no],&thrd_ret);if(!res){printf("t %d joined\n",no);}else{printf("T %djoined faild\n",no);}}return 0;}4.编译、运行方法及结果(抓屏)5.结果分析由运行结果可以看出,创建线程、释放资源按照顺序,而每个线程的运行和结束是独立与并行的。
实验二(p287: 11-thread_mutex.c)1、软件功能描述在试验1的基础上通过互斥锁,使原本独立,无序的多个线程能够按顺序进行2、程序流程设计3.部分程序代码注释(关键函数或代码)#include#include#include#define THREAD_NUMBER3/*线程数*/#define REPEAT_NUMBER3 /*每个线程的小任务数*/#define DELAY_TIME_LEVELS 10.0 /*小任务间的最大时间间隔*/pthread_mutex_t mutex;void *thrd_func(void *arg) //线程函数例程{int thrd_num = (int)arg;int delay_time = 0, count = 0;int res;//互斥锁上锁res = pthread_mutex_lock(&mutex);if(res){篇二:操作系统实验报告_进程和线程计算机科学与软件学院操作系统上机实验报告学生姓名:学号:班级:班实验日期: XX.4.17实验名称:进程和线程实验目的:理解unix/Linux下进程和线程的创建、并发执行过程。
实验内容:1.进程的创建2.多线程应用实验步骤及分析:(此部分为关键内容:要求整理实验主要步骤,总结编写实验过程中遇到哪些问题,如何解决的,若未解决也应总结,回答思考题的答案)一、进程的创建下面这个C程序展示了UNIX系统中父进程创建子进程及各自分开活动的情况。
1、实验指导fork( )创建一个新进程。
系统调用格式:pid=fork( )参数定义:int fork( )fork( )返回值意义如下:0:在子进程中,pid变量保存的fork( )返回值为0,表示当前进程是子进程。
>0:在父进程中,pid变量保存的fork( )返回值为子进程的id值(进程唯一标识符)。
-1:创建失败。
如果fork( )调用成功,它向父进程返回子进程的PID,并向子进程返回0,即fork( )被调用了一次,但返回了两次。
此时OS在内存中建立一个新进程,所建的新进程是调用fork( )父进程(parent process)的副本,称为子进程(child process)。
子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。
父进程与子进程并发执行。
2、参考程序代码/*process.c*/#include#includemain(int argc,char *argv[]){int pid;/* fork another process */pid = fork();if (pid fprintf(stderr, "Fork Failed");exit(-1);}else if (pid == 0) {/* child process */execlp( "/bin/ls", "ls",NULL);}else {/* parent process *//* parent will wait for the child to complete */ wait(NULL);printf( "Child Complete" );exit(0);}}3、编译和运行$gcc process.c –o processs4、运行$./process 程序运行截图5、思考(1)系统是怎样创建进程的?(2)扩展程序,在父进程中输出1到5,在子进程中输出6-10,要求父子进程并发输出;记录实验结果,并给出简单分析。
6.实验中遇到的问题和解决方法二、多线程应用编写unix/Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。
下面是一个最简单的多线程程序 example1.c。
1.实验指导下面的示例中,要使用到两个函数,pthread_create和pthread_join,并声明了一个pthread_t型的变量。
函数pthread_create用来创建一个线程,它的原型为:extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr,void *(*__start_routine) (void *), void *__arg));第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。
这里,我们的函数thread 不需要参数,所以最后一个参数设为空指针。
第二个参数我们也设为空指针,这样将生成默认属性的线程。
当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。
前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。
创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。
函数pthread_join用来等待一个线程的结束。
函数原型为:extern int pthread_join __P ((pthread_t __th, void **__thread_return));第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。
这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。
一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。
它的函数原型为:extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。
2、参考程序代码/* thread.c*/#include#includevoid thread(void){int i;for(i=0;i printf("This is a pthread.\n");}int main(int argc,char *argv[]){pthread_t id;int i,ret;ret=pthread_create(&id,NULL,(void *)thread,NULL);if(ret!=0){printf ("Create pthread error!\n");exit (1);}for(i=0;i printf("This is the main process.\n");pthread_join(id,NULL);return (0);}3、编译和运行编译此程序:gcc example1.c -lpthread -o example1-lpthread:使用线程库运行example1,得到如下结果:This is the main process.This is a pthread.This is the main process.This is the main process.This is a pthread.This is a pthread.再次运行,可能得到如下结果:This is a pthread.This is the main process.This is a pthread.This is the main process.This is a pthread.This is the main process.程序运行截图4、思考(1)程序运行后,进程thread中有几个线程存在?(2)为什么前后两次运行结果不一样?答(1)(2)5.实验中遇到的问题和解决方法运行结果并没有出现预期效果篇三:操作系统实验报告操作系统教程实验报告班级:软104学号:109074267姓名:王二康实验一 WINDOWS进程初识1、实验目的(1)学会使用VC编写基本的Win32 Consol Application (控制(2)台应用程序)。