无刷直流电动机毕业设计绪论
无刷直流电机(论文设计)

1 绪论无刷直流电机[1](Brushless DC Motor ,简称BLDCM)用电子换相取代了直流电机的机械换相,把永磁材料做成转子,省去了电刷,因而它具有很强的生命力。
无刷直流电机的驱动电路能比较容易的获得方波,反馈装置简单,功率密度高,输出转矩大,控制结构简单,使得BLDCM的应用比直流电机要广泛得多。
1.1 课题研究目的与意义一个世纪以来,电机作为机电能量转换装置,其应用已遍及国民经济的各个领域以及人们的日常生活中。
众所周知,直流电机具有运行效率高和调速性能好等诸多优点,但是传统的直流电机均采用电刷,以机械方法进行换向,因而存在机械摩擦,由此带来噪声、电火花、无线电千扰以及寿命短等致命弱点,再加上制造成本高及维修困难等缺点,从而大大地限制了它的应用范围,致使目前工农业生产上,大多数采用三相异步电机。
无刷直流电机既具备传统直流电机运行效率高、调速性能好、无励磁损耗的优点,又具有结构简单、运行可靠、维护方便等独特的优势,特别是与传统直流电机相比,无刷直流电机不采用电刷进行换相,因而不存在机械换相带来的诸多缺点,故在许多高科技领域中应用越来越广泛。
在军事装备领域,使用无刷直流电机能更好地满足快响应、高精度的要求。
对常规武器如雷达的天线控制系统、高射武器的自动跟踪系统等,这些随动系统必须具备很高的角速度、角加速度和很高的跟踪精度,快速跟踪和准确定位是两个重要的技术指标,其控制器的好坏直接影响着装备战术技术性能,因此,如何使随动系统具有稳定性好、可靠性高、响应速度快、跟踪精度高等特点成为研究随动系统的关键。
近十年来,用高新技术武装的各种新型武器如战术导弹、隐形飞机、武装直升机等空中武器不断涌现,其目标识别能力、隐蔽程度、目标命中精度均大大提高,这给武器随动系统提出了新的要求。
在民用领域,随着现代电力电子技术、传感器技术、精密机械技术、自动控制技术以及人工智能技术等高新技术的发展,对电动机的要求从过去简单的提供动力发展到精确控制,从而促进了电动机与电子产品紧密结合的机电一体化产品的发展,如激光加工、机器人、数控机床、柔性制造系统等。
直流无刷电动机研发设计毕业论文

直流无刷电动机研发设计毕业论文目录中文摘要 (Ⅰ)Abstract (Ⅱ)第一章绪论 (1)1.1 课题的背景及研究意义 (1)1.2 直流无刷电机控制系统的研究 (3)1.3 PCI总线的应用 (7)1.4 课题研究的主要容 (9)1.5 论文的组织结构 (10)第二章直流无刷电机控制原理 (11)2.1 无刷直流电机的结构 (11)2.2 无刷直流电机工作原理 (13)2.3 无刷直流电机PID调速原理 (17)第三章系统硬件设计 (21)3.1 PCI运动卡控制电机的实现方法 (21)3.2 硬件总体设计思想 (22)3.3 数据采集卡及接线端子板 (23)3.4 直流电机及其驱动器 (25)3.4硬件连线示意图 (27)第四章系统软件设计 (28)4.1 软件总体设计思想 (28)4.2 图形化编程软件LabVIEW简介 (29)4.3 PCI控制卡的各子程序设计 (30)4.3.1 转速控制程序 (30)4.3.2 转速检测程序 (36)4.3.3 PID控制程序 (40)4.4 总程序框图 (41)第五章实验与结论 (43)5.1 硬件的安装与测试 (43)5.2 软件测试 (45)5.2.1 转速控制程序测试 (45)5.2.2 转速检测程序测试 (46)5.2.3 PID程序测试 (48)5.3 结果分析 (50)第六章总结与展望 (52)6.1本文工作总结 (52)6.2 研究展望 (52)致谢 (54)参考文献 (55)附录一中文翻译 (57)附录二外文原文 (67)第一章绪论1.1 课题的背景及研究意义直流无刷电动机是在直流有刷电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。
直流有刷电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间一直在运动控制领域占据主导地位。
但是,有机械接触一直是电流电机的一个致命弱点。
电刷-换向器存在相对的机械摩擦带来了噪声、火化、无线电干扰以及寿命短等弱点,降低了系统的可靠性,再加上制造成本高及维修困难等缺点,从而大大限制了它的应用围。
直流无刷电机毕业设计

直流无刷电机毕业设计毕业设计论文论文题目:直流无刷电机学生姓名:学生学号:专业班级:指导教师:日期:AbstractBrushless DC Motor摘要无刷直流电机是最近发展起来的结合了多学科技术的一种新型电机,结合机电一体化,具有高速度、高效率、高动态响应、高热容量和高可靠性、免维护等优点,同时还具有低噪声和长寿命等特点。
非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最佳选择。
目前无刷电机已广泛应用于各种领域,如医疗仪器、分析仪器、材料处理、过程控制、机床工业、纺织工业、轻工机械、电动自行车等。
无刷直流电机的控制要比普通有刷电机的控制要复杂得多。
目前直流电机的控制方法主要有两种,一种是采用专用得直流电机控制芯片,如Motorola公司的MC33035;另一种控制方法各个厂家根据自己的需求采用单片机或DSP进行开发设计。
本设计主要采用嵌入式单片机ATMEGA48写入控制程序,从而形成一种高性能直流无刷电机控制器。
其不但能实现MC33035直流电机控制芯片的全部功能,而且具有接口灵活,功能完善,成本低廉、全数字控制等优点,用户能根据不同应用场合进行灵活配置。
关键词:无刷直流电机、HALL、PWM目录Abstract ............................................................................................... 错误!未定义书签。
摘要..................................................................................................... 错误!未定义书签。
无刷电机毕业论文

1 绪论1.1无刷直流电机的概况普通直流电动机作为最早的电动机广泛应用于工农业生产各个领域,由于其宽阔而平滑的优良调速性能,在相当长一段时间内曾一直是调速系统的首选电机。
但是机械换向装置的存在限制了其发展的应用范围。
直流电动机的机械电刷和换向器因强迫接触造成了其结构复杂、可靠性差、火花、噪声等一系列问题,影响了直流电动机调速精度和性能。
高性能永磁材料,微电子技术,自动控制技术和电力电子技术的发展,特别是大功率半导体的研制成功为创造新型的无刷直流电动机带来生机。
1955年,美国人首次提出用晶体管换向线路代替机械换向装置,经过反复实验,人们终于找到了用位置传感器和电子换相线路来代替有刷直流电动机机械换向装置,出现了磁电耦合式,光电式及霍尔元件作为位置传感器的无刷直流电动机。
之后,人们发现电势波形和转子磁场的位置存在着一定的对应关系,因此又出现了通过观测电枢绕组中的不同电势波形,监测转子位置的无位置传感器的电动机。
80年代初,无刷直流电机进入了实用阶段,方波和正弦波无刷直流电机先后研究成功。
“无刷直流电机”的概念已经由最初的具有电子换向器的的直流电机发展到泛指一切具有传统直流电机外部特性的电子换相电机。
现在,无刷直流电机集电机,变速机构,检测元件,控制软件和硬件于一体化,形成为新一代电动调速系统。
无刷直流电机具有最优越调速性能,主要表现在调速方便(可无级调速),调速范围宽,低速性能好(启动转矩大,启动电流小),运行平稳,噪音低,效率高,应用场合从工业到民用极其广泛。
1.2无刷直流电机的定义无刷直流电机是伴随着电力电子开关器件和永磁材料的发展而发展起来的。
从有刷到无刷,从半控元件到全控元件,发展过程中各种新结构不断涌现,电机结构和控制方式也层出不穷。
但是这也在一定程度上带来了无刷直流电机定义上的混乱。
目前的永磁同步电动机都采用了自关断器件构成变频器供电。
由于采用变频起动,现在永磁同步电动机的起动无需附加鼠笼。
电动车无刷直流电机毕业设计论文

电动车无刷直流电机毕业设计论文The final edition was revised on December 14th, 2020.摘要近年来,燃油交通工具因尾气排放问题已造成城市空气的严重污染。
于是发展绿色交通工具已经成为一个重要的课题。
考虑到我国的国情,发展电动自行车具有重要的环保意义。
随着电机技术及功率器件性能的不断提高,电动自行车的控制器发展迅速。
本文设计采用无刷直流电机专用控制芯片MC33033为控制芯片,以功率器件MOSFET为开关器件驱动电机,实现对无刷直流电机的控制。
设计出了电路原理图、印制板电路图和电路板实物的3维效果图。
关键词:无刷直流电机 MC33033 原理图印制板电路图AbstractIn recent years, transportation fuel emission problem has been caused by urban air pollution levels. So the development of green transport has become an important issue. Taking into account China's national conditions, development of electric bicycles has important environmental significance. With the motor technology and continuously improve the performance of power devices, the rapid development of electric bicycle controller. This design uses a brushless DC motor for the control of dedicated control chip MC33033 chip, in order to power MOSFET devices as the switching device drive motor, to achieve control of the electric bike. Design a circuit diagram, PCB circuit diagrams and circuit board real 3-D renderings.Keywords:brushless DC motor MC33033 Schematic PCB circuit目录摘要............................................ 错误!未定义书签。
(毕业论文)永磁无刷直流电机论文

小功率永磁无刷直流电动机的设计和仿真研究摘要永磁无刷直流电动机是把电机、电子和稀土材料的高新技术产品发展紧密的结合在一起的新型电机,它具有单位体积转矩高、重量轻、转矩惯量小、控制简单、能耗少和调速性能好等优点,因而在航天航空、数控机床、机器人、汽车、计算机外围设备、军事等领域及家用电器等方面都获得了广泛的应用。
因此,设计性能优异的永磁无刷直流电机具有重要的理论意义和应用价值。
本论文系统的研究了35w小功率永磁无刷直流电机的本体设计,包括设计方法、有限元分析、性能计算、软件仿真等。
本文主要的研究内容如下:1、综述了永磁无刷直流电机的研究现状、存在问题和发展前景,分析了永磁无刷直流电机的基本理论。
2、建立永磁无刷直流电机的数学模型,先利用解析法对该电机进行电磁设计,然后利用有限元法对电机进行优化。
3、基于星形连接三相三状态的控制电路,利用Infolytic公司的MagNet电磁场分析软件建立了永磁无刷直流电机的有限元分析模型,仿真分析其静态气隙磁场分布及动态带负载时的电机特性。
并将软件仿真所得结果与设计计算结果进行比较分析,验证了设计方法的正确性。
关键词:电机设计,无刷直流电动机,有限元分析,稳态特性第一章绪论1.1永磁无刷直流电动机的发展状况永磁无刷直流电动机是一种新型的电动机,其应用广泛,相关技术仍然在不断的发展中,该类电动机的发展充分体现了现代电动机理论、电力电子技术和永磁材料的发展过程。
其中,永磁材料、大功率开关器件、高性能微处理器等的快速发展对永磁无刷直流电动机的进步功不可没。
1821年9月,法拉第建立的世界上第一台电机就是永磁电机,自此奠定了现代电机的基本理论基础。
十九世纪四十年代,人们研制成功了第一台直流电动机。
1873年,有刷直流电动机正式投入商业应用。
从此以后,有刷直流电动机就以其优良的转矩特性在运动控制领域得到了广泛的应用,占据了极其重要的地位。
随着生产的发展和应用领域的扩大,对直流电动机的要求也越来越高。
无刷直流电机毕业设计

无刷直流电机毕业设计编号无锡太湖学院毕业设计(论文)题目:电动小车中无刷直流电机的控制系统业学号: 0822104学生姓名:姚振德指导教师:方光辉(职称:副教授)(职称:)2019年5月25日无锡太湖学院本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)电动小车中无刷直流电机的控制系统是本人在导师的指导下独立进行研究所取得的成果,其内容除了在毕业设计(论文)中特别加以标注引用,表示致谢的内容外,本毕业设计(论文)不包含任何其他个人、集体已发表或撰写的成果作品。
班级:学号:作者姓名:月无锡太湖学院信机系电子信息工程专业毕业一、题目及专题:1、题目设计论文任务书2、专题一、课题来源及选题依据:直流电动机因其优良的调速、起动、制动性能在各种电力拖动系统中得到广泛的应用,但因直流电机的机械换向出现的火花等问题在一些地方限制了直流电机的使用。
自20世纪70年代以来,电力电子器件迅速发展,研制并生产出多种既能控制其导通又能控制其关断的全控型器件,如门极可关断晶闸管(GTO )、电力晶体管(GTR )、电力场效应管(P-MOSFET )、绝缘栅极双极型晶体管(IGBT )等,这些全控型器件性能优良,由它们构成的电子开关在直流电机中取代了机械换向,构成直流无刷电机,解决了机械换向出现的火花等问题,同时由全控元件组成的脉宽调制直流调速系统(简称PWM 调速系统)近年来在中小功率直流传动中得到了迅猛的发展, 且由于专用集成电路的出现,使控制器性能更加优良,体积减小。
本课题研究电动小车中无刷直流电机的控制系统。
二、本设计应达到的要求:了解电动小车的工作情况,其负荷特点;了解PWM 技术的现状﹑发展以及其应用价值和可操作性。
明确生产机械对ZD 调速系统的要求;拟定ZD 调速方案;熟悉无刷ZD 电动机的基本工作原理;熟悉位置检测传感器的原理;选用专用PWM 集成电路在无刷直流电动机进行速度控制;应用集成驱动电路完成对电动机驱动和调速等性能的要求;完成毕业设计总体方案。
无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计学号:1008421057本科毕业论文(设计)(2014届)直流无刷电机控制系统的设计院系电子信息工程学院专业电子信息工程姓名胡杰指导教师陆俊峰陈兵兵高工助教2014年4月摘要无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。
现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。
自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。
现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。
本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。
关键词:控制系统;DSPIC30F2010芯片;无刷直流电机AbstractBrushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention.Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth.The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop.Keywords: Control system; dspic30f2010 chip; brushless DC motor目录摘要 (I)Abstract (III)目录 (IV)1 引言 01.1 研究背景及意义 01.2 国内外研究现状 (1)1.3 设计任务与要求 (1)2 基本理论 (1)2.1 无刷直流电机的结构以及基本原理 (1)2.2 无刷直流电机的运行特性 (4)2.3 无刷直流电机的应用 (5)3 直流无刷直流电机控制系统的设计 (6)3.1 无刷直流电动机系统的组成部分 (6)3.2 无刷直流电机控制系统的设计 (8)4 直流无刷电机的电路设计 (9)4.1 开关电路的设计 (9)4.2 保护电路的设计 (9)4.3 驱动电路的设计 (10)4.4 反馈电路的设计 (10)4.5 电源电路的设计 (11)5 直流无刷电机控制系统的软件设计 (11)5.1 系统功能的实现 (12)5.2 软件流程图 (12)6 实物成果及展望 (13)致谢 (16)参考文献 (16)附录 (19)1 引言近年来随着微电子技术自动控制技术和新型永磁材料的发展,无刷直流电机的应用越来越广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无刷直流电动机一、简介:一种用电子换向的小功率直流电动机。
又称无换向器电动机、无整流子直流电动机。
它是用半导体逆变器取代一般直流电动机中的机械换向器,构成没有换向器的直流电动机。
这种电机结构简单,运行可靠,没有火花,电磁噪声低,广泛应用于现代生产设备、仪器仪表、计算机外围设备和高级家用电器。
同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。
而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。
驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。
无刷电动机结构如图1。
图1无刷直流电动机结构图二、特点(优点及意义):1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速;2、可以低速大功率运行,可以省去减速机直接驱动大的负载;33、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构;4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小;5、无级调速,调速范围广,过载能力强;6、体积小、重量轻、出力大;7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置;8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本;9、可靠性高,稳定性好,适应性强,维修与保养简单;10、耐颠簸震动,噪音低,震动小,运转平滑,寿命长;11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。
i三、发展历程:无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。
而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。
之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。
20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。
无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。
直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。
为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。
1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。
而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。
之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。
20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。
无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。
ii四、国内外无刷电机的发展现状:1、市场:我国无刷直流电机的研制开发起于70年代初期,主要是为我国自行研制的军事装备和宇航技术发展而配套。
由于需要量少,只需由某些科研单位试制提供就能满足要求。
经过20多年的发展,虽然在新产品开发方面缩短了与国际先进水平的差距,但由于无刷电机产品是总和了电机、微电子、控制、计算机等技术于一身的高技术产品,受到了我国基础工业落后的制约,因此无论在产量、品种、质量及应用上与国际先进水平差距甚大。
目前,国内研制的单位虽然不少,但能有一定批量的单位却屈指可数。
当今日本、德国、台湾是无刷电机主要生产国和地区,日本的年产量超过8000万台,其中约50%出口海外,德国年产量约3000万台,台湾主要生产较低档次无刷电机,年产量超过1000万台。
iii2、技术:几乎所有的无刷电动机产品都是为特定用途设计制造的。
试图生产一种通用系列无刷电动机来适应千变万化的市场需求,是不可能的。
各公司设计制造各种特殊结构、特定用途的无刷直流电动机,在设计、结构和工艺新技术方面不断的革新,以适应不同整机市场的需求。
例如:①永磁材料技术:适应不同性能参数永磁材料,瓦型、环型表面粘接结构和各种不同设计嵌入式内磁体结构等新的转子磁路结构出现。
出现各种外转子、轴向气隙(平面电机)、无齿槽结构电机、直线式无刷直流电动机等。
无论是采用铁氧体永磁或稀土永磁的永磁无刷直流电动机,常见的永磁转子结构是表面粘贴式(SPM)。
②转子结构技术:近年,日本各知名家电厂商在新一代变频空调压缩机的永磁无刷直流电动机中,分别采用了各自的专利转子结构,嵌入式永磁(IPM)转子结构已成为主流。
IPM转子结构的电动机可得到较高的效率,增强转子抗高速离心力能力。
③定子铁磁结构技术:在结构和工艺革新的例子:分割型定子铁心结构和连续绕线工艺方法的采用。
对于节距y=1分数槽设计,用专用绕线机直接绕制定子线圈,对于外转子结构的电机比较方便;但对于内转子结构的电机,特别是定子内径小的小功率电机,就要困难得多了。
为此,一些分割型定子铁心结构的构思提出来了。
这种分割型定子铁心结构工艺技术使永磁无刷直流电动机生产实现高效率、大批量、自动化,日本有多家厂商效法,推出自己专利的定子铁心分割方案。
这一技术已开始引起国内个别厂家关注,并进行探索试验。
④分槽技术:在电机设计方面,过去,无刷直流电动机大多采用整数槽设计。
近年,分数槽技术在永磁无刷直流电动机的应用日益增多。
无刷直流电动机采用分数槽技术有如下一些好处:a、对于多极的无刷电动机可采用较少的定子槽数,有利于槽满率的提高,进而提高电动机性能;同时,较少数目的元件数,可简化嵌线工艺和接线,有助于降低成本。
b、增加绕组的短(长)距和分布效应,改善反电势波形的正弦性。
c、有可能得到线圈节距 y = 1的设计(集中绕组),每个线圈只绕在一个齿上,缩短了线圈周长和绕组端部伸出长度,减低用铜量;各个线圈端部没有重叠,不必设相间绝缘。
d、有可能使用专用绕线机,直接将线圈绕在齿上,取代传统嵌线工艺,提高工效;e、提高电动机性能;槽满率的提高,线圈周长和绕组端部伸出长度的缩短,使电动机绕组电阻减小,铜损随之也减低,进而提高电动机效率和降低温升。
f、降低齿槽反应转矩,有利于减少振动和噪声;总之,分数槽技术的应用有利于无刷电动机的节能、节材、小型化、轻量化、省工、生产自动化,从而可以降低产品成本,争强了产品竞争力。
⑤电机控制技术:性能更加优越的DSP(数字信号处理器)电机控制器的应用增多就系统的控制器而言,因运动控制系统是快速系统,特别是交流电机高性能的控制需要实时快速处理多种信号,为进一步提高控制系统的综合性能,近几年国外一些大公司纷纷推出较MCU(单片微控制器)性能更加优越的DSP(数字信号处理器)单片电机控制器,如ADI的ADMC3xx系列,TI的TMS320C24系列及Motorola的DSP56F8xx系列。
都是由一个以DSP为基础的内核,配以电机控制所需的外围功能电路,集成在单一芯片内,使价格大大降低,体积缩小,结构紧凑,使用便捷,可靠性提高。
现DSP的最大速度可达20~40MIPS以上,指令执行时间或完成一次动作的时间快达几十纳秒,它和普通的MCU相比,运算及处理能力增强10~50倍,确保系统有更优越的控制性能。
Microchip Technology (美国微芯科技公司)日前宣布其六款dsPIC16位数字信号控制器(DSC)现已投入量产。
新器件的运算速度可达20和30MIPS,配备自编程闪存,并能在工业级温度和扩展级温度范围内工作。
这些卓越的性能特性使六款新数字信号控制器成为需要更高精确度、更快转速或无传感控制的电机控制应用领域的理想解决方案。
Microchip的dsPIC数字信号控制器既拥有16位闪存单片机的高性能,又兼具数字信号处理器(DSP)的计算能力和数据吞吐能力。
16位单片机为核心的dsPIC数字信号控制器不仅具有功能强大的外围设备和快速中断处理能力,又融合了可管理高速计算活动的数字信号处理器功能,堪称嵌入式系统设计的最佳单芯片解决方案,从而使设计人员能够将多种功能集成在一起,同时节省电路板空间。
dsPIC30F2010采用28管角SOIC及SPDIP封装,具有12K字节增强型闪存,特别适合采用先进算法的电机控制应用。
dsPIC30F2010和dsPIC30F6010均具有脉宽调制(PWM)模块和一个500KSPS的10位模数转换器,是控制多种不同类型电机的理想之选,如三相交流感应电机、三相无刷直流电机及开关式磁阻电机等。
⑥位置传感器技术:a(无位置传感):无位置传感器控制技术逐步完善按照无刷直流电动机工作原理,必须要有转子磁极位置信号来决定电子开关的换相。
目前,大多数采用安装位置传感器(例如霍尔元件)方法来得到这些信号。
它有必须占用电机一些空间、安装位置对准、需较多引出线、影响可靠性等缺点。
在某些场合,如压缩机内有高温高压环境,不允许安放霍尔元件。
为此,80年代以来,微机控制技术的快速进展,出现了各种称为无位置传感器控制技术方法,是当代无刷直流电动机控制研究热点之一,它从电子电路以软件方法获得转子磁极位置信号,实现电子换相。
在诸多方法中,以反电势法较成功。
它检测不激励相绕组的反电势过零点,经过运算后,决定换相时刻。
这也是硬件软件化的一个成功例子。
b(正弦波位置传感控制):正弦波控制方式更被关注,如前所述,无刷直流电动机的电子换相控制模式分为两大类:方波驱动和正弦波驱动。
就其位置传感器和控制电路而言,方波驱动相对简单、价廉而得到广泛应用,是目前绝大多数无刷直流电动机的驱动方式;正弦波驱动需要高分辨率位置传感器,如旋转变压器、光电编码器,控制电路相对复杂,成本较高。
正弦波驱动是借助高分辨率位置传感器作用,以强制提供正弦波相电流为特征的无刷直流电动机电子换相方法。
与方波驱动相比,它具有低转矩波动、平滑的运动、小的可闻噪声,和容易利用领先角技术实现弱磁控制,拓宽调速范围等优点。
过去主要用于军用、工业用较高要求的伺服系统。
高速MCU和DSP控制器的普及应用和价格大幅度降低,使性能优异的正弦波电流控制方式在价格方面的限制得到缓解,更受关注。
例如,西门子公司早期开发的1F5系列方波电流控制方式的无刷直流电动机现在已经停止生产,代之以正弦波电流控制方式的1F6系列。