固定管板换热器计算书

合集下载

固定式管板式换热器

固定式管板式换热器

计算换热面积,以换热管外径为基准,扣除不参与换热的换热管长度后,计算得到的外表面积。

公称换热面积,圆整为整数后的计算换热面积。

管程——介质流经换热管内的通道及与其相贯通部分。

以换热器的长度作为管壳式热交换器的公称长度。

换热管为直管时,取直管长度;换热管为U形管时,取U形管直管段的长度。

为消除换热管与管板管孔之间缝隙的轻度胀接。

管程——换热管常用排列形有正三角行排列(30°)、转角正三角形排列(60°)、正方形排列(90°)、转角正方形排列(45°)。

注:流向垂直于折流板缺口。

换热管中心距不宜小于1.25倍的换热管外径。

管箱平盖与管箱的连接紧固件宜采用双头螺柱。

与管板连接的强化传热管端部光管长度不应小于管板厚度加30mm;未作规定时光管长度为120mm。

换热管材料的硬度应低于管板的硬度。

强度焊接的焊脚高度ι应满足7.4.7中换热管与管板连接拉脱力的要求,且ι不应小于δt。

折流板间距管束两端的折流板尽可能靠近壳程进、出口接管,其余折流板宜按等间距布置。

折流板最小间距不宜小于圆筒内径的1/5且不小于50mm,特殊情况下也可取较小的间距。

当不能利用接管(或接口)进行放气或排液时,应在管程和壳程的最高点设置放气口,在最低点设置排液口。

设备法兰优先采用NB/T47021~47023、GB/T29465中的法兰。

热交换器的公称长度不大于3m时,鞍座间距L B宜取0.4倍~0.6倍热交换器的公称长度;热交换器的公称长度大于3m时,鞍座间距L B宜取0.5倍~0.7倍热交换器的公称长度;必要时应对支座和壳体进行强度和稳定性校核;鞍座支座可按JB/T4712.1选用。

换热管的厚度应按GB150.3-2011中的外径公式进行计算,必要时还应进行外压校核。

管板换热器采用焊接连接时,管板最小厚度应满足结构设计和制造要求,且不小于12mm。

换热管直管或直管段长度大于6000mm时允许拼接;且应符合以下要求:设备法兰、分程隔板的密封面应在热处理后加工。

固定管板式换热器计算解析

固定管板式换热器计算解析
焊接接头系数
厚度及重量计算
形状系数
K= =
计算厚度
= =
mm
有效厚度
e=n-C1- C2=
mm
最小厚度
min=
mm
名义厚度
n=
mm
结论
满足最小厚度要求
重量
Kg
压力计算
最大允许工作压力
[Pw]= =
MPa
结论
合格
后端管箱筒体计算
计算单位
辽宁石油化工大学
计算条件
筒体简图
计算压力Pc
MPa
设计温度t
C
内径Di
MPa
压力试验允许通过
的应力水平T
T0.90s=
MPa
试验压力下
圆筒的应力
T= =
MPa
校核条件
TT
校核结果
合格
压力及应力计算
最大允许工作压力
[Pw]= =
MPa
设计温度下计算应力
t= =
MPa
t
MPa
校核条件
t≥t
结论
筒体名义厚度大于或等于GB151中规定的最小厚度6.00mm,合格
后端管箱封头计算
旋转刚度
MPa
材料名称

壳体法兰厚度
mm
法兰外径
管板和管子连接型式
管板和管子胀接(焊接)高度l
mm
胀接许用拉脱应力[q]
MPa
焊接许用拉脱应力[q]
MPa

材料名称
管箱法兰厚度
mm
法兰外径
mm

基本法兰力矩
Nmm
管程压力操作工况下法兰力
Nmm
法兰宽度

固定管板式换热器设计说明书

固定管板式换热器设计说明书

摘要本设计是关于固定管板式换热器的结构设计,主要进行了换热器的工艺计算、换热器的结构和强度设计。

本设计的前半部分是工艺计算部分,按照GB150-2011以及GB151-2014等国家标准以及技术标准等根据给定的设计条件进行换热器的选型,校核传热系数,计算出实际换热面积。

设计的后半部分主要是关于结构和强度的设计,根据已选定的换热器型式进行设备内部各零部件(如接管、定距管折流板、折流板、管箱等)的设计,包括:材料的选择、具体的尺寸、确定具体的位置、管板厚度计算等。

本设计以本着安全可靠、经济性好、传热效率高以及保护环境为原则进行的设计,符合工厂中的实际应用。

关于固定管板换热器设计的各个环节,本设计书中均有详细说明。

关键词:固定管板;管壳式换热器;结构设计AbstractThe design is fixed with respect to the structural design of the tube plate heat exchanger, mainly for the process to calculate heat exchanger, heat exchanger structure and strength design.The first half of this design is part of the calculation process, in accordance with GB150-2011 GB151-2014 and other national standards and technical standards in accordance with a given design conditions of the heat exchanger selection, check the heat transfer coefficient, to calculate the actual heat area. The second half of the design is mainly on the structure and strength of design, internal equipment all parts have been selected according to the type of heat exchanger (such as receivership, spacer tube baffles, baffles, pipe boxes, etc.) Design including: choice of materials, specific dimensions, determine the specific location of the tube plate thickness calculation.On all aspects of the fixed tube sheet heat exchanger design, the design specification is described in detail.Key Words: fixed tube plate; shell and tube heat exchanger;Structural Design目录摘要 (Ⅰ)Abstract (Ⅱ)第1章设计任务、思想 (1)1.1 设计任务 (1)1.2 设计思想 (1)第2章换热器的工艺设计 (2)2.1换热器的工艺条件 (2)2.2估算设备尺寸 (2)2.2.1计算传热管数N T (2)2.2.2计算壳程直径D (3)第3章换热器零部件的结构设计 (4)3.1换热管 (4)3.1.1换热管的型号和尺寸 (4)3.1.2换热管的材料 (4)3.1.3换热管排列方式以及管心距 (4)3.2折流板 (5)3.2.1折流板的主要几何参数 (5)3.2.2折流板和壳体间隙 (6)3.2.3折流板厚度 (6)3.2.4折流板的管孔 (6)3.2.5材料的选取 (6)3.3拉杆、定距管 (6)3.3.1拉杆的结构形式 (7)3.3.2拉杆直径、数量和尺寸 (7)3.3.3拉杆的布置 (8)3.4防冲板 (8)3.5接管 (8)3.5.1接管(或接口)的一般要求 (8)3.5.2接管高度(伸出长度)确定 (8)3.6管箱 (9)3.7管板结构尺寸 (10)3.8封头 (11)3.9法兰结构类型 (12)3.10垫片的选取 (12)3.11鞍座的选取 (12)第4章换热器的机械结构设计 (14)4.1传热管与管板的连接 (14)4.2管板与壳体的连接 (14)4.3 管板与管箱的连接 (16)第5章换热器的强度设计与校核 (17)5.1壳体、管箱的壁厚计算 (17)5.1.1 壳体 (17)5.1.2 管箱 (18)第6章部分管件零部件的校核计算 (19)6.1壳程圆筒 (19)6.2 管箱圆筒 (19)6.3 换热管 (20)6.4 管板 (20)6.5 管箱法兰 (21)6.6 壳体法兰 (21)6.7 系数 (22)6.8 计算管板参数 (22)第7章换热器的制造、检验、安装与维护 (24)7.1换热器的制造、检验与验收 (24)7.1.1筒体 (24)7.1.2 换热管 (24)7.1.3管板 (25)7.1.4 折流板、支持板 (25)7.1.5 管束的组装 (25)7.1.6 换热器的组装 (25)7.1.7 压力试验 (25)7.2 换热器的安装、试车与维护 (25)7.2.1安装 (25)7.2.2 试车 (26)7.2.3 维护 (26)结束语 (27)参考文献 (28)致谢 (29)第1章设计任务、思想1.1 设计任务本设计的课题为固定管板式冷却器结构设计,设计包括结构设计和强度设计。

四管程固定管板式换热器设计

四管程固定管板式换热器设计

四管程固定管板式换热器设计一、引言固定管板式换热器是一种常见的换热设备,广泛应用于化工、石油、冶金等工业领域。

它由固定管板和流板组成,通过管壳两端的进出口与流体进行热交换。

本文将设计一个四管程固定管板式换热器,并详细介绍其设计过程。

二、设计要求1.换热介质:水2.进口温度:70°C3.出口温度:40°C4.换热面积:根据流量计算得出5.板式换热器型号:根据换热面积选取三、设计过程1.换热面积的计算换热面积的计算公式为:A = Q / (U × ΔTlm)其中,A为换热面积,Q为换热量,U为传热系数,ΔTlm为对数平均温差。

根据水流量和温差计算得到的换热量,再结合所选型号的板式换热器的传热系数,可以计算出换热面积。

2.板式换热器的选取根据计算得到的换热面积,选择合适的型号的板式换热器。

在选型时,要考虑换热器的材质、耐压性能、传热系数等因素。

3.管程的设计四、设计结果根据设计要求和计算过程,可以得出四管程固定管板式换热器的设计结果。

1.换热面积:根据计算结果得出换热面积为X平方米。

2.板式换热器型号:根据换热面积和选取条件,最终确定使用XX型号的板式换热器。

3.管程设计:根据流体的温度差和流速等因素,按照长度逐渐增加的方式,确定四个管程的设计。

五、结论本文根据给定的设计要求,设计了一个四管程固定管板式换热器,并详细介绍了设计过程。

设计结果包括换热面积、板式换热器型号和管程设计。

通过本文的设计,可以满足给定的换热要求,并提供一个可行的四管程固定管板式换热器设计方案。

(看强度)固定管板式换热器设计说明书

(看强度)固定管板式换热器设计说明书

摘要固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。

这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。

固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。

本次设计的题目是乙二醇塔底进料换热器的设计,课题预期达到的目标为:换热器面积的计算(实际换热面积:92.6mm2),管程壳程压力降的计算(小于等于0.4MPa),工艺结构尺寸的计算:管程数(1管程),换热管的确定(内径:19mm 数量:500根),壳体内径(600mm),壳程数(1壳程)的计算,折流板的选型(形式:弓形折流板,数量:13)等。

换热器的强度计算:对筒体、管箱厚度的计算和校核,对壳体及管箱各处开孔补强,对延长部分兼做法兰的计算及强度核算。

经水压试验、压力校核后显示结果全部合格。

换热器的结构设计:折流板、法兰(甲型平焊法兰)、换热管、支座(鞍式支座)、垫片(石棉橡胶板垫片)的规格及选型。

完善设计图纸及设计说明书。

关键词:换热器;工艺;结构;强度IAbstractFixed tube plate heat exchanger is a typical structure of the shell and tube heat exchanger and a wide range of heat exchanger. This type of heat exchanger has the characteristics of a simple structure, compact, high reliability and wide adaptability , and low cost of the production, wide choice of used materials, more convenient of cleaning heat exchanger the surface . Fixed tube plate heat exchanger can withstands the higher operating pressure and temperature, so it has the absolute advantage in the possession of high temperature and high pressure heat exchangers and large,.This design topic is naphtha condenser design, the goal which the topic anticipated achieved:The craft design of heat exchanger:the heat transfer area computation(actual heat transfer area:322.2mm2);tube side pressure drop computation(≤0.4MPa);the craft structure size computation:number of tube passes(2 tube passes),the number of heat exchange tube(inside diameter:19mm,number:900),the inside diameter of shell(1000mm), number of shell passes(1 shell passes),the lectotype of baffle board(form:segmental baffle,number:13)etc The strength calculation of heat exchanger:the computation and check of cylinder thinckness and channel thinckness,the shell and the reinforcement for opening supplements the intensity,the extension part concurrently makes the flange the computation and the intensity calculation. Examinatation part carried on the hydraulic pressure test, the pressure examination and so on, in which all results has been all qualifiedThe structural design of the heat exchanger:The specification and lectotype of baffle plate、flange(type A manhole weded flange)、heat exchange tube、suppot(saddle support)、gasket(paronite gasket)Consummates the design paper and the design instruction bookletKeywords: heat exchanger; craft;structure; intensity目录摘要 (I)Abstract (II)第1章引言 (1)1.1 换热器的用途 (1)1.2换热器的分类 (1)1.3 换热器的发展趋势 (1)第2章固定管板式换热器的工艺计算 (3)2.1 估算换热面积 (3)2.1.1 选择换热器的类型 (3)2.1.2 流程安排 (3)2.1.3 确定物性数据 (3)2.1.4 估算传热面积 (4)2.2 工艺结构尺寸 (5)2.2.1 管径和管内流速 (5)2.2.2 管程数和传热管数 (5)2.2.4 传热管排列和分程方法 (7)2.2.5 壳体内径 (7)2.2.6 折流板 (8)2.2.7其他附件 (8)2.2.8 接管 (9)2.3 换热器核算 (9)2.3.1 热流量核算 (9)2.3.2 壁温核算 (13)2.3.3 换热器内流体的流动阻力 (14)2.4 换热器的主要结构尺寸和计算结果 (17)第3章强度计算 (19)3.1 筒体壁厚计算 (19)3.2 管箱短节、封头厚度的计算 (20)3.2.1 管箱短节厚度的计算 (20)3.2.2 封头厚度的计算 (20)3.3 管箱短节开孔补强的校核 (21)3.4壳体接管开孔补强校核 (22)3.5 管板设计及校核 (23)3.5.1 管板计算的有关参数的确定 (23)3.5.2 计算法兰力矩 (27)3.5.3管板的计算的相关参数 (28)3.5.4 确定 和G (29)23.5.5 对于其延长部分兼作法兰的管板计算 (29)3.5.6 设计条件不同的组合工况 (30)第4章结构设计 (36)4.1折流挡板 (36)4.2 法兰 (36)4.3 换热管 (37)4.4 支座 (37)4.5 压力容器选材原则 (38)4.6 垫片 (39)第5章结论 (40)参考文献 (41)致谢 (43)第1章引言1.1 换热器的用途换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

固定管板式换热器计算

固定管板式换热器计算
系数(带膨胀节时 代替Q)

系数(按K,Q或Qex查图30)
法兰力矩折减系数
管板边缘力矩变化系数

法兰力矩变化系数

管板开孔后面积Al= A- 0.25nd2
mm2


管板布管区面积
(三角形布管)
(正方形布管)
mm2

管板布管区当量直径
mm
系数

系数

系数

系数(带膨胀节时 代替Q)

管板布管区当量直径与壳体内径之比
Wp=Fp+F=
N
所需螺栓总截面积Am
Am= max (Ap,Aa) =
mm2
实际使用螺栓总截面积Ab
Ab= =
mm2
力矩计算

FD= 0.785 pc
=
N
LD=LA+ 0.5δ1
=
mm
MD=FDLD
=
N.mm

FG=Fp
=
N
LG= 0.5 (Db-DG)
=
mm
MG=FGLG
=
N.mm
Mp
FT=F-FD
mm
材料
试验温度许用应力
MPa
设计温度许用应力t
MPa
试验温度下屈服点s
MPa
钢板负偏差C1
mm
腐蚀裕量C2
mm
焊接接头系数
厚度及重量计算
计算厚度
= =
mm
有效厚度
e=n-C1- C2=
mm
名义厚度
n=
mm
重量
Kg
压力试验时应力校核
压力试验类型

固定管板式换热器

固定管板式换热器

固定管板式换热器一 换热管1换热管外径取换热管外径为25*2.5。

2换热管数量及长度*(0.1)An d L π=-A 换热面积D 换热管外径l 换热管长度A=402m取安全系数1.125,1*1.12546A A == 140*1.125248*(0.1) 3.14*0.02*(30.1)A n d L π==≈--n=248L=33布管(1)换热管排列方式采用正三角形排列(2)换热管中心距查阅课本139页表5-3确定换热管中心距是32mm 。

二换热器壳体1换热器内径计算0*(1)(2~3)*D t b d =-+t 管心距d 0 换热管外径D 壳体内径17.32281b ===0*(1)(2~3)*D t b d =-+t=32mm32*(17.322811)2*25572.32992D =-+=取D=600mm2筒体壁厚计算水蒸气工作压力1.27Mpa ,脱盐水工作压力1.28Mpa 。

材料选16MnR工作温度T=150/170℃查阅课本32页确定设计设计温度T W =170/190℃脱盐水走壳程,水蒸气走管程。

*2*[]*c i t c p D p δσφ=-δ 圆筒的计算壁厚c p 圆筒的计算压力[]t σ 许用应力φ 焊接接头系数[]t σ 156查阅课本32页确定c p =1.28+0.18=1.46MpaGB150规定焊接接头系数容器受压元件焊接接头的工艺特点以及无损检测的抽查率确定,查阅课本38页确定φ=0.85。

* 1.46*600 3.322*[]*2*156*0.86 1.46c i t c p D mm p δσφ==≈--d C δδ=+查阅课本40也确定C 2=1.5mm 。

查阅课本39页确定C 1=0.3mmC= C 1 + C 2=1.8mm3.321 1.8 5.121d C mm δδ=+=+=元整后6n mm δ=(3)布管限定圆查阅GB15132*L i D D b =-L D 布管限定圆i D 圆筒内直径3b 最外层换热管外表面至壳体内壁的最短距离,30.25*b d =30.25* 6.25b d ==3b 一般不小于8mm32*6002*8584L i D D b mm =-=-=三管板设计1管板厚度GB151-1999规定00250.75*d mm d δ≤≥时018.75d mm ≥020d mm =2管板与换热管的连接胀结受到压力和温度的限制。

固定管板式换热器工艺计算 说明书

固定管板式换热器工艺计算   说明书

摘要换热器是进行热交换操作的工艺设备。

广泛应用于化工、石油、石油化工、电力、轻工、原子能、造船、航空、供热等工业部门中。

特别是在石油的炼制和化学加工装置中,占有非常重要的地位。

固定管板式换热器的管束连接在管板上,管板与换热器壳体焊接。

其结构设计简单、制造方便、能承受较高压力、造价低;但材料的利用率不高;本设计严格按照要求,主要对固定管板式换热器进行工艺计算,结构设计和强度计算,采用的方法分别为:根据两流体的温度变化情况和物料性质,选择换热器类型;再根据物料操作条件,估算换热器的传热面积,然后求出总传热系数K,核算传热面积;按照GB150-1998,分别对换热器的各个部分结构进行选择、设计;严格按照GB151-1999,分别对封头、筒体、管板法兰进行强度计算和校核。

然后再结合石油、化工、制药、食品等行业实际而进行优化设计,解决了换热器设计中多目标之间相互矛盾的问题,以及提高材料的利用率,增强换热效果,节省了材料。

本换热器适用性强,用途广泛,具有非常广阔的发展前景。

关键词:换热器;管板;筒体;折流板;工艺计算;结构设计;强度计算AbstractHeat exchanger for heat exchange operation is a common process equipment. Widely used in chemical, petroleum, petrochemical, power, light industry, metallurgy, nuclear, shipbuilding, aviation, heating and other industrial sectors. Particularly in the oil refining and chemical processing unit, occupies an extremely important position. Fixed tube plate heat exchanger tubes connected to the tube sheet, tube sheet and shell welding. Its simple structure, convenience, able to withstand high pressure, low cost; but the material utilization is not high; designed in strict accordance with the requirements of the standard GB151-1999, mainly on the fixed tube heat exchanger for process calculation, structural design and strength calculations, the methods used were: two-fluid temperature changes according to circumstances and nature of the materials, select the type of heat exchanger; according to the operating conditions of the material, estimate the heat transfer area, and then find the overall heat transfer coefficient K, accounting for heat transfer area; according to GB150-1998, were all part of the structure of the heat exchanger selection and design; in strict accordance with GB151-1999, respectively, on the head, cylinder, pipe flange for strength calculation and checking. Then combine the oil, chemical, pharmaceutical, food and other industries to optimize the design of practical and solve multi-objective design of heat exchanger between the conflicting issues, and improve material utilization, enhanced heat transfer effect, savings in materials. The heat exchanger applicability, versatility, and has broad prospects for development.Keywords: heat exchanger; bundle; tube plate; head; cylinder; flange; process calculation; structural design; strength calculation目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 选题背景和意义 (1)1.2 国内外研究现状 (1)第2章设计方案 (3)2.1 选择换热器的类型 (3)2.2 物料流程安排 (3)第3章工艺计算 (4)3.1 确定物性参数 (4)3.2 估算传热面积 (4)3.3.1 热流量 (4)3.3.2 平均传热温差 (4)3.3.3 传热面积 (5)3.3.4 冷却水用量 (5)3.4 工艺结构尺寸 (5)3.4.1 管径和管内流速 (5)3.4.2 管程数和传热管数 (5)3.4.3 平均传热温差校正及壳程数 (6)3.4.4 传热管排列和分程方法 (6)3.4.5 壳体内径 (7)3.4.6 折流板 (7)3.4.7 接管 (7)3.5 换热器核算 (7)3.5.1 热流量核算 (7)3.5.1.1 壳程表面传热系数 (7)3.5.1.2 管内表面传热系数 (8)3.5.1.3 污垢热阻和管壁热阻 (9)3.5.1.4 计算传热系数 (9)3.5.1.5 换热器的面积裕度 (9)3.5.2 换热器内流体的流动阻力 (10)3.5.2.1 管程流体阻力 (10)3.5.2.2 壳程流体阻力 (10)3.5.3壁温核算 (11)3.6 换热器主要结构尺寸和计算结果表 (11)第4章强度计算 (13)4.1 壳体、管箱壳体和封头的设计 (13)4.1.1 壁厚的确定 (13)4.1.2 封头的设计 (14)4.1.3 进出口的设计 (14)4.1.3.1 接管外伸长度 (14)4.1.3.2 接管与筒体、管箱壳体的链接 (14)4.1.3.3 接管位置 (14)4.2 管板与换热管 (15)4.2.1 管板 (15)4.2.1.1 管板结构 (15)4.2.1.2 管板最小厚度 (16)4.2.1.3 管板尺寸 (16)4.3 壳体与管板、管板与法兰及换热管的连接 (16)4.3.1 壳体与管板的连接结构 (16)4.3.2 管板与法兰的连接 (16)4.3.3 管子与管板 (16)4.4 螺栓法兰连接设计 (17)4.4.1 垫片选择 (17)4.4.2 螺栓设计 (17)4.5 管板设计 (18)第5章其他各部件结构 (20)5.1 折流板 (20)5.1.1 折流板管孔 (20)5.1.2 折流板的布置 (20)5.2 拉杆 (20)5.3 防冲板 (21)5.4 支座 (21)5.5 膨胀节 (21)5.6 鞍座的选择 (23)5.7 各种可能情况下的应力校核 (26)5.7.1 只有壳程设计压力而管程设计压力 (26)5.7.2 只有管程设计压力而壳程设计压力 (33)结论 (40)参考文献 (41)致谢 (42)第一章绪论1.1 选题背景和意义换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MPa
试验压力下封头的应力
T= =78.45
MPa
校核条件
TT
校核结果
合格
厚度及重量计算
形状系数
K= =1.0000
计算厚度
h= = 2.15
mm
有效厚度
eh=nh-C1- C2=7.7
mm
最小厚度
min=3.00
mm
名义厚度
nh=10.00
mm
结论
满足最小厚度要求
重量
20.42
Kg
压力计算
最大允许工作压力
[Pw]= =5.42085
MPa
结论
合格
后端管箱筒体计算
计算单位
计算所依据的标准
GB 150.3-2011
计算条件
筒体简图
计算压力Pc
1.80
MPa
设计温度t
150.00
C
内径Di
450.00
mm
材料
Q345R(板材)
试验温度许用应力
189.00
MPa
设计温度许用应力t
189.00
MPa
试验温度下屈服点s
PT= 1.25Pc=2.2500
MPa
压力试验允许通过的应力t
T0.90s=310.50
MPa
试验压力下封头的应力
T= =78.45
MPa
校核条件
TT
校核结果
合格
厚度及重量计算
形状系数
K= =1.0000
计算厚度
h= = 2.15
mm
有效厚度
eh=nh-C1- C2=7.7
mm
最小厚度
min=3.00
mm
名义厚度
nh=10.00
mm
结论
满足最小厚度要求
重量
20.42
Kg
压力计算
最大允许工作压力
[Pw]= =5.42085
MPa
结论
合格
壳程圆筒计算
计算单位
计算所依据的标准
GB 150.3-2011
计算条件
筒体简图
计算压力Pc
0.50
MPa
设计温度t
50.00
C
内径Di
450.00
mm
材料
Q345R(板材)
e=n-C1- C2=9.7
mm
名义厚度
n=12.00
mm
重量
123.05
Kg
压力试验时应力校核
压力试验类型
液压试验
试验压力值
PT= 1.25P =2.2500(或由用户输入)
MPa
压力试验允许通过
的应力水平T
T0.90s=310.50
MPa
试验压力下
圆筒的应力
T= =71.39
MPa
校核条件
TT
校核结果
DESIGNER
设计
刘治海
日期
2015.3.25
校核
刘治海
日期
2015.3.25
审核
日期
审定
Approved by
日期
固定管板换热器设计计算
计算单位
抚顺新纪元炼化设备有限公司
设计计算条件
壳程
管程
设计压力
0.5
MPa
设计压力
1.8
MPa
设计温度
50
设计温度
150
壳程圆筒内径
450
mm
管箱圆筒内径
450
试验温度许用应力
189.00
MPa
设计温度许用应力t
189.00
MPa
试验温度下屈服点s
345.00
345.00
MPa
钢板负偏差C1
0.30
mm
腐蚀裕量C2
2
mm
焊接接头系数
0.85
厚度及重量计算
计算厚度
= = 2.54
mm
有效厚度
e=n-C1- C2=9.7
mm
名义厚度
n=12.00
mm
重量
136.72
Kg
压力试验时应力校核
压力试验类型
液压试验
试验压力值
PT= 1.25P =2.2500(或由用户输入)
软件批准号:CSBTS/TC40/SC5-D01-1999
DATA SHEET OF PROCESS EQUIPMENT DESIGN
工程名:
PROJECT
设备位号:
ITEM
设备名称:原料气压缩机一级冷却器
EQUIPMENT
图号:FXLSZ-02-00
DWG NO。
设计单位:抚顺新纪元炼化设备有限公司
后端管箱封头计算
计算单位
计算所依据的标准
GB 150.3-2011
计算条件
椭圆封头简图
计算压力Pc
1.80
MPa
设计温度t
150.00
C
内径Di
450.00
mm
曲面深度hi
112.50
mm
材料
Q345R (板材)
设计温度许用应力t
189.00
MPa
试验温度许用应力
189.00
MPa
钢板负偏差C1
0.30
合格
压力及应力计算
最大允许工作压力
[Pw]= =5.95649
MPa
设计温度下计算应力
t= =48.55
MPa
t
160.65
MPa
校核条件
t≥t
结论
筒体名义厚度大于或等于GB151中规定的最小厚度8.20mm,合格
前端管箱封头计算
计算单位
计算所依据的标准
GB 150.3-2011
计算条件
椭圆封头简图
1.80
MPa
设计温度t
150.00
C
内径Di
450.00
mm
材料
Q345R(板材)
试验温度许用应力
189.00
MPa
设计温度许用应力t
189.00
MPa
试验温度下屈Βιβλιοθήκη 点s345.00MPa
钢板负偏差C1
0.30
mm
腐蚀裕量C2
2
mm
焊接接头系数
0.85
厚度及重量计算
计算厚度
= = 2.54
mm
有效厚度
MPa
压力试验允许通过
的应力水平T
T0.90s=310.50
MPa
试验压力下
圆筒的应力
T= =71.39
MPa
校核条件
TT
校核结果
合格
压力及应力计算
最大允许工作压力
[Pw]= =5.95649
MPa
设计温度下计算应力
t= =48.55
MPa
t
160.65
MPa
校核条件
t≥t
结论
筒体名义厚度大于或等于GB151中规定的最小厚度8.20mm,合格
mm
腐蚀裕量C2
2
mm
焊接接头系数
1.00
压力试验时应力校核
压力试验类型
液压试验
试验压力值
PT= 1.25Pc=2.2500
MPa
压力试验允许通过的应力t
T0.90s=310.50
MPa
试验压力下封头的应力
T= =78.45
MPa
校核条件
TT
校核结果
合格
压力试验时应力校核
压力试验类型
液压试验
试验压力值
计算压力Pc
1.80
MPa
设计温度t
150.00
C
内径Di
450.00
mm
曲面深度hi
112.50
mm
材料
Q345R (板材)
设计温度许用应力t
189.00
MPa
试验温度许用应力
189.00
MPa
钢板负偏差C1
0.30
mm
腐蚀裕量C2
2
mm
焊接接头系数
1.00
压力试验时应力校核
压力试验类型
液压试验
试验压力值
mm
材料名称
Q345R
材料名称
Q345R
简图
计算内容
壳程圆筒校核计算
前端管箱圆筒校核计算
前端管箱封头(平盖)校核计算
后端管箱圆筒校核计算
后端管箱封头(平盖)校核计算
管箱法兰校核计算
开孔补强设计计算
管板校核计算
前端管箱筒体计算
计算单位
计算所依据的标准
GB 150.3-2011
计算条件
筒体简图
计算压力Pc
PT= 1.25Pc=2.2500
MPa
压力试验允许通过的应力t
T0.90s=310.50
MPa
试验压力下封头的应力
T= =78.45
MPa
校核条件
TT
校核结果
合格
压力试验时应力校核
压力试验类型
液压试验
试验压力值
PT= 1.25Pc=2.2500
MPa
压力试验允许通过的应力t
T0.90s=310.50
相关文档
最新文档