卡方检验及SPSS分析
医学统计学之卡方检验SPSS操作

医学统计学之卡方检验SPSS操作卡方检验(Chi-Square Test)是一种常用的统计方法,用于比较两个或多个分类变量的分布是否存在差异。
该方法主要用于处理分类数据,例如比较男女性别和吸烟与否对癌症发生的关系。
在SPSS(Statistical Package for the Social Sciences)软件中,进行卡方检验的操作主要分为数据准备、假设设定和计算步骤。
第一步:数据准备首先,需要在SPSS中导入数据。
假设我们需要在一个样本中比较男女性别和吸烟与否的关系,我们可以将性别和吸烟状况作为两个分类变量,分别用“Male”和“Female”表示性别,“Smoker”和“Non-smoker”表示吸烟状况。
将这些数据输入到SPSS中的一个数据表中。
第二步:假设设定接下来,需要设置假设。
在卡方检验中,我们通常有一个原假设和一个备择假设:-原假设(H0):两个或多个分类变量之间没有显著差异。
-备择假设(H1):两个或多个分类变量之间存在显著差异。
在本例中,原假设可以是“性别和吸烟状况之间没有显著差异”,备择假设可以是“性别和吸烟状况之间存在显著差异”。
第三步:计算步骤进行卡方检验的计算步骤如下:1.打开SPSS软件并导入数据。
2. 选择“分析(Analyse)”菜单,然后选择“非参数检验(Nonparametric Tests)”子菜单,最后选择“卡方(Chi-Square)”选项。
3.在弹出的对话框中选择两个分类变量(性别和吸烟状况),并将它们添加到变量列表中。
4.点击“确定(OK)”按钮,开始进行卡方检验的计算。
5.SPSS将计算卡方统计量的值和相关的P值。
如果P值小于指定的显著性水平(通常为0.05),则可以拒绝原假设,接受备择假设。
这样,就完成了卡方检验的SPSS操作。
需要注意的是,卡方检验是一种只能说明变量之间是否存在关系的方法,不能用于确定因果关系。
此外,在进行卡方检验之前,需要确保样本符合一些假设,例如每个单元格的期望频数应该大于5、如果不满足这些假设,可以考虑使用其他适用的统计方法。
卡方检验与秩和检验的SPSS操作过程

b. G rouping V ariable: 组别
20
例10-6
某医院用3种方法治疗478例慢性喉炎,资料见表。问3种方法治疗慢性 喉炎的疗效有无差别?
疗效等级 (1)
无效 好转 显效 痊愈
甲法 (2)
24 26 72 186
乙法 (3)
20 16 24 32
丙法 (4)
20 22 14 22
合计 (5)
T est Statistics a
M ann-Whitney U
营养状况 544.000
Wilcoxon W
1534.000
Z
-3.215
A sy mp. Sig. (2-tailed)
.001
a. Grouping V ariable: 季 节
16
多组独立样本资料秩和检验SPSS操作过程
17
例10-5
用x表示状况: x=1、2、3 用group表示季节:group=1、2 用freq表示人数
14
例10-4 变量参数的确定
15
例10-4分析结果输出
Ra nk s
季节 营 养 状夏 况季
冬季 Total
N Mean RSaunm k of Ranks 40 50.90 2036.00 44 34.86 1534.00 84
92 196.41 78 169.60 478
Te st Statistics a,b
C hi-S quare df A sy mp. S ig.
疗效等 级 51.388 2 .000
a. Kruskal Wallis Test
b. Grouping V ariable: 治 疗 方 法
SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。
它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。
卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。
卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。
卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。
二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。
原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。
2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。
3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。
4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。
5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。
6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。
三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。
下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。
我们想要检验性别与吸烟习惯之间是否存在关联。
1.打开SPSS软件,导入数据。
2.选择"分析"菜单,点击"拟合度优度检验"。
3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。
4.点击"统计"按钮,勾选"卡方拟合度"。
卡方检验SPSS操作

16
三、行×列表资料的x2检验 第8题,P440
17
其 (SPSS的操作步骤与四格表相同)
步骤一: 定义变量
步骤二: 输入数据
步骤三:对数据按频数进行加权
步骤四:对数据作X2分析
步骤五:分析结果
配对卡方检验专用
药物 A B
T o ta l
药 物 * 药 效 Cross tabulation
Count % within 药 物 Count % within 药 物 Count % within 药 物
药效
有效
无效
73
9
89.0%
11.0%
52
22
70.3%
29.7%
125
31
80.1%
19.9%
无1/5的格子 的理论数大于 1小于5或有 T<1。故不用 合并或改用确 切概率法。直 接选择结果
练习题:
P440: 4、7、8题
23
⑵是否需要校正? 四格表资料检验条件: (1)当n≥40且所有T≥5,用普通X2检验 (2)当n≥40,但1≤T<5时, 用校正的X2检验 (3)当n<40 或 T ≤ 1时,用四格表资料的确切概率法。 2. SPSS不会自动做两两比较
2
卡方检验SPSS操作要领
计数资料(频数表):都是行列表 数据结构: r,c,f(行、列、频数)
.006
Exact Sig. Exact Sig. (2-sided) (1-sided)
Likelihood Ratio
8.758
1
卡方检验SPSS操作

卡方检验SPSS操作卡方检验是一种统计方法,用于比较观察频数与期望频数之间的差异是否显著。
它适用于比较两个或多个分类变量之间的关系,并确定这些变量是否相互独立。
在SPSS中,可以使用交叉表和卡方检验命令来执行卡方检验。
首先,打开SPSS软件并导入待分析的数据文件。
然后,选择“数据”菜单中的“交叉表”选项。
在弹出的交叉表对话框中,将要分析的变量拖拽到“行”和“列”的方框中。
假设我们要比较性别和喜好电影类型之间的关系,那么将性别拖拽到“行”,将电影类型拖拽到“列”。
接下来,在交叉表对话框中,点击“统计”按钮。
在弹出的统计对话框中,选择“卡方”选项,并点击“继续”按钮。
然后,点击“确定”按钮生成交叉表。
SPSS将显示交叉表的结果,包括观察频数、期望频数、卡方值和p值等。
在卡方检验中,我们通过观察频数和期望频数之间的差异来判断两个变量是否相关。
如果差异较大,卡方值较大,p值较小,则说明两个变量之间存在显著关系。
不管是使用交叉表还是描述统计方法进行卡方检验,都需要注意以下几点:1.样本数据应该是随机抽取的,并且足够大。
2.对于交叉表中的每个单元格,期望频数应当大于等于5,以确保卡方检验的可靠性。
3.卡方检验只能检验两个或多个分类变量之间的关系,不能用于比较连续变量。
4.如果卡方检验结果显著,表明两个变量之间存在关联,但不能确定关联的性质或因果关系。
卡方检验在数据分析中有着广泛的应用,可以用于医学研究、市场调查、社会科学等领域。
通过SPSS软件的操作,可以便捷地进行卡方检验,并获取检验结果。
卡方检验spss步骤

卡方检验spss步骤咱先来说说啥是卡方检验吧。
卡方检验就是一种统计方法,用来分析两个分类变量之间有没有关系。
比如说,你想知道男生和女生对某种颜色的喜好有没有差别呀,就可以用这个卡方检验。
那在SPSS里怎么做呢?一、数据准备你得先把数据都整理好。
就像你要去旅行,得先把行李收拾好一样。
数据得是那种每个观测值对应着不同变量的情况。
比如说你有一个变量是性别,男或者女,还有一个变量是对颜色的喜好,红、蓝、绿啥的。
这些数据要整整齐齐地放在SPSS的数据视图里。
如果数据乱七八糟的,那卡方检验可就没法好好做啦。
二、打开分析菜单在SPSS的界面里呢,你要找到“分析”这个菜单。
这个菜单就像是一个装满了各种工具的魔法盒子,卡方检验这个小魔法就在里面呢。
你轻轻一点这个“分析”菜单,就会看到好多选项冒出来。
三、选择描述统计里的交叉表在这个分析菜单里,有个叫“描述统计”的部分,在那里你能找到“交叉表”这个选项。
这就像是在一堆糖果里找到你最爱的那一颗一样。
点了“交叉表”之后,会弹出一个新的窗口。
四、设置变量在这个新窗口里呀,你要把你的两个分类变量分别放到行和列里面。
比如说,你把性别放到行里,把颜色喜好放到列里。
这就像是给每个小玩具找到它该待的小格子一样。
这个步骤很重要哦,要是放错了地方,结果可就不对啦。
五、点击统计量按钮在这个交叉表的窗口里,你能看到一个叫“统计量”的按钮。
点这个按钮就像是打开一个神秘的小盒子,里面藏着卡方检验这个宝贝呢。
在统计量的选项里,你要找到“卡方”这个选项,然后把它勾上。
就像你在菜单里点了你最爱吃的菜一样。
六、确定并查看结果勾好卡方检验之后呢,你就可以点“确定”按钮啦。
然后SPSS 就会像个勤劳的小蜜蜂一样,开始计算结果。
结果出来之后呢,你要看一个叫“卡方检验”的表格。
这个表格里会告诉你卡方值、自由度还有显著性水平这些东西。
如果显著性水平小于0.05,那就说明这两个分类变量之间是有关系的哦。
如果大于0.05呢,那可能就没什么关系啦。
SPSS知识6:卡方检验(无序变量)

SPSS知识6:卡方检验(无序变量)卡方检验定义:卡方检验用作分类计数的假设检验方法:检验两个或多个样本率或构成比之间的差别是否有统计学意义→从而推断两个或多个总体率或构成比之间的差别是否有统计学意义。
一、行*列卡方检验(只需要判断最小理论频数即可)SPSS操作:第一步:建立数据文件(group:横标目,type:纵标目-无序变量,f→共3列数据);第二步:对频数f加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→横标目group调入rows,纵标目types调入columns→点击statistics…→激活Chi-square→continue→点击cells…→激活row行百分数→continue→OK);第四步:判断结果(结果有2个图表,根据最小理论频数与5的比较和总例数与40的比较,判断是选用pearson Chi-square还是其他指标,读取对应P值,若P<0.05,则有差异,需要利用行*列分割进行22比较,检验水准也需要变化,因为扩大了第一类错误)。
第五步:两两比较(对group横标目设不同的missing value值后进行行*列分割计算。
)Missing value→重复analyze操作。
二、四格表卡方检验(要根据N和T判断选用四格表卡方专用公式、校正公式、确切概率法?)SPSS操作:第一步:建立数据文件(group:横标目,effect:纵标目-无序变量,f,频数→共计3列数据);第二步:对频数加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→group调入rows,effect调入columns →点击statistics…→激活chi-square→continue→点击cells…→激活rows 百分数→continue→OK);第四步:判断结果(根据N和T判断选用公式→判断P值)。
SPSS中的卡方检验、t检验和方差分析

SPSS中的卡⽅检验、t检验和⽅差分析
⾸先要明⽩两个概念:
计数资料和计量资料
(1)计数资料⼜称为定性资料:是分类型的,统计每个类型有多少数量。
(2)计量资料⼜称为定量资料:⽐如年龄,是有具体的数值。
根据数据的类型,使⽤不同的⽅法:
(1)对于计量资料。
秩和检验在国内的⽂章中很少见到。
当数据只有两组进⾏对⽐的时候,使⽤t检验和⽅差分析都可以。
但是有两组或者两组以上的时候,使⽤⽅差检验。
(2)对于计数资料,使⽤卡⽅分析,卡⽅分析⽤于⽐较,不同组之间,不同数量是否有差异。
⽐如,⽐较两组,男⽣⼈数和⼥⽣⼈数是否有差距。
独⽴样本t检验:两独⽴样本t检验就是根据样本数据对两个样本来⾃的两独⽴总体的均值是否有显著差异进⾏推断;进⾏两独⽴样本t检验的条件是,两样本的总体相互独⽴且符合正态分布;
⽐如:A组和B组,⽐较A组⼈的⾝⾼和B组⼈的⾝⾼是否有差异。
配对样本t检验-:配对样本是指对同⼀样本进⾏两次测试所获得的两组数据,或对两个完全的样本在不同条件下进⾏测试所得到的两组数据;两独⽴样本t检验就是根据样本数据对两个配对样本来⾃的两配对总体的均值是否有显著差异进⾏推断;两配对样本t检验的前提条件:两样本是配对的(数量⼀样,顺序不能变),服从正态分布。
⽐如:实验组A组中,实验前后,变化的对⽐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行变量 列变量
计算统计量
卡方统计量
Kappa系数 风险度
配对四格表 McNemar检验
实际频数 理论频数
Crosstabs过程详解
• 界面说明 -[行Rows框]用于选择行×列表中的行变量。 -[列Columns框]用于选择行×列表中的列变量。 -[层Layer框]指定分层变量,即控制变量。如果要指定不同的分层变量做分析,则
校正公式:
2
( A T 2 n
(a b)(c d )(a c)(b d )
SPSS操作过程
• ①建立数据文件:例1.sav
数据格式:包括4行3列的频数格式,3个变量即行变量(group)、列变量(effect)和频数变量 (freq)。
计算理论频数
x2 检验基本步骤
2. 计算 x2 统计量
3. 确定P值,作出推论
龋患率(%) 35.00 45.00 38.33
• 四格表 检验的2条件:
•
1) n 40且T 5, 用不校正的 2公式;
2) n 40且至少1个格子1 T 5, 用校正的 2公式; 3) n 40或T 1,需用确切概率法
龋患率(%) 35.00 45.00 38.33
一、2 检验的基本思想
2是一种用途较广的计数资料的假设检验方法,属于非参数检验 的范畴。 根本思想:在于比较理论频数和实际频数的吻合程度或拟合优度 问题。
• x2检验:以x2分布为方法的理论基础
2 检验的基本公式
使用含氟牙膏与一般牙膏儿童的龋患率
• 交叉表(Crosstabs)过程 (一)四格表(fourfold data)资料的x2检验 (二)配对(paired data)资料的x2检验 (三)R×C表资料的x2检验 (四)两分类变量有无关联分析及列联系数C
• 卡方(Chi-Square)过程 (五)拟合问题-比较样本与已知总体的分布
第一节
牙膏类型
患龋齿人数 未患龋齿人数
含氟牙膏
70
一般牙膏
45
130 55
合计
115
185
• A为实际频数(actual frequency),T为理论频数(theoretical frequency)
调查人数 200 100 300
• nR是行和,nC是列和,n是四格数之和 • 2表示观察值与期望值之间的偏离程度。
• 1900年由英国统计学家Karl Pearson首次提出,故被称为Pearson 2 。
8
*例1:四格表资料的x2检验
使用含氟牙膏与一般牙膏儿童的龋患率
牙膏类型 含氟牙膏 一般牙膏 合计
患龋齿人数 70 45
115
未患龋齿人数 130 55 185
调查人数 200 100 300
1. 建立检验假设 H0 : 两总体龋患率相等 H1 : 两总体龋患率不等
将其选入Layer框,并用Previous和Next钮设为不同层。 -[Display clustered bar charts 复选框]:显示复式条图 -[Suppress table复选框]:不在输出结果中给出行×列表。
Crosstabs过程详解
• 界面说明 精确(Exact)子对话框:针对2×2以上的行×列表设计计算确切概率
*****指定加权变量(weight cases)
在实际的统计中,经常需要计算数据的加权平均数。 例如,希望了解不用牙膏使用者的平均患龋量。 如果仅以各种牙膏的患龋量的平均数作为平均患龋量是不合理的 还应考虑到各牙膏使用者的患龋量对平均患龋量的影响。 因此,以各牙膏使用者的患龋量作为权重计算各牙膏患龋率的加权 平均数,才是我们需要求的数据。
• 界面说明 -Kappa复选框:计算Kappa值,即内部一致性系数,介于0~0.7071之间; -Risk复选框:计算比数比OR值、RR值; -McNemanr复选框:进行配对卡方检验的McNemanr检验(一种非参
数检验) -CXo2cChMrHa,n’s可a在nd下M方an输te出l-HHa0e假ns设zel的stOatRis值tic,s复默选认框为:1。计算X2M-H统计量、
2
四格表资料的 检验 x2 test of fourfold data
目的:推断两个总体率(构成比)是否有差 别
要求:两样本的两分类个体数排列成四格表
资料
牙膏类型 含氟牙膏 一般牙膏 合计
使用含氟牙膏与一般牙膏儿童的龋患率
患龋齿人数 70 45
115
未患龋齿人数 130 55 185
调查人数 200 100 300
卡方检验
Chi-Square Test
预防医学教研室 张杰
课程内容
第一节:四格表(fourfold data)资料的x2检验** 第二节:配对(paired data)资料的x2检验** 第三节:R×C表资料的x2检验* 第四节:分层卡方检验 第五节:多个样本率间的多重比较 课程小结
SPSS统计分析
的方法。 统计量(Statistics)子对话框:用于定义所需计算的统计量 -Chi-square 复选框:计算pearson卡方值,对四格表资料自动给出校正卡
方检验和确切概率法结果。 -Correlations复选框:计算行列变量的pearson相关系数和Spearman等级相
关系数。
Crosstabs过程详解
• ②说明频数变量:数据 加权个案
Data Weight Cases
• ③ x2检验:从菜单选择 分析 描述统计 交叉表
Analyze Descriptive Statistics Crosstabs • 结合例1数据演示操作过程。
首先建立数据文件,如下。
注意:由于上表给出的不是原始数据,而是频数表数据,应该进行预处理。
在SPSS处理中就需要将各牙膏的患龋量作为加权变量。
“Weight Cases”对话
框
频数变量
不设置权重 设置权重
交叉表(Crosstabs)过程
• Crosstabs过程用于对分类资料和有序分类资料进行统计描述和统计 推断。
• 统计描述过程可以产生2维至n 维列联表,并计算相应的百分数指标。 • 统料计的推确断切包概括率了 (F常is用he的r’sxE2检xac验t T、esKt)ap值pa。值,分层X2(X2M-H),以及四格表资