IEEE802.11协议详细介绍

合集下载

802.11协议标准ppt详解

802.11协议标准ppt详解

物理层结构

物理层管理(Physical Layer Management):物理层管理与
MAC层管理相连,为物理层提供管理功能。

物理层汇聚子层(PLCP):媒体访问控制(MAC)子层和物理层
汇聚(PLCP)子层通过物理层服务访问点(SAP)利用原语进行通信
。MAC发出指示后,PLCP就开始准备需要传输的媒体协议数据单元(
STA4 STA6
DS
BSS1
AP
DS
AP BSS2
DS(Distribution System):分布式系统
ESS
BSS1
Service set identify (SSID1)
ESS
属于同一VLAN的客户端
AP1 AP2
DS
Service set identify (SSID1)
BSS2
802.11e — QoS
802.11h —动态调整 802.11i —安全增强 802.11f — 漫游和切换 802.11s — mesh
IEEE802.11的工作方式及802.11网络 基本元素
802.11定义了两种类型的设备,一种是无线站,通常 是通过一台PC机器加上一块无线网络接口卡构成的, 另一个称为无线接入点(Access Point,AP),它的 作用是提供无线和有线网络之间的桥接。一个无线接 入点通常由一个无线输出口和一个有线的网络接口 (802.3接口)构成,桥接软件符合802.1d桥接协议。 接入点就像是无线网络的一个无线基站,将多个无线 的接入站聚合到有线的网络上。无线的终端可以是 802.11 PCMCIA卡、PCI接口、ISA接口,或者是在非 计算机终端上的嵌入式设备(例如802.11手机)。

什么是802.11?

什么是802.11?

IEEE 802.11协议详细介绍作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。

这些协议包括了802.3 Ethernet协议、802.5 Token Ring 协议、802.3z 100BASE-T快速以太网协议。

在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。

在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps速率下又增加了5.5Mbps 和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。

802.11a高速WLAN协议,使用5G赫兹频段。

最高速率54Mbps,实际使用速率约为22-26Mbps与802.11b不兼容,是其最大的缺点。

也许会因此而被802.11g淘汰。

802.11b目前最流行的WLAN协议,使用2.4G赫兹频段。

最高速率11Mbps,实际使用速率根据距离和信号强度可变(150米内1-2Mbps,50米内可达到11Mbps).802.11b 的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。

另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。

兼容性促进了竞争和用户接受程度。

802.11e基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。

也就是说,802.11e是通过无线数据网实现语音通话功能的协议。

该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。

802.11g802.11g是802.11b在同一频段上的扩展。

支持达到54Mbps的最高速率。

兼容802.11b。

该标准已经战胜了802.11a成为下一步无线数据网的标准。

IEEE802.11协议基础知识

IEEE802.11协议基础知识

IEEE802.11协议基础知识1. 802.11管理功能–用户接入过程STA (工作站)启动初始化、开始正式使用、AP 传送数据幀之前,要经过三个阶段才能接入:(1) 扫描(SCAN)(2) 认证(Authentication)(3) 关联(Association)1.1 802.11管理–扫描(SCAN)1) 若无线站点STA 设成Ad-hoc (无AP)模式:STA先寻找是否已有IBSS(与STA所属相同的SSID)存在,如有,则参加(join);若无, 则会自己创建一个IBSS,等其他站来join。

2) 若无线站点STA 设成Infrastructure (有AP)模式:--主动扫描方式 (特点:能迅速找到)•依次在每个信道上发送Probe request报文,从Probe Response中获取BSS的基本信息,Probe Response包含的信息和Beacon帧类似-- 被动扫描方式 (特点:找到时间较长,但STA节电)• 通过侦听AP定期发送的Beacon帧来发现网络,Beacon帧中包含该AP所属的BSS的基本信息以及AP的基本能力级,包括:BSSID(AP的MAC地址)、SSID、支持的速率、支持的认证方式,加密算法、Beacons帧发送间隔,使用的信道等• 当未发现包含期望的SSID的BSS时,STA可以工作于IBSS状态1.2 802.11管理功能–认证(Authentication)802.11支持两种基本的认证方式:• Open-system Authentication1) 等同于不需要认证,没有任何安全防护能力2) 通过其他方式来保证用户接入网络的安全性,例如Address filter、用户报文中的SSID• Shared-Key Authentication1) 采用WEP加密算法2) Attacker可以通过监听AP发送的明文Challenge text和STA回复的密文Challenge text计算出WEP KEY另外,STA可以通过Deauthentication来终结认证关系。

IEEE802.11无线局域网标准简介

IEEE802.11无线局域网标准简介

IEEE802.11⽆线局域⽹标准简介IEEE802.11⽆线局域⽹标准简介⽆线局域⽹是计算机⽹络与⽆线通信技术相结合的产物。

它利⽤射频(RF)技术,取代旧式的双绞铜线构成局域⽹络,提供传统有线局域⽹的所有功能,⽹络所需的基础设施不需再埋在地下或隐藏在墙⾥,也能够随需移动或变化。

使得⽆线局域⽹络能利⽤简单的存取构架让⽤户透过它,达到“信息随⾝化、便利⾛天下”的理想境界。

WLAN是20世纪90年代计算机与⽆线通信技术相结合的产物,它使⽤⽆线信道来接⼊⽹络,为通信的移动化,个⼈化和多媒体应⽤提供了潜在的⼿段,并成为宽带接⼊的有效⼿段之⼀。

⼀、IEEE802.11⽆线局域⽹标准1997年IEEE802.11标准的制定是⽆线局域⽹发展的⾥程碑,它是由⼤量的局域⽹以及计算机专家审定通过的标准。

IEEE802.11标准定义了单⼀的MAC层和多样的物理层,其物理层标准主要有IEEE802.11b,a和g。

1.1 IEEE802.11b1999年9⽉正式通过的IEEE802.11b标准是IEEE802.11协议标准的扩展。

它可以⽀持最⾼11Mbps的数据速率,运⾏在2.4GHz的ISM频段上,采⽤的调制技术是CCK。

但是随着⽤户不断增长的对数据速率的要求,CCK调制⽅式就不再是⼀种合适的⽅法了。

因为对于直接序列扩频技术来说,为了取得较⾼的数据速率,并达到扩频的⽬的,选取的码⽚的速率就要更⾼,这对于现有的码⽚来说⽐较困难;对于接收端的RAKE接收机来说,在⾼速数据速率的情况下,为了达到良好的时间分集效果,要求RAKE接收机有更复杂的结构,在硬件上不易实现。

1.2 IEEE802.11aIEEE802.11a⼯作5GHz频段上,使⽤OFDM调制技术可⽀持54Mbps的传输速率。

802.11a与802.11b两个标准都存在着各⾃的优缺点,802.11b的优势在于价格低廉,但速率较低(最⾼11Mbps);⽽802.11a优势在于传输速率快(最⾼54Mbps)且受⼲扰少,但价格相对较⾼。

802.11协议标准

802.11协议标准

分布协调功能DCF (Distributed coordination function)
(CSMA/CD)
PHY层
802.11的MAC层使用DCF或PCF
分布协调功能DCF ——争用服务
DCF在每一个结点使用CSMA机制的分布式接入
算法,让各个站通过争用信道来获取发送权。因此
DCF向上提供争用服务。
若低优先级帧还没来得及发送而其他站的高优先级帧 已发送到媒体,则媒体变为忙态,因而低优先级帧就 只能在推迟发送了。这样就减少了发生碰撞的机会。
帧间间隔IFS
SIFS,即短帧间间隔,它是最短的帧间间隔,用来分 隔开属于一次对话的各帧。一个站应当能够在这段时 间内从发送方式切换到接收方式。
PIFS,即点协调功能帧间间隔(比 SIFS 长),是为 了在开始使用 PCF 方式时(在 PCF 方式下使用, 没有争用)优先获得接入到媒体中。PIFS的长度是 SIFS加一个时隙长度。
在一个基本服务集BBS中,当某个站在一个时隙开始接入 到信道时,那么在下一个时隙开始时,其他站就能检测出信道已 转变到忙态,就选定该长度作为时隙长度。
虚拟载波监听
虚拟载波监听(Virtual Carrier Sense):
源站将它还要占用信道的时间(包括目的站发回
确认帧所需时间)在其 MAC 帧首部字段“持续时间”
对于非特定的目的的接收器,扩展了带宽的信号混在 背景噪声中,让蓄意想侦听窃取数据资料的人不易判 别真正的信号,避免他人的截听。
提供了供多个用户使用同一传输波段的方法,保证了 无线设备在频段上的可用性和可靠的吞吐量,也保证 了使用同一频段的设备不互相影响。
IEEE802.11的MAC层
无线局域网虽然也是多个站点共享无线信道,却 不能简单的搬用以太网的CSMA/CD协议,这里主要 有两个原因: CSMA/CD协议要求一个站点在发送本站数据的同时 好必须不简短地检测信道,但在无线局域网的设备中 要实现这种全双工花费就会过大。 即使我们能够在发送的同时实现冲突检测的功能,并 且当我们在发送数据检测到信道是空闲的,在接受端 仍然有可能发生冲突。

802.11协议标准详解

802.11协议标准详解

IEEE802.11系列协议标准的发展


802.11,定义微波和红外线的物理层和MAC子层(2.4GHz,2Mbit/s,1997) 802.11a,定义了微波物理层及MAC子层(5GHz,54Mbit/s,1999) 802.11b,物理层补充DSSS(2.4GHz,11Mbit/s,1997) 802.11b+,物理层补充PBCC(2.4GHz,11Mbit/s,2002) 802.11c,关于802.11网络和普通以太网之间的互通协议(2000) 802.11d,关于国际间漫游的规范(2000) 802.11e,对服务等级QoS的支持(2004) 802.11f,基站的互联性(2003) 802.11g,物理层补充OFDM(2.4GHz,54Mbit/s,2003) 802.11h,扩展物理层和MAC子层标准(5GHz,欧洲,2003) 802.11i, 安全和鉴权方面的补充(2004) 802.11j,扩展物理成和MAC子层标准(5GHz,日本,2004) 802.11k,基于无线局域网的微波测量规范(2005) 802.11m,基于无线局域网的设备维护规范(2006) 802.11n,导入MIMO(多输入输出)技术(2.4G/5GHz,100300Mbit/s,2007)
IEEE802.11的工作方式

802.11定义了两种类型的设备,一种是无线站,通常 是通过一台PC机器加上一块无线网络接口卡构成的, 另一个称为无线接入点(Access Point,AP),它的 作用是提供无线和有线网络之间的桥接。一个无线接 入点通常由一个无线输出口和一个有线的网络接口 (802.3接口)构成,桥接软件符合802.1d桥接协议。 接入点就像是无线网络的一个无线基站,将多个无线 的接入站聚合到有线的网络上。无线的终端可以是 802.11 PCMCIA卡、PCI接口、ISA接口,或者是在非 计算机终端上的嵌入式设备。

无线技术-802.11协议介绍-2

无线技术-802.11协议介绍-2

WLAN拓扑介绍
802.11a 54Mbps吞吐能力 采用正交频分复用(OFDM) 支持6,9,12,18,24,36,48& 54Mbps数据速率 工作在无需许可的5GHz频段“Unlicensed National Information Infrastructure”(U-NII)频段 23个非重叠信道。 802.11a早在1999年就已经成为标准,但是经过很长一段时间后 相关产品才开始出现。 802.11a的硬件最早出现在2001年底。
采用40MHZ频宽模式,可以成倍增加无线网络的支持速率,但是2.4G网络 和5G网络支持的40M频宽的信道数量不同。 在2.4G模式上最多可以有一个40M信道,在5G模式上40M信道数目因国家不 同而不同,理论上最多有11个40M信道。
WLAN拓扑介绍
MIMO技术
采用802.11a/b/g技术的无线接入点和客户端是通过单个天线单个 空间信道(SISO)来实现数据传送的。 采用802.11n技术的无线接入点和客户端可以利用两个或者更多的 空分信道同时传送数据,如果终端也支持MIMO技术的话,能够采用 多个接收天线和高级信号处理技术来重建从多个信道发送过来的数据 MIMO技术就是利用其它技术来改进接收端的信噪比
WLAN拓扑介绍
802.11n MAC层改进技术
802.11 MAC层协议耗费了相当多效率作用链路的维护,从而大大降低 了系统的吞吐量。802.11n通过改善MAC层来减少固定的开销及拥塞造 成的损失。 帧聚合技术 块确认技术
WLAN拓扑介绍
802.11MAC层协议耗费了相当多效率用作链路的维护,从而大大降低 了系统的吞吐量。 在802.11的MAC层协议中,有很多固定的开销,尤其在两个帧之间以 及传输完每个帧所收到的确认信息。在最高数据率的传输下,这些多余 的开销甚至比需要传输的整个数据帧还要长。例如:802.11g理论传输 速率为54Mbps,实际上却只有22Mbps,将近有一半多的速率浪费了 。

ieee 802.11系列标准技术参数

ieee 802.11系列标准技术参数

IEEE 802.11系列标准技术参数随着移动互联网的发展,无线网络技术已经成为人们生活和工作中必不可少的一部分。

而IEEE 802.11系列标准则是无线局域网(WLAN)技术中最为重要的一部分,它的发展和完善对于推动无线网络的进步起到了至关重要的作用。

本文将对IEEE 802.11系列标准的技术参数进行详细介绍,以帮助读者更好地了解和运用这一重要的无线网络技术。

一、IEEE 802.11系列标准概述1. IEEE 802.11系列标准的起源IEEE 802.11系列标准最早起源于1997年,当时发布了第一个版本的802.11标准,其工作频段在2.4GHz。

随着无线网络技术的发展,IEEE 802.11系列标准也不断进行了更新和完善,目前已经有多个不同版本的标准,如802.11a、802.11b、802.11g、802.11n、802.11ac 等。

2. IEEE 802.11系列标准的作用IEEE 802.11系列标准规定了无线局域网的通信协议和技术规范,主要用于无线网络设备的互联和通信。

它定义了无线网络设备之间的通信方式、传输速率、频段选择、功耗管理等一系列技术参数,使得不同厂商生产的无线设备可以相互兼容和互联。

二、IEEE 802.11系列标准技术参数介绍1. 频段选择IEEE 802.11系列标准中,不同的标准版本支持的频段有所不同。

比如802.11b/g标准工作在2.4GHz频段,而802.11a标准工作在5GHz频段。

而当前最新的802.11ac标准则支持2.4GHz和5GHz双频段,并且还支持更高频段的60GHz。

2. 传输速率不同版本的IEEE 802.11系列标准在传输速率上也有所差异。

比如802.11b标准最高可达11Mbps的传输速率,802.11a/g标准最高可达54Mbps,而802.11n和802.11ac标准更是支持更高的传输速率,分别可达300Mbps和1Gbps以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

协议X档案:IEEE 802.11协议详细介绍作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。

这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。

在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。

在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps 速率下又增加了 5.5Mbps和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。

802.11a高速WLAN协议,使用5G赫兹频段。

最高速率54Mbps,实际使用速率约为22-26Mbps与802.11b不兼容,是其最大的缺点。

也许会因此而被802.11g淘汰。

802.11b目前最流行的WLAN协议,使用2.4G赫兹频段。

最高速率11Mbps,实际使用速率根据距离和信号强度可变(150米内1-2Mbps,50米内可达到11Mbps)802.11b的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。

另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。

兼容性促进了竞争和用户接受程度。

802.11e基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。

也就是说,802.11e是通过无线数据网实现语音通话功能的协议。

该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。

802.11g802.11g是802.11b在同一频段上的扩展。

支持达到54Mbps的最高速率。

兼容802.11b。

该标准已经战胜了802.11a成为下一步无线数据网的标准。

802.11h802.11h是802.11a的扩展,目的是兼容其他5G赫兹频段的标准,如欧盟使用的HyperLAN2。

802.11i802.11i是新的无线数据网安全协议,已经普及的WEP协议中的漏洞,将成为无线数据网络的一个安全隐患。

802.11i提出了新的TKIP协议解决该安全问题。

利用802.11b,移动用户能够获得同Ethernet一样的性能、网络吞吐率、可用性。

这个基于标准的技术使得管理员可以根据环境选择合适的局域网技术来构造自己的网络,满足他们的商业用户和其他用户的需求。

和其他IEEE 802标准一样,802.11协议主要工作在ISO协议的最低两层上,也就是物理层和数字链路层(见图1)。

任何局域网的应用程序、网络操作系统或者像TCP/IP、Novell NetWare都能够在802.11协议上兼容运行,就像他们运行在802.3 Ethernet上一样。

802.11b的基本结构、特性和服务都在802.11标准中进行了定义,802.11b协议主要在物理层上进行了一些改动,加入了高速数字传输的特性和连接的稳定性。

802.11 工作方式802.11定义了两种类型的设备,一种是无线站,通常是通过一台PC机器加上一块无线网络接口卡构成的,另一个称为无线接入点(Access Point, AP),它的作用是提供无线和有线网络之间的桥接。

一个无线接入点通常由一个无线输出口和一个有线的网络接口(802.3接口)构成,桥接软件符合802.1d桥接协议。

接入点就像是无线网络的一个无线基站,将多个无线的接入站聚合到有线的网络上。

无线的终端可以是802.11PCMCIA卡、PCI接口、ISA 接口的,或者是在非计算机终端上的嵌入式设备(例如802.11手机)。

图1:802.11和ISO模型802.11定义了两种模式:infrastructure模式和ad hoc模式,在infrastructure模式中(见图2),无线网络至少有一个和有线网络连接的无线接入点,还包括一系列无线的终端站。

这种配置成为一个BSS(Basic Service Set 基本服务集合)。

一个扩展服务集合(ESS Extended Service Set)是由两个或者多个BSS构成的一个单一子网。

由于很多无线的使用者需要访问有线网络上的设备或服务(文件服务器、打印机、互联网链接),他们都会采用这种Infrastructure模式。

Ad hoc模式(也成为点对点模式 pear to pear模式或IBSS Independent Basic Service Set)802.11物理层图2:Infrastructure模式在802.11最初定义的三个物理层包括了两个扩散频谱技术和一个红外传播规范,无线传输的频道定义在2.4GHz的ISM波段内,这个频段,在各个国际无线管理机构中,例如美国的USA,欧洲的ETSI和日本的MKK都是非注册使用频段。

这样,使用802.11的客户端设备就不需要任何无线许可。

扩散频谱技术保证了802.11的设备在这个频段上的可用性和可靠的吞吐量,这项技术还可以保证同其他使用同一频段的设备不互相影响。

最初,802.11无线标准定义的传输速率是1Mbps和2Mbps,可以使用FHSS(frequency hopping spread spectrum)和DSSS(direct sequence spread spectrum)技术,需要指出的是,FHSS 和DHSS技术在运行机制上是完全不同的,所以采用这两种技术的设备没有互操作性。

使用FHSS技术,2.4G频道被划分成75个1MHz的子频道,接受方和发送方协商一个调频的模式,数据则按照这个序列在各个子频道上进行传送,每次在802.11网络上进行的会话都可能采用了一种不同的跳频模式,采用这种跳频方式主要是为了避免两个发送端同时采用同一个子频段。

FHSS技术采用的方式较为简单,这也限制了它所能获得的最大传输速度不能大于2Mbps,这个限制主要是受FCC规定的子频道的划分不得小于1MHz。

这个限制使得FHSS必须在2.4G整个频段内经常性跳频,带来了大量的跳频上的开销。

和FHSS相反的是,直接序列扩频技术将2.4Ghz的频宽划分成14个22MHz的通道(Channel),临近的通道互相重叠,在14个频段内,只有3个频段是互相不覆盖的,数据就是从这14个频段中的一个进行传送而不需要进行频道之间的跳跃。

为了弥补特定频段中的噪音开销,一项称为"chipping"的技术被用来解决这个问题。

在每个22MHz通道中传输的数据中的数据都被转化成一个带冗余校验的Chips数据,它和真实数据一起进行传输用来提供错误校验和纠错。

由于使用了这项技术,大部分传送错误的数据也可以进行纠错而不需要重传,这就增加了网络的吞吐量。

图3:Ad Hoc模式802.11b的增强物理层802.11b在无线局域网协议中最大的贡献就在于它在802.11协议的物理层增加了两个新的速度:5.5Mbps和11Mbps。

为了实现这个目标,DSSS被选作该标准的唯一的物理层传输技术,这是由于FHSS在不违反FCC原则的基础上无法再提高速度了。

这个决定使得802.11b 可以和1Mbps和2M的802.11bps DSSS系统互操作,但是无法和1Mbps和2Mbps的FHSS系统一起工作。

最初802.11的DSSS标准使用11位的chipping-Barker序列-来将数据编码并发送,每一个11位的chipping代表一个一位的数字信号1或者0,这个序列被转化成波形(称为一个Symbol),然后在空气中传播。

这些Symbol以1MSps(每秒1M的symbols)的速度进行传送,传送的机制称为BPSK(Binary Phase Shifting Keying ),在2Mbps的传送速率中,使用了一种更加复杂的传送方式称为QPSK(Quandrature Phase Shifting Keying),QPSK中的数据传输率是BPSK的两倍,以此提高了无线传输的带宽。

在802.11b标准中,一种更先进的编码技术被采用了,在这个编码技术中,抛弃了原有的11位Barker序列技术,而采用了CCK(Complementary Code Keying)技术,它的核心编码中有一个64个8位编码组成的集合,在这个集合中的数据有特殊的数学特性使得他们能够在经过干扰或者由于反射造成的多方接受问题后还能够被正确地互相区分。

5.5Mbps使用CCK串来携带4位的数字信息,而11Mbps的速率使用CCK串来携带8位的数字信息。

两个速率的传送都利用QPSK作为调制的手段,不过信号的调制速率为1.375MSps。

这也是802.11b 获得高速的机理。

表1中列举了这些数据。

为了支持在有噪音的环境下能够获得较好的传输速率,802.11b采用了动态速率调节技术,来允许用户在不同的环境下自动使用不同的连接速度来补充环境的不利影响。

在理想状态下,用户以11M的全速运行,然而,当用户移出理想的11M速率传送的位置或者距离时,或者潜在地受到了干扰的话,这把速度自动按序降低为5.5Mbps、2Mbps、1Mbps。

同样,当用户回到理想环境的话,连接速度也会以反向增加直至11Mbps。

速率调节机制是在物理层自动实现而不会对用户和其它上层协议产生任何影响。

表1:802.11b数据传送速率规范802.11数字链路层802.11的数据链路层由两个之层构成,逻辑链路层LLC(Logic Link Control)和媒体控制层MAC(Media Access Control)。

802.11使用和802.2完全相同的LLC之层和802协议中的48位MAC地址,这使得无线和有线之间的桥接非常方便。

但是MAC地址只对无线局域网唯一。

802.11的MAC和802.3协议的MAC非常相似,都是在一个共享媒体之上支持多个用户共享资源,由发送者在发送数据前先进行网络的可用性。

在802.3协议中,是由一种称为CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的协议来完成调节,这个协议解决了在Ethernet上的各个工作站如何在线缆上进行传输的问题,利用它检测和避免当两个或两个以上的网络设备需要进行数据传送时网络上的冲突。

在802.11无线局域网协议中,冲突的检测存在一定的问题,这个问题称为"Near/Far"现象,这是由于要检测冲突,设备必须能够一边接受数据信号一边传送数据信号,而这在无线系统中是无法办到的。

相关文档
最新文档