2014年北京市高考理科数学试卷及答案解析(word版)

合集下载

2014年北京高考数学理科试题及答案

2014年北京高考数学理科试题及答案

场次 投篮次数 命中次数 场次 投篮次数 命中次数
主场 1
22
12
客场 1
18
8
主场 2
15
12
客场 2
13
12
主场 3
12
8
客场 3
21
7
主场 4
23
8
客场 4
18
15
主场 5
24
20
客场 5
25
12
(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过 0.6 的概率;
(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过 0.6,另一场不超过
x2 y2 2 的位置关系,并证明你的结论.
(20)(本小题 13 分)对于数对序列 P(a1, b1) , (a2 , b2 ) ,…, (a , b ) , nn
记T1(P) a1 b T (P) b max{T (P), a a
a } (2
,
其中 max{Tk1 1(Pk ), a1 ak2
akk }1表示T1k 1(P2 ) 和 a1 ka2
绝密★启封并使用完毕前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟,考生务必将答案答在答题卡上,在试卷上作答无效。考 试结束后,将本试卷和答题卡一并收回。
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(Ⅱ)当 x
0 时,“sinx x
a ”等价于“sin x
ax
0 ”“ sin x x

2014年北京市高考数学试卷(理科)

2014年北京市高考数学试卷(理科)

有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有
()
A.2 人
B.3 人
C.4 人
D.5 人
考点: 进行简单的合情推理. 菁优网版 权所有
专题: 推理和证明. 分析: 分别用 ABC 分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得 A,B,C 的学生各最多只有
4.(5 分)(2014•北京)当 m=7,n=3 时,执行如图所示的程序框图,输出的 S 的值为( )
A.7
B.42
C.210
D.840
考点: 循环结构. 菁优网版 权所有
专题: 计算题;算法和程序框图. 分析: 算法的功能是求 S=7×6×…×k 的值,根据条件确定跳出循环的 k 值,计算输出 S 的值. 解答: 解:由程序框图知:算法的功能是求 S=7×6×…×k 的值,
B.在直线 y=﹣2x 上
C.在直线 y=x﹣1 上
D.在直线 y=x+1 上
考点: 圆的参数方程. 菁优网版 权所有
专题: 选作题;坐标系和参数方程.
分析: 曲线
(θ为参数)表示圆,对称中心为圆心,可得结论.
解答: 解:曲线
(θ为参数)表示圆,圆心为(﹣1,2),在直线 y=﹣2x 上,
故选:B. 点评: 本题考查圆的参数方程,考查圆的对称性,属于基础题.
专题: 三角函数的图像与性质. 分析:
由 f( )=f( )求出函数的一条对称轴,结合 f(x)在区间[ , ]上具有单调性,且 f( )=﹣
f( )
可得函数的半周期,则周期可求. 解答:
解:由 f( )=f( ),可知函数 f(x)的一条对称轴为 x=

2014年普通高等学校招生全国统一考试数学理试题(北京卷,扫描版,解析版)

2014年普通高等学校招生全国统一考试数学理试题(北京卷,扫描版,解析版)

2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分。

考试时长120分钟。

考试生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)
一、选择题共8小题。

每小题5分.共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

第二部分(非选择题共110分) 二.填空题共6小题。

每小题5分。

共30分。

三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

绝密★考试结束前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)参考答案一、选择题(共8小题。

每小题5分.共40分)
二.填空题(共6小题。

每小题5分。

共30分)
三、解答题(共6小题,共80分)
11
12
13
14。

2014年北京高考数学理科试题及答案

2014年北京高考数学理科试题及答案
绝密★启封并使用完毕前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟,考生务必将答案答在答题卡上,在试卷上作答无效。考 试结束后,将本试卷和答题卡一并收回。
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40分。在每小题列出的四个选项中,选出符合题目要求的一项。
场次 投篮次数 命中次数 场次 投篮次数 命中次数
主场 1
22
12
客场 1
18
8
主场 2
15
12
客场 2
13
12
主场 3
12
8
客场 3
21
7
主场 4
23
8
客场 4
18
15
主场 5
24
20
客场 5
25
12
(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过 0.6 的概率;
(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过 0.6,另一场不超过
(1) 已知集合 A {x | x2 2x 0}, B {0, 1, 2},若 A B
(A) {0}
(B) {0, 1}
(C) {0, 2}
(D) {0, 1, 2}
(2) 下列函数中,在区间 (0, }上为增函数的是
(A) y x 1
(B) y=(x 1)2
(C) y 2 x
(D) y log (x 1) 0.5
P
F
G
E
H
D A
B
C
M
(18)(本小题 13 分)已知函数 f (x) x cos x (Ⅰ)求证: f (x) 0 ;(Ⅱ)若 a sin x

2014高考数学北京理科答案

2014高考数学北京理科答案

2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A (3)B (4)C(5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分)(9)1 (10)(11)(12)8(13)36 (14)三、解答题(共6小题,共80分)(15)(共13分)解:(I)在中,因为,所以。

所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得所以(16)(共13分)解:(I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(Ⅱ)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。

则C=,A,B独立。

根据投篮统计数据,.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.(Ⅲ).(17)(共14分)解:(I)在正方形中,因为B是AM的中点,所以∥。

又因为平面PDE,所以∥平面PDE,因为平面ABF,且平面平面,所以∥。

(Ⅱ)因为底面ABCDE,所以,.如图建立空间直角坐标系,则,,,,,.设平面ABF的法向量为,则即令,则。

所以,设直线BC与平面ABF所成角为a,则。

设点H的坐标为。

因为点H在棱PC上,所以可设,即。

所以。

因为是平面ABF的法向量,所以,即。

解得,所以点H的坐标为。

所以(18)(共13分)解:(I)由得。

因为在区间上,所以在区间上单调递减。

从而。

(Ⅱ)当时,“”等价于“”“”等价于“”。

令,则,当时,对任意恒成立。

当时,因为对任意,,所以在区间上单调递减。

2014年高考理科数学北京卷(含详细答案)

2014年高考理科数学北京卷(含详细答案)
如图建立空间直角坐标系 ,则 , , , , ,
.
设平面ABF的法向量为 ,则 ,即 .
令 ,则 .所以 ,设直线BC与平面ABF所成角为 ,
则 .
设点H的坐标为
因为点H在棱PC上,所以可设 ,即 ,
所以 .
因为 是平面ABF的法向量,所以 ,即 .
解得 ,所以点H的坐标为ቤተ መጻሕፍቲ ባይዱ
所以 .
【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解.
圆心 到直线AB的距离 .此时直线AB与圆 相切.
当 时,直线AB的方程为 ,即 ,
圆心 到直线AB的距离 .
又 , ,故 ,
此时直线AB与圆 相切.
【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.
【考点】圆与圆锥曲线的综合,椭圆的简单性质
20.【答案】(1)
A.2人
B.3人
C.4人
D.5人
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.
9.复数 .
10.已知向量a,b满足 a ,b ,且 a b 0 ,则 .
11.设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程为.
12.若等差数列 满足 , ,则当 时, 的前 项和最大.
【提示】由循环语句、条件语句执行程序,直至结束.
【考点】循环结构
5.【答案】D
【解析】当 时,数列 递减;当 ,数列 递增时, ,故选D.
【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
【考点】充分、必要条件,等比数列的性质

2014北京高考理数试题及答案

2014北京高考理数试题及答案

2014北京高考数学(理科)试题一、 选择题(共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项). 1. 已知集合{}220A x x x =-=,{}0,1,2B =,则AB =( )A .{}0B .{}0,1C .{}0,2D .{}0,1,2 答案:C解析:{}{}2200,2A x x x =-==,所以A B ={}0,2.2. 下列函数中,在区间()0,+∞上为增函数的是( )A .y =B .2(1)y x =-C .2x y -=D .0.5log (1)y x =+ 答案:A解析:y 在()0,+∞上单调递增;2(1)y x =-在(0,1)上单调递减,在()1,+∞上单调递增;2x y -=和0.5log (1)y x =+在()0,+∞上单调递减. 3.当7m =,3n =时,执行如图所示的程序框图,输出的S 值为( ) A .7 B .42 C .210 D .840答案:C解析:当7m =,3n =时,判断框内的判断条件为5k <,故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅则有765210S =⨯⨯=. 4.设{}n a 是公比为q 的等比数列,且“1q >”是“{}n a 为递增数列”的( )A .充分且不必要条件B .必要且不充分条件C .充分必要条件D .既不充分也不必要条件 答案:D解析:对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >.综上,“1q >”是“{}n a 为递增数列”的既不充分也不必要条件. 5.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12D .12- 答案:D解析:若0,k z y x ≥=-没有最小值,不和题意.若0k <,则不等式所表示的平面区域如图所示.由图可知,z y x =-在点2,0k ⎛⎫- ⎪⎝⎭处取最小值,故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-.6. 在空间直角坐标系Oxyz 中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C,D ,若123,,S S S 分别表示三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( ) A.123S S S ==B . 12S S =且31S S ≠C .13S S =且32S S ≠D .23S S =且13S S ≠、 答案:D解析:D ABC -在xOy 平面上的投影为ABC ∆,故12S =,画图可知23S S =选项D 正确.7. 有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好”.现有若干同学,他们之中没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )A .2B .3C .4D .5 答案:B解析:用ABC 分别表示优秀、及格和不及格。

2014年北京理科数学试卷及答案

2014年北京理科数学试卷及答案

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,则( )2.下列函数中,在区间上为增函数的是()3.曲线(为参数)的对称中心()在直线上在直线上在直线上在直线上4.当时,执行如图所示的程序框图,输出的值为()5.设是公比为的等比数列,则是为递增数列的()充分且不必要条件必要且不充分条件充分必要条件既不充分也不必要条件6.若满足且的最小值为-4,则的值为()在空间直角坐标系中,已知,,,,若,,分别表示三棱锥在,,坐标平面上的正投影图形的面积,则()(A)(B)且(C)且(D)且有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若同学每科成绩不低于同学,且至少有一科成绩比高,则称“同学比同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,学科网且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生()(A)(B)(C)(D)填空题(共6小题,每小题5分,共30分)复数________.已知向量、满足,,且,则________.设双曲线经过点,且与具有相同渐近线,则的方程为________;渐近线方程为________.若等差数列满足,,则当________时的前项和最大.13. 把5件不同产品摆成一排,若产品与产品不相邻,则不同的摆法有_______种.14. 设函数,,若在区间上具有单调性,且,则的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在中,,点在边上,且(1)求(2)求的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过的概率.(2)从上述比赛中选择一个主场和一个客场,学科网求李明的投篮命中率一场超过,一场不超过的概率.记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这比赛中的命中次数,比较与的大小(只需写出结论)17.(本小题14分)如图,正方形的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于点.(1)求证:;(2)若底面,且,求直线与平面所成角的大小,并求线段的长.(本小题13分)已知函数,求证:;若在上恒成立,求的最大值与的最小值. (本小题14分)已知椭圆,求椭圆的离心率.设为原点,若点在椭圆上,点在直线上,且,求直线与圆的位置关系,并证明你的结论.20.(本小题13分)对于数对序列,记,,其中表示和两个数中最大的数,对于数对序列,求的值.记为四个数中最小值,学科网对于由两个数对组成的数对序列和,试分别对和的两种情况比较和的大小.(3)在由5个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A(3)B (4)C(5)D(6)D(7)D(8)B二、填空题(共6小题,每小题5分,共30分)(9) 1 (10)(11)(12)8(13)36 (14)三、解答题(共6小题,共80分)(15)(共13分)解:(I)在中,因为,所以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(2D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤; (2)若sin xa b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014北京高考(理科)数学题解析1.集合{}{}2|2002A x x x =-==,.故{}02AB =,,选C .2. A .1y x =+[)1-+∞,上为增函数,符合题意. B .2(1)y x =-在(01),上为减函数,不合题意. C .2x y -=为()-∞+∞,上的减函数,不合题意. D .0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意. 故选A .3. 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B .4. 当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C . 5.D对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列. 故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D . 6.D若0k ≥,z y x =-没有最小值,不合题意. 若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确.7.D (23S S =且13S S ≠)D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(2012D ,,,(3102D ,,.D 1O D 3D 2DCB A zyx +y -2=0-2kkx -y +2=022O y x故232S S == 综上,选项D 正确. 8.B用ABC 分别表示优秀、及格和不及格。

显然语文成绩得A 的学生最多只有1个,语文成绩得B 的也最多只有1个,得C 的也最多只有1个,因此学生最多只有3个。

显然,(AC )(BB )(CA )满足条件,故学生最多3个 9.1-复数21i (1i)2i i 1i (1i)(1i)2++===--+故221i ()i 11i+==-- 105由0a b λ+=,有b a λ=-,于是||||||b a λ=⋅ 由(21)b =,,可得5b =,又||1a =,故||5λ=11.221312x y -=;2y x =±双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±设C :224y x m -= 并将点(22),代入C 的方程,解得3m =-故C 的方程为2234y x -=-,即221312x y -=12.8由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值 13.36先只考虑A 与产品B 相邻.此时用捆绑法,将A 和B 作为一个元素考虑,共有44A 24=种方法.而 A 和B 有2种摆放顺序,故总计242=48⨯种方法.再排除既满足A 与B 相邻,又满足A 与C 相邻的情况,此时用捆绑法,将A B C ,,作为一个元素考虑,共有33A 6=种方法,而A B C ,,有2种可能的摆放顺序,故总计62=12⨯种方法.综上,符合题意的摆放共有481236-= 种. 14.π由()f x 在区间ππ62⎡⎤,⎢⎥⎣⎦上具有单调性,且ππ26f f⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭知,()f x 有对称中心π03⎛⎫, ⎪⎝⎭, 由π2π23f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭知()f x 有对称轴1π27ππ22312x ⎛⎫=+= ⎪⎝⎭,记T 为最小正周期,则1ππ2π2263T T -⇒≥≥,从而7πππ1234TT -=⇒=. 15.⑴243sin 1cos ADC ADC ∠-∠ ()sin sin sin cos sin cos 431133327BAD ADC B ADC B B ADC∠=∠-∠=∠⋅∠-∠⋅∠=-=⑵ABD △中sin sin sin AB AD BD ADB B BAD ==∠∠.43333==解得3BD =,7AD = 在ACD △中,222222cos 172272749AC AD DC AD DC ADC=+-⋅⋅∠=+-⨯⨯⨯=所以7AC =16.⑴ 李明在该场比赛中命中率超过0.6的概率有:主场2主场3主场5客场2客场4所以李明在该场比赛中投篮命中超过0.6的概率51102P ==⑵ 李明主场命中率超过0.6概率135P =,命中率不超过0.6的概率为1215P -= 客场中命中率超过0.6概率225P =,命中率不超过0.6的概率为2315P -=.332213555525P =⨯+⨯=⑶ ()E X x =. 17. ⑴证明:AM ED ∥,AM ⊄面PED ,ED ⊂面PED .∴AM ∥面PED.AM ⊂面ABF ,即AB ⊂面ABF面ABF面PDE FG =∴AB FG ∥.⑵如图建立空间直角坐标系A xyz -,各点坐标如下()0,0,0A ,()0,2,0E ,()1,0,0B ,()2,1,0C ,()0,1,1F ,()0,0,2P设面ABF 的法向量为()000,,n x y z =,()1,0,0AB =, ()0,1,1AF =n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z =⎧⎨+=⎩,令1y =,∴()0,1,1n =- zyxABCD EFG PMH又()1,1,0BC =,∴1sin ,222BC n =⨯ 直线BC 与平面ABF 所成的角为π6. 设()111,,H x y z ,由PH tPC =,则()()111,,22,1,2x y z t -=- ∴111222x t y t z t =⎧⎪=⎨⎪=-⎩∴()2,,22H t tt - 又H ∈面ABF ,()21,,22BH t t t =--∴0n BH ⋅=∴220t t +-=,∴23t =,∴422,,333H ⎛⎫ ⎪⎝⎭,∴424,,333PH ⎛⎫=- ⎪⎝⎭∴2224242333PH ⎛⎫⎛⎫⎛⎫=++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭18. ⑴证明:()()cos sin cos sin f x x x x x x x '=+--=-,π02x ⎡⎤∈,⎢⎥⎣⎦时,()0f x '≤,从而()f x 在π02⎡⎤,⎢⎥⎣⎦上单调递减, 所以()f x 在π02⎡⎤,⎢⎥⎣⎦上的最大值为()00f =,所以()()00f x f =≤. ⑵法一:当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“sin xb x<”等价于“sin 0x bx -<”,令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当1c ≥时,因为对任意π02x ⎛⎫∈, ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π02⎡⎤,⎢⎥⎣⎦上单调递减.从而()()00g x g <=对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π02x ⎛⎫∈, ⎪⎝⎭,使得()00cos 0g x x c '=-=,且当()00x x ∈,时,()0g x '>,()g x 单调递增;当0π2x x ⎛⎫∈, ⎪⎝⎭时,()0g x '<,()g x 单调递减。

相关文档
最新文档