2512概率
人教版数学九年级上册25.1.2概率说课稿

2.生生互动:
(1)小组讨论:将学生分成小组,针对某一问题进行讨论,促使学生在交流中相互启发,共同解决问题。
(2)合作实验:组织学生进行小组实验,共同设计实验方案,收集和分析数据,培养学生的团队协作能力。
1.知识与技能目标
(1)理解随机现象和必然现象的概念;
(2)掌握概率的定义,能运用概率公式进行计算;
(3)能运用概率知识解决实际问题。
2.过程与方法目标
(1)通过实例分析,培养学生观察、比较、分析问题的能力;
(2)通过小组讨论,培养学生合作交流的能力;
(3)通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
(3)互评互改:让学生相互评价作业和成果,提出改进意见,以提高学生的自我评价和反思能力。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一个与概率相关的实际问题,如彩票中奖概率、比赛胜负概率等,让学生感受到概率在生活中的广泛应用,激发学生的好奇心。
3.掌握了一些基本的数学运算方法。
可能存在的学习障碍有:
1.对随机现象和必然现象的理解不够深入,容易混淆;
2.对概率的定义及计算方法掌握不够熟练,运用时容易出错;
3.在解决实际问题中,难以将问题转化为概率问题,缺乏运用概率知识解决实际问题的能力。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
(2)概率的定义及计算方法;
(3)概率在实际问题中的应用。
2.教学难点
(1)理解随机现象的本质特征;
九年级数学上册 25.1.2 概率教案 (新版)新人教版(1)

25.1.2概率教学目标:了解概率的定义,会进行简单事件概率的计算.教学重点:简单事件概率的计算.教学难点:对概率的理解.一、问题引入:试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根.抽出签的简记号码有种可能,即它们分别是,每个号码被抽到的可能性,都是 .试验2:掷一个骰子,向上的一面的点数有种可能,即它们分别是,每种结果的可能性,都是.二、新知探究:1.概念:一般地,对于一个随机事件A,我们把刻画其发生,称为随机事件A发生的概率,记为P(A).总结:以上两个试验有两个共同的特点:(1)每一次试验中,可能出现的结果只有(2)每一次试验中,各种结果出现的可能性 .对于具有上述特点的试验,我们用事件所包含的各种可能的结果个数在全部可能的结果总数中所占的比,表示事件发生的概率.如:在试验1中,“抽到5号”这个事件包含种可能结果,在全部5种等可能的结果中所占的比是,所以这一事件的概率:P(抽到5号)=再如:在试验1中,“抽到奇数号”这个事件包含种可能结果,在全部5种等可能的结果中所占的比是,所以这一事件的概率:P(抽到奇数号)=归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= .事件A发生的概率P(A)的范围是 .特别地:当A为必然事件时,P(A)= ;当A为不可能事件时,P(A)=例1. 掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.例2:如图所示,有一个转盘,转盘分成7个相同的扇形,颜色分别为红、绿、简记黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会 恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形) 求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.三、课堂小结:用P(A)= n m计算概率的步骤:1. 列举出一次试验出现的所有等可能的结果(即求出 ).2. 找出要研究的事件中包括哪些事件(即求出 ).3. 用P(A)= 计算出所求事件的概率.四、当堂达标:1.在100件产品中,有95件合格品,有5件次品,从中抽取一件,下列说法正确的是( )A. 抽到合格品的概率是951; B. 抽到次品的概率是51;C. 抽到合格品的概率是95%;D.抽到次品的概率是1%2.从一副扑克牌中任意抽取一张,抽到K 牌的概率是3.袋子中有除颜色不同外其余均相同的3个红球,2个白球,1个黑球.从中随意 摸出一球是红球的概率是多少?五、教后反思:。
人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
人教版九年级数学上册25.1.2《概率》教学设计

人教版九年级数学上册25.1.2《概率》教学设计一. 教材分析人教版九年级数学上册25.1.2《概率》是概率统计部分的一个重要内容。
本节内容通过具体的实例,让学生理解概率的概念,掌握概率的计算方法,并能够运用概率解决实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要注重引导学生从具体实例中理解概率的概念,逐步过渡到概率的计算方法。
三. 教学目标1.理解概率的概念,掌握概率的计算方法。
2.能够运用概率解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和计算方法。
2.如何运用概率解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中理解概率的概念。
2.利用多媒体教学,通过动画和图片等形式,让学生更直观地理解概率的概念。
3.采用分组讨论和合作交流的方式,让学生在讨论中思考,在交流中学习。
4.注重练习,让学生在实践中掌握概率的计算方法。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考:抛硬币出现正面的概率是多少?让学生感受概率的存在,激发学生的学习兴趣。
2.呈现(10分钟)介绍概率的概念,讲解概率的计算方法。
以具体的例子为例,让学生理解概率的计算过程。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用所学的概率计算方法,解决实际问题。
可以安排一些练习题,让学生独立完成,教师批改并给予反馈。
5.拓展(10分钟)引导学生思考:如何提高事件的概率?以抛硬币实验为例,让学生探讨如何使抛硬币出现正面的概率增大。
人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
2512概率(1).ppt

帕斯卡是17世纪著名的数学家,但这 个问题却让他苦苦思索了三年,三年后, 也就是1657年,荷兰著名的数学家惠更 斯企图自己解决这一问题,结果写成了 《论赌博中的计算》一书,这就是概率论 最早的一部著作。
近几十年来,随着科技的蓬勃发展,
概率论大量应用到国民经济、工农业生产 及各学科领域。许多兴起的应用数学,如 信息论、对策论、排队论、控制论等,都 是以概率论作为基础的。
3. 从一副扑克牌(除去大小王)
中任抽一张。 P (抽到红心) =
14-
;
P (抽到黑桃)= 14- ;
P (抽到红心3)= -512 ; P (抽到5)= -113 。
4.(北京)从1、2、3、4、5、6、7、8、9、10这
十个数中随机取出一个数,取出的数是3的倍
数的概率是( )
(A) 1 (B) 3
一种彩票的中奖率是1%, 某人买了100张彩票,那么他中
奖是一个 随机 事件。
随机事件的可能性都一样吗?
实验1:掷一枚硬币,落地后 (1)会出现几种可能? (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?
正面向上
开 始
反面向上
实验2:抛掷一个质地均匀的骰子
0
0.5
1
(1)北京市举办2008年奥运会;
(2)一个三角形内角和为181°; (3)现将10名同学随机分成两组进行劳动,同学
甲被分到第一组。
2、 任意掷一枚均匀的硬币,前9 次都是正面朝上,当他掷第10次 时,你认为正面朝上的概率
是 0.5 。
3、小华用电脑设计了一个小
猫跳转的实验,如图所示, 图形由黑白两种颜色的20块 方砖组成,方砖的大小完全 一样,小猫在方砖上可自由 走动并随意停止。
人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上册25.1.2《概率》核心素养目标:
1.培养学生逻辑推理能力,通过随机事件的分类,理解事件的逻辑关系,提高分析问题的能力。
2.培养学生数据分析观念,学会从实验或情境中收集数据,利用频率估计概率,培养数据敏感性。
3.培养学生数学抽象思维,理解概率的定义,掌握概率的计算方法,提高数学表达和交流能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是用来描述随机事件发生可能性的数学度量。它是帮助我们理解和预测不确定事件的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。比如抛硬币,出现正面和反面的概率都是1/2。这个案例展示了概率在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调随机事件的分类和概率的计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的抛硬币实验。这个实验将演示概率的基本原理。
1.教学重点
-理解并掌握随机事件的概念及其分类,这是学习概率的基础,需要重点讲解必然事件、不可能事件和可能事件的特点及区别。
-掌握概率的定义及表示方法,包括概率的分数、小数和百分比值,这是本节课的核心内容,需要学生能够准确理解和应用。
-学习利用频率估计概率的方法,通过实验或模拟活动,让学生体会概率的实际意义,并能够进行简单的概率计算。
实践活动环节,分组讨论和实验操作都进行得挺顺利。同学们能够积极参与,相互交流,这有助于他们更好地理解和应用概率知识。但在成果展示时,我发现有些小组的表达还不够清晰,可能是因为他们对问题的理解还不够深入或者是在组织语言上存在一些困难。
人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上25.1.2《概率》名师教案25.1.2 概率(彭小永)一、教学目标(一)学习目标1. 了解概率的意义,渗透随机观念2. 理解概率的一些性质3. 能计算一些简单事件的概率(二)学习重点计算一些简单实际问题的概率(三)学习难点概率的意义及判断试验条件的意识.二、教学设计(一)课前设计1.预习任务(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的概率,记为 P(A) .(2)一般地,如果一次试验有n个可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .(3)若用P(A)表示事件A发生的概率,则P(A)的范围是 .特别地,当A为必然事件时,P(A)= 1 .当A为不可能事件时,P(A)= 0 .(4)事件发生的概率越大,它的概率就越接近 1 ;反之,事件发生的概率越小,它的概率就越接近 0 .2.预习自测(1)抛掷一枚质地均匀的硬币,正确的说法是()A.正面一定朝上 B.正面朝上比反面朝上的概率大C.反面一定朝上 D.正面朝上与反面朝上的概率都是0.5【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】【答案】3 4(二)课堂设计1.知识回顾(1)必然事件、不可能事件和随机事件的定义是什么?(2)确定事件包含哪些?(3)你能分别举一个必然事件、不可能事件和随机事件的例子吗?请试一试.2.问题探究探究一概率的定义●活动①问题重现,温故知新问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,为了抽签,我们在盒中放5个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1、2、3、4、5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.(1)抽到的数字是1;(2)抽到的数字小于6 ;(3)抽到的数字是0.师问:以上三个事件分别是什么事件?你能用具体数值来刻画其发生的可能性大小吗?分别是多少呢?小军抽到1到5中每一个数字的可能性是不是一样的?学生举手抢答.【设计意图】让学生回忆必然事件、不可能事件和随机事件的定义,感受其可能性,为“概率”这一定义的引出铺路.●活动②整合旧知,探究概率的定义问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.师问:掷一次骰子,在骰子向上的一面上,可能出现哪些点数?骰子上每一个数字出现的可能性是不是同样多的?分别是多少?由学生举手抢答.归纳总结出概率的定义,如下:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).【设计意图】在学生完成了问题1的基础上,利用问题2进一步让学生明白:每个数字出现的可能性大小相等,即每个数字出现的机会是等可能性的. 与分别是问题1和问题2中各个数字出现的可能性大小,从而得出概率的定义.探究二实例解析,理解概率的定义和性质●活动①运用定义,初试身手示例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:(1)∵向上一面出现的点数共有六种情况,点数2只是其中的一种,∴出现点数2的概率:P(点数为2)=1 6(2)∵向上一面出现的点数共有六种情况,其中奇数有3个,∴点数为奇数的概率:P(点数为奇数)=36=12(3)∵向上一面出现的点数共有六种情况,大于2小于5的数字有2个,∴点数大于2小于5的概率:P(大于2小于5)=26=13【思路点拨】充分运用定义,求出相关事件的概率.【答案】(1)16(2)12(3)13【设计意图】用多个实例,总结出概率的一些性质●活动②归纳小结,得出概率性质师问:由问题1和问题2,以及示例,你能得到概率的哪些性质?由学生举手抢答. 归纳总结出概率的如下性质:概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.探究三利用概率的定义与性质,解决实际问题●活动①概率的基本运算师问:概率的公式是什么?它有哪些性质?例1 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵5 个球中,红色的有2个∴P(摸出红球)【思路点拨】红球个数占总球数的比例即为摸到红球的概率.【答案】C练习:某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵1 分钟共60秒,黄灯占5秒∴P(看到黄灯)【思路点拨】用黄灯的时间5秒,除以三种信号灯一轮变换的总时间60秒,即得抬头看到黄灯的概率.【答案】A【设计意图】进一步强化概率的计算方法.●活动②利用概率公式求概率与球的个数例2 在一个不透明的袋子中装有仅有颜色不同的10个球,其中红球4个,黑球6个. (1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率为,求m的值.【知识点】概率公式的灵活运用【数学思想】分类讨论思想,方程思想【解题过程】解:(1)若第一次将4个红球取完,则第二次摸出黑球为必然事件;若第一次取2个或3个红球,则第二次取出的球不一定是黑球,即第二次取出黑球为随机事件. 所以第一个空填数字“4”,第二个空填“2或3”.(2)由题意知,袋子内球的总数仍为10个,黑球的数量为(m+6)个,由概率的定义可得:,解得m=2.【思路点拨】准确把握必然事件与随机事件的定义是解决第(1)问的关键;第(2)问运用概率公式逆向求m的值,只要合理运用概率公式便可迎刃而解.【答案】(1)第一个空填数字“4”,第二个空填“2或3”. (2)m=2.练习:甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知2=,平均成绩=8.5环.甲射击成绩的方差S甲(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩及成绩的方差,并据此比较甲乙的射击“水平”.(方差的公式是:)【知识点】统计与概率【数学思想】数形结合思想【解题过程】解:(1)∵乙的射击总次数为12次,不少于9环的有7次,∴估计乙射击成绩不少于9环的概率为.(2)由题意得:(环),∴,∴甲的射击成绩更稳定.【思路点拨】读懂统计图中的数据,用好平均数、方差和概率的公式,便可顺利解决此题. 当平均成绩一样的时候,方差越小越稳定.【答案】(1)乙射击成绩不少于9环的概率红色为;(2)甲的射击成绩更稳定. 【设计意图】用综合性试题提高学生的解题能力. ●活动③ 与图形相关的概率计算例3 如图是一个可以自由转动的转盘,转盘分为7个大小相同的扇形,颜色分别为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色. 【知识点】概率【数学思想】数形结合思想 【解题过程】解:按颜色把7个扇形分别记为:红1、红2、红3、绿1、绿2、黄1、黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1、红2、红3, 因此,P (A )=(2)指针指向红色或黄色(记为事件B )的结果有5种,即红1、红2、红3、 黄1、黄2,所以, P (B )=(3)指针不指向红色(记为事件C )的结果有4种,即绿1、绿2、黄1、黄2,因此,P (C )=【思路点拨】由于指针停到每块扇形的机会相同,所以只需要数出符合条件的色块数量,用它除以总的色块数,即得相应事件的概率.【答案】(1)P (红色)=;(2)P (红色或黄色)=;(3)P (不是红色)=红红红绿绿黄黄练习:下图为计算机“扫雷”游戏的画面. 在一个99个方格的雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏一颗地雷.小王在游戏开始时随机点击一个方格,点击后出现下图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域. 数字3表示在A区域有3颗地雷.请问,下一步应该点击A区域还是B区域更安全?【知识点】概率【数学思想】数形结合思想【解题过程】解:∵A区域有8个方格,这八个方格中有3颗地雷B区域有72个方格,这72个方格中有7个地雷∴点击A区域遇到地雷的概率为,点击B区域遇到地雷的概率为,而,也就是说,点击B区域更安全.【思路点拨】分别计算两个事件的概率,再比较概率的大小即可.【答案】由于点击B区域遇到地雷的概率更小,所以选择点击B区域更好.【设计意图】进一步强化与图形相关的试题中求概率的方法.3. 课堂总结知识梳理(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A). (3)概率的性质:性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.重难点归纳(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).(3)P(必然事件)=1,P(不可能事件)=0.(三)课后作业基础型自主突破1.必然事件的概率是()A. B. C. D.【知识点】必然事件的概率【数学思想】模型思想【解题过程】必然事件指的是在一定条件下必然要发生的事件,所以它的概率为1.【思路点拨】正确理解必然事件的定义,牢记特殊事件的概率【答案】D2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率【数学思想】分类讨论思想【解题过程】解:A 不可能事件发生的概率为0,正确;B 随机事件发生的概率不一定为0.5,如掷骰子时,各个数字朝上的概率为C 概率很小的事件指的是发生的可能性很小,但不是不发生,如买彩票中特等奖就是一个小概率事件,但仍可能发生;D 由于实验的次数较少,实验得到的结果不一定刚好与理论概率吻合,所以不一定是50次. 【思路点拨】由于受各种条件的限制,实验得到的结果往往与理论值有一定的偏差,对于具体问题要具体分析.【答案】A3.四张质地、大小相同的卡片上分别画上如图所示的图形.在看不到图形的情况下,从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A. B. C. D.【知识点】概率,轴对称图形【数学思想】分类讨论,数形结合【解题过程】解:在这四个图形中,只有等腰梯形和圆是轴对称图形,所以抽到轴对称图形的概率为【思路点拨】认清轴对称图形,数出它的个数,此题便可迎刃而解.【答案】A4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标为1、2、3、4、5,从中随机摸出一个小球,其标号大于2的概率为()A. B. C. D.【知识点】概率【解题过程】在这5个数中,大于2的数字有3、4、5共三个数字,所以它的概率为. 【思路点拨】找出符合条件的数,将它与总数相除即可.【答案】C5.将“定理”的英语单词“theorem”中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌上,任取一张,那么取到字母e的概率为 .【知识点】概率【解题过程】7个字母中有2个“e”,所以取到字母“e”的概率为【思路点拨】牢记概率的计算公式便可轻松得解.【答案】6. 桶里原有质地均匀,形状大小完全一样的6个红球和4个白球,小明不慎弄丢了其中的2个红球,现从桶里随机摸出一个球,摸到白球的概率是 .【知识点】概率【数学思想】模型思想【解题过程】由于桶里的球有4红4白,所以摸到白的概率为.【思路点拨】用概率的计算公式即可【答案】能力型师生共研7. 如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A .B .C .D .【知识点】概率【思想方法】数形结合C【解题过程】将六个点两两相连,可得15条线段,其中只有AC、BD、CE、DF、EA、FB这6条的长度为,所以概率为 .【思路点拨】找出符合条件的线段数量,并数出总的线段条数,再将前者与总条数相除即可. 【答案】B8. 在盒子中放有三张分别写有、、2的卡片,从中随机抽出两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .【知识点】概率的计算,分式的定义【数学思想】分类讨论思想【解题过程】当或作分母时,四组数据都符合分式的定义;当分母为2时,这两组数据不符合分式的定义. 所以能组成分式的概率为.【思路点拨】分式指的是分母中含有未知数的式子. 找出所有组合中符合分式定义的式子个数,相除即可.【答案】B探究型多维突破9. 在一个不透明的围棋盒子中有颗黑棋和颗白棋,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进10颗黑棋,这时随机取出黑色棋子的概率为,请求出和的值. 【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,将代入,解得,所以,.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.10.口袋中有5张完全相同的卡片,分别写有1 cm、2 cm、3 cm、4 cm、5cm,口袋外有2张卡片,分别写有 4 cm和5 cm.现随机从袋内取出一张卡片,与口袋外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率;(3)求这三条线段能组成等腰三角形的概率.【知识点】概率,三角形三边的关系,直角三角形和等腰三角形的性质【数学思想】分类讨论思想【解题过程】解:(1)由于口袋外的两个长度分别为4 cm和5 cm,要组成三角形,则第三边的长度应满足,所以,当摸出的长度为2 cm、3 cm、4 cm、5cm时,都符合题意,其概率为;(2)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有3cm能与它们组成直角三角形,所以,组成直角三角形的概率为;(3)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有4cm与5cm能分别与它们组成等腰三角形,所以,组成等腰三角形的概率为;【思路点拨】三角形的两边之和大于第三边,两边之差小于第三边;直角三角形满足勾股定理;等腰三角形要注意验证两腰之和大于底边.【答案】(1);(2);(3) .自助餐1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上 B.必有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上【知识点】概率【解题过程】由于正、反两面出现的概率相同,所以答案A是正确的. 理论概率指的是一种可能性,它不一定刚好等于实验频率,其他几个答案的描述不对.【思路点拨】准确理解概率的含义,在实验中,理论概率不一定刚好等于实验频率.【答案】A2.从长度分别为3、5、7、9的四条线段中任取三条作边,能够组成三角形的概率为()A. B. C. D.【知识点】概率的计算,三角形三边的关系【数学思想】分类讨论思想【解题过程】从3、5、7、9中任取三条作边,共有4种情况,分别是①3、5、7;②3、5、9;③3、7、9;④5、7、9. 其中只有第二组不能构成三角形. 所以构成三角形的概率为. 【思路点拨】三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】D3.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3个,白球 n个,若从袋中任取一球,摸出白球的概率为,则n= .【知识点】概率【数学思想】方程思想【解题过程】解:由概率的计算公式知:,解得n=9.【思路点拨】用方程的思想列式求解;或者推算出摸到红球的概率为,逆向思考,算出球的总数,减去红球的个数即得白球的个数.【答案】n=9.4.从-3、-2、-1、0、1、2这六个数中,任意抽取一个数,作为正比例函数和二次函数中m的值,恰好使得正比例函数的图象经过第二、四象限,且二次函数的图象开口向上的概率为 .【知识点】概率,正比例函数和二次函数的性质【数学思想】分类讨论思想【解题过程】解:∵正比例函数∴,只有-3不合题意∵二次函数∴,解得,只有0、1、2符合题意综上所述,在已知的六个数中,只有 0、1、2这三个数符合题意,所以,概率为.【思路点拨】当k<0时,正比例函数的图象必过二、四象限. 当时,二次函数的图象开口向上.【答案】.5.袋中有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,从中摸出一球是绿球的概率是.(1)袋里黄球的个数;(2)任意摸出一球为红球的概率.【知识点】概率【数学思想】模型思想,方程思想【解题过程】解:(1)设有m个黄球,则,解得m=6,所以有6个黄球;(2)P(红球)【思路点拨】牢牢抓住概率的定义即可,.【答案】(1)有6个黄球;(2)P(红球)6.在一个不透明的围棋盒子中有颗白棋,颗黑棋,它们除颜色外都一致,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进5颗白棋和1颗黑棋,这时随机取出白色棋子的概率为,请求出和的值.【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,解得,所以.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1.2 概率
1. (台州中考)某品牌电插座抽样检查的合格的概率为99%则下列说
法中正确的是(D )
(A) 购买100个该品牌的电插座,一定有99个合格
(B) 购买1 000个该品牌的电插座,一定有10个不合格
(C) 购买20个该品牌的电插座,一定都合格
(D) 即使购买1个该品牌的电插座,也可能不合格
2. (宜昌中考)2019年3月,某市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是(C )
3 I I
(A) (B) (C「(D)1
3. (北京中考)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是(D )
I I I I
(A) (Bp (C) (D)
4. (北京中考)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为(B )
I I I 2
(A) (B) (C) (D)
5. (黔西南中考)如图是一个转盘,转盘分成8个相同的扇形,颜色分为
红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止, 其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向指针右边的扇形),则指针指向红色的概率是(B八1]
13 5 1
(A)(B) (C) (D)
6. (长沙中考)100件外观相同的产品中有5件不合格,从中任意抽出1
I
件进行检测,则抽到不合格产品的概率为______ .
1
7. (淄博中考)请写出一个概率小于’的随机事件:如:在一个不透明的袋子里,有三个大小和形状完全相同的球,其中有两个红球和一个黄球,摸出黄球的概率是多少(答案不唯一).
8. (甘孜中考)给出下列函数:①y=2x-1;②y=-x;③y=-x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”
2
的概率是____ .
9. 小明从一定高度掷一枚均匀的骰子,他已经连续掷了5次都是奇数, 小亮说:“小明第6次掷一枚均匀的骰子,点数是偶数的可能性非常大”.你同意吗?为什么?
解:不同意.因为从一定高度掷一枚均匀的骰子出现奇数和偶数的概率是相同的.
10. 一盆中装有各色小球12个,其中5个红球、4个黑球、2个白球、
1个绿球,求
(1) 从中取出一球为红球或黑球的概率;
(2) 从中取出一球为红球或黑球或白球的概率.
解:(1)试验包含的基本事件是从12个球中任取一球共有12种结果;
源:1ZXXK]
满足条件的事件是取出的球是红球或黑球共有9种结果,
9 3
二概率为P==.…
(2)试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,
11
二概率为P=.
'拔咼练三三=
----------- [来源:1ZXXK]
11. 有5条线段,其长分别为1,3,5,7,9个单位,求从中任取3条能构成三角形的概率.
解:从5个数中取3个数,共有10种可能的结果,
能构成三角形,满足两边之和大于第三边的有:3,5,7;3,7,9;5,7,9
三种,
3
二P(从中任取三条,能组成三角形)=•.
12. (温州中考)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.
(1) 求从袋中摸出一个球是黄球的概率;
(2) 现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,
I
使从袋中摸出一个球是黄球的概率不小于•问至少取出了多少个黑球?
5 I
解:(1)摸出一个球是黄球的概率为丨•二.
(2)设取出x个黑球,
5 + x I
由题意,得,’> ,
25
解得x> ,
二x的最小正整数为9.即至少取出了9个黑球.。