信号与系统第二章连续时间系统的时域分析ppt

合集下载

第二章 连续系统的时域分析

第二章  连续系统的时域分析
c2 du 2 (t ) u1 (t ) − u 2 (t ) = R2 dt
du (t ) 整理方程组得:d 2u2 (t ) + 7 2 + 6u2 (t ) = 6e(t ) dt 2 dt 特征方程:a2+7a+6=0 特征根:a=-1, a=-6 齐次解:rh(t) = A1e-t +A2e-6t
5
第二章 连续系统的时域分析
② 选定特解后,将它代入到原微分方程,即得到一个由 yh(t)及其各阶导数以及激励共同组成的一个非齐次微 分方程,依据此方程求出待定系数,然后可确定方程 的特解。
3. 求系统的全响应y(t)
y(t)=方程的全解y(t)=齐次解yh(t) + 特解 yP(t)
=自由响应+强迫响应 将上面方程的全解代入系统的初始条件即可得齐次解中 的待定系数,从而进一步得到系统的全响应。此时, 方程的齐次解yh(t)为系统的自由响应,特解yP(t)为系 统的强迫响应(固有响应)。
解: 由原方程可得
dh 2 (t ) dh(t ) +3 + 2h(t ) = 2δ ′(t ) + 3δ (t ) 2 dt dt
(t ≥ 0)
特征方程: λ2+3λ+2 = 0 特征根: λ1= -1,λ2= -2,且n > m
h (t ) = Ae − t u (t ) + e −2 t (t ) u(t)
20
第二章 连续系统的时域分析
式中A、B为待定系数,将h(t)代入原方程 式,解得A=1,B=1。因此,系统的冲激 响应为 h(t ) = e − t u(t ) + e −2 t (t )
21
第二章 连续系统的时域分析

第二章 信号与系统的时域分析

第二章 信号与系统的时域分析
17
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t

x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

信号与系统第2章ppt课件

信号与系统第2章ppt课件
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22

(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

信号与线性系统分析第2章

信号与线性系统分析第2章
t r ( Pmt m Pm1t m1 P 0的特征根) 1t P 0 )(有r重为
e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d


为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )

f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

网络拓扑约束:由网络结构决定的电压电流约束关系,
KCL,KVL。
例2-1
电阻 电感 电容
求并联电路的端电压v(t)与激励is(t)间的关系。
1 iR iR t v t R i s t R L 1 t i L t v d L d v t iC t C 元件特性约束 dt
E (常数)
B(常数)
B1t p B2 t p1 B p t B p1
tp e t
cos t sin t
Be t
B1 cos t B2 sin t
t p e t sin t B1t p B2 t p 1 B p t B p 1 e t cos t
2.2 系统数学模型(微分方程)的建立
对于电路系统,主要是根据元件特性约束和网络拓扑
约束列写系统的微分方程。
对于其他物理系统,根据实际系统的物理特性列写系 统的微分方程。 元件特性约束:表征元件特性的关系式。例如二端元
件电阻、电容、电感各自的电压与电流的关系以及
四端元件互感的初、次级电压与电流的关系等等。
等式两端各对应幂次的系数应相等,于是有
3 B1 1 4 B1 3 B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
i L (0 ) i L (0 )
例2-6 如图示出RC一阶电路,电路中无储能,起始电
压和电流都为零,激励信号e(t)=u(t),求t >0系统的响
应——电阻两端电压vR(t)。

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 连续系统的时域分析
§2.1 引言
LTI连续系统的时域分析,归结为: 建立并求解线性微分方程 由于在其分析过程涉及的函数变量均为时 间t,故称为时域分析法。这种方法比较直观, 物理概念清楚,是学习各种变换域分析法的基 础。

第 1页
§2.2、系统数学模型微分方程的建立
复习:R,L,C的电压,电流关系
• 特解的函数形式由激励确定,称为强迫响应。


第 9页
特解举例
例2-4:给定微分方程式 2 d r t d r t d e t 2 3r t e t 2 dt dt dt 2 t 1 e t t ; 2 e t e , 分别求两种情况下此 如果已知: 方程的特解。 解: (1)由于e(t)=t2,故特解函数式为
2
rp t B1t B2t B3
将此式代入方程得到
2

这里,B1, B2, B3,待定系数
2
3B1t 4 B1 3B2 t 2 B1 2 B2 3B3 t 2t
第 10 页
等式两端各对应幂次的系数应相等,于是有
联解得到
3B1 1 4 B1 3B2 2 2 B 2 B 3B 0 2 3 1
激励f(t) 响应y
t
p
B1t p B2t p 1
B p t B p 1
e
t
Be
t
cos t sin t
B1 cos t B2 sin t
▲ ■ 第 8页
3. 全解
完全解 = 齐次解 + 特解 由初始值定出齐次解中的待定常数Ci。 • 齐次解的函数形式仅与系统本身的特性有关,而 与激励f(t)的函数形式无关,称为系统的固有响应或 自由响应;
对式(1)两端积分有

0
0
y ''(t ) dt 3 y '(t )dt 2 y (t )dt 2 (t )dt 6 u (t )dt
0 0 0 0
0
0
0
0
由于积分在无穷小区间[0-,0+]进行的,且y(t)在t=0连续, 故 0 0

0
d r (t ) d r (t ) dr (t ) C0 C1 Cn 1 Cn r (t ) n n 1 dt dt dt d m e(t ) d m 1e(t ) de(t ) E0 E1 Em 1 Em e(t ) m m 1 dt dt dt
微分方程的经典解:完全解 = 齐次解 + 特解。
例题
给定如图所示电路, t 0开关S处于1的位置而且已经 达到稳态。当t 0时S由1转向2。建立电流i ( t )的微分 方程并求解i ( t )在 t 0时的变化。
2 S R1 1 1
e t 4 V

21 页
iC t i t C 1F
i L t
1 L H 4 3 R2 2


第 2页
§2.2、系统数学模型微分方程的建立


第 3页
举例:
• RLC并联电路,给定激励信号为电流源iS(t),求并 联电路的端电压v(t).建立描述系统的微分方程式


第 4页
§2.3、用时域经典法求解微分方程
系统的激励信号为e(t),响应为r(t)。系统的数学 模型用高阶微分方程表示
i L t
1 L H 4 3 R2 2
e t 2 V
d i t C v C t i L t dt 先消去变量v C t ,再消去变量 i L t , 把电路参数代入整理得
d2 d d2 d (1) i t 7 i t 10 i t e t 6 e t 4 e t dt2 dt dt2 dt
2 4 i 0 i L 0 A R1 R2 5
d i 0 0 dt
4 3 6 vC 0 V V 5 2 5
X
d 换路后的 i 0 和 i 0 : dt
1
e t 4 V

25 页
2 S R1 1
1 2 B1 , B 2 , 3 9 10 B3 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
▲ ■ 第 11 页
(2)当e(t)= et 时
特解为rp(t)=B et ,这里,B是待定系数。 代入方程后有:
Be 2 Be 3 Be e e
X
(2)求系统的完全响应
系统的特征方程 2 7 10 0
特征根 齐次解
即 2 5 0

23 页
1 2, 2 5
i h t A1e 2 t A2 e 5 t
e t 4 V
t 0
方程右端自由项为 4 4,因此令特解 ip t B , 代入式(1) 16 8 10 B 4 4 B 10 5 要求系统的完全响应为 8 2t 5t t 0 i t A1e A2e 5 d d2 d d2 i t 7 i t 10i t 2 e t 6 e t 4e t 2 X


第 17 页
一般情况下,用时域经典法求微分方程的解时用O+ 状态作初始条件。 当系统已经用微分方程表示时,系统的0-状态到0+状态 有无跳变,取决定于微分方程在右端自由项中是否包含 (t)及其各阶导数.若包含有(t)及其各阶导数,说明相应 的变量从0-到0+状态发生了跳变. 当微分方程右端含有冲激函数时,响应r(t)及其各阶导 数中,有些在t=0处将发生跃变。否则不会跃变。


第 16 页
§2.4.起始点的跳变——从0-到0+状态的转换
“0- 状态”或“起始状态” :0- 表示激励接入之前的瞬时, 激励接入之前的瞬时响应r(t) 及其各阶导数的值。 0+表示激励接入以后的瞬时。 “0+ 状态”或“初始状 态” :激励接入之后的瞬时响应r(t) 及其各阶导数的值 输入r(t)是在t=0时接入系统,则确定待定系数Ai时用t = 0+时刻的初始值,即r(j)(0+) (j=0,1,2…,n-1)。


第 18 页
0-和0+初始值举例
例1:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t) 已知y(0-)=2,y’(0-)= 0,f(t)=u(t),求y(0+)和y’(0+)。 解:将输入f(t)=u(t)代入上述微分方程得 y”(t) + 3y’(t) + 2y(t) = 2δ(t) + 6u(t) ( 1) 利用系数匹配法分析:上式对于t=0-也成立,在0-<t<0+ 区间等号两端δ(t)项的系数应相等。 由于等号右端为2δ(t),故y”(t)应包含冲激函数,从而 y’(t)在t= 0处将发生跃变,即y’(0+)≠y’(0-)。 但y’(t)不含冲激函数,否则y”(t)将含有δ’(t)项。由于 y’(t)中不含δ(t),故y(t)在t=0处是连续的。 第 19 页 ■ 故 y(0+) = y(0-) = 2
n
n 1


第 5页
1. 求齐次解 rh (t )
由特征方程→求出特征根→写出齐次解形式
rh (t ) Ci e
i 1
n
it
注意重根情况处理方法。 1是方程的k阶重根, 则对应于重根部分的解有k项
( Ai t
i 1
k
k i
)e
1t
▲ ■
第 6页
齐次解举例
d3 d2 d 求微分方程 3 r t 7 2 r t 16 r t 12r t e t dt dt dt 的齐次解。
i t C 1F
解:系统的特征方程为 特征根
a 7 a 16 a 12 0
3 2
a 2 a 3 0 a1 2 重根 , a 2 3
2
对应的齐次解为
rh t A1t A2 e 2t A3e 3t

第 7页
二.求特解
根据微分方程右端函数式形式,设含待定系数的特 解函数式→代入原方程,比较系数定出特解。
y (t ) dt 0, u (t )dt 0
0
于是由上式得 [y’(0+) – y’(0-)] + 3[y(0+) – y(0-)]=2 考虑 y(0+) = y(0-)=2 ,所以 y’(0+) – y’(0-) = 2 , y’(0+) = y’(0-) + 2 =2
▲ ■
第 20 页
▲ ■ 第 15 页
全解
全解为 y(t)= C1e–2t + C2e–3t + te–2t + P0e–2t = (C1+P0)e–2t +C2e–3t + te–2t 将初始条件代入,得 y(0) = (C1+P0) + C2=1 ,y’(0)= –2(C1+P0) –3C2+1=0 解得 C1 + P0 = 2 ,C2= –1 最后得微分方程的全解为 y(t) = 2e–2t – e–3t + te–2t , t≥0 上式第一项的系数C1+P0= 2,不能区分C1和P0,因而 也不能区分自由响应和强迫响应。
相关文档
最新文档