实验六 高阻计法测定高分子材料的体积电阻率和表面电阻率

合集下载

聚合物体积电阻系数和表面电阻系数的测定-高分子物理-实验15-17

聚合物体积电阻系数和表面电阻系数的测定-高分子物理-实验15-17

实验十五聚合物的体积电阻系数和表面电阻系数的测定一、实验目的1.掌握聚合物体积电阻系数和表面电阻系数的测试方法;2.比较极性与非极性聚合物的电阻系数数值范围。

二、实验原理材料的导电性是由于其内部存在传递电流的自由电荷,即载流子,在外加电场作用下,这些载流子作定向移动,形成电流。

导电性优劣与材料所含载流子的数量、运动速度有关。

常用电阻系数(电阻率)ρ或电导系数(电导率)σ表征材料的导电性,它们是一些宏观物理量,而载流子浓度和迁移率则是表征材料导电性的微观物理量。

大量高聚物是作为绝缘材料使用的,但具有特殊结构的高聚物可能成为半导体、导体,甚至人们提出了超导体的模型。

决定高聚物导电性的因素有化学结构、分子量、凝聚态结构、杂质以及环境(温度、湿度等)等。

饱和的非极性高聚物具有很好的电绝缘性能,理论上计算它们的电阻系数可达到1023欧姆·米,而实测值要小几个数量级,说明高聚物中除自身结构以外的因素(如残留的催化剂、各种添加剂等)对导电性能产生了不小的影响。

极性高聚物的电绝缘性次之,微量的本征解离产生导电离子,此外,残留的催化剂、各种添加剂等都可以提供导电离子。

而一些共轭高聚物如聚乙炔则可制成半导体材料,这是由于主链上π轨道相互交叠,π电子有较高的迁移率。

但是它们的导电性实际并不高,原因是受到电子成对的影响,电子成对后,只占有一个轨道,空出另一个轨道,两个轨道能量不同,电子迁移时必须越过轨道间的能级差,这样就限制了电子的迁移,材料导电率下降。

采用掺杂方法可以减小能级差,电子迁移速率提高。

Heeger(黑格,美国)、 MacDiarmid(麦克迪尔米德,美国)以及白川英树(日本)就成功地完成了用溴、碘掺杂聚乙炔,没有掺杂时聚乙炔的电导率为3.2X10-6Ω-1•cm-1,掺杂后竟达到了38Ω-1•cm-1,提高了1000万倍,接近金属铝和铜的电导率。

并且在发现聚乙炔的导电性后,黑格发现聚乙炔的磁性、电学、光学性质都异常。

实验六 高阻计法测定高分子材料的体积电阻率和表面电阻率

实验六 高阻计法测定高分子材料的体积电阻率和表面电阻率

实验步骤
(1)采用三电极系统测试材料的体积电阻(Rv)和表面电阻 (Rs)时可按下图接线:
接低压端
接低压端
被测试样 接高压端 接高压端
被测试 样
测Rv
测Rs
实验步骤
(2)开始测试 测试短路 a)充电 (500V)15s以上 b)测试 读取1min时的数值 c)放电 30s以上 短路
测试 短路
开关 开
实验六
高阻计法测定高分子材料 的体积电阻率和表面电阻率
实验目的
1. 掌握高分子材料体积电阻率和表面电阻率的测
试方法;
2. 了解电学测试中标准样的制备; 3. 学会材料电学性能测试常用仪器——高阻计的 基本操作; 4. 了解高分子材料产生电导的物理本质及特点; 5. 掌握影响高分子材料电阻率的主要因素。
实验步骤
2 接通电源,合上电源开关,电源指示灯亮,仪器 预热10min。 3 将“方式选择”开关置于“测试”位置,即可 读数;如用定时器时,可将“定时”设定开关置 于“开”的位置,待到达设定时间,即可自动锁 定显示值。在进行下一次测试前,需将“定时” 设定开关置于“关”的位置。在测试绝缘电阻时, 可能会发现显示值有不断上升的现象,这是由于 介质的吸收现象所致,若在很长时间内未能稳定, 在一般情况下是取其测试开始后1min时的读数, 作为被测物的绝缘电阻值。
实验原理
• 仪器:
ZC36型高阻计外观图
实验原理
•试 装置
试样及电 极箱
高阻抗直 流放大器
指示 仪表
电源
实验原理
• 高阻计测量原理图
直 流 高 压 测 试 电 源
U
R0
放大器
实验试样及制备
根据材料的不同要求,将试样制成如图所示形状。

实验6 聚合物电阻的测定

实验6 聚合物电阻的测定

实验6 聚合物电阻的测定一、实验目的1. 了解聚合物体积电阻和表面电阻的物理意义;2. 掌握ZC36型超高电阻计的使用方法。

二、实验原理聚合物的导电性,通常用与尺寸无关的体积电阻率(ρv)和表面电阻率(ρs)来表示。

体积电阻率ρv表示聚合物截面积为1cm2和厚1cm的单位体积对电流的阻抗。

ρv=R v S/h (1)式中,R v为体积电阻;S为测量电极的面积;h为试样的厚度。

表面电阻率ρs表示聚合物长1cm和宽1cm的单位表面对电流的阻抗。

ρs=R s L/b (2)式中,R s为表面电阻;L为平行电极的长;b为平行电极间距。

电导率是电阻率的倒数。

电导是表征物体导电能力的物理量。

它是在电场作用下,物体中的载流子移动的现象。

高分子是由许多原子以共价键连接起来的,分子中没有自由电子,也没有可流动的自由离子(除高分子电解质含有离子外),所以它是优良的绝缘材料,其导电能力极低。

一般认为,聚合物的主要导电因素是由杂质所引起,称为杂质电导。

但也有某些具有特殊结构的聚合物呈现半导体的性质,如聚乙炔、聚乙烯基咔唑等。

当聚合物被加于直流电压时,流经聚合物的电流最初随时间而衰减,最后趋于平稳。

其中包括了3种电流,即瞬时充电电流、吸收电流和漏导电流(见图1)。

充电电流时间图1 流经聚合物的电流(1)瞬时充电电流是聚合物在加上电场的瞬间,电子、原子被极化而产生的位移电流,以及试样的纯电容性充电电流。

其特点是瞬时性,开始很大,很快就下降到可以忽略的地步。

(2)吸收电流是经聚合物的内部,且随时间而减小的电流。

它存在的时间大约几秒到几十分钟。

吸收电流产生的原因较复杂,可能是偶极子的极化、空间电荷效应和界面极化等作用的结果。

(3)漏导电流是通过聚合物的恒稳电流,其特点是不随时间变化。

通常是由杂质作为载流子而引起。

由于吸收电流的存在,在测定电阻(电流)时,要统一规定读取数值的时间(1min)。

另外,在测定中,通过改变电场方向反复测量,取平均值,以尽量消除电场方向对吸收电流的影响所引起的误差。

电阻率和表面电阻率

电阻率和表面电阻率

高阻计法测定高分子材料体积电阻率和表面电阻率2010年03月07日10:37 admins 学习时间:20分钟评论 0条高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。

最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tgδ)。

共四个基本参数。

种类繁多的高分子材料的电学性能是丰富多彩的.就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示.多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。

高分子绝缘材料必须具有足够的绝缘电阻.绝缘电阻决定于体积电阻与表面电阻.由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求,必须知道体积电阻率与表面电阻率随温度、湿度的变化。

表1 各种材料的电阻率范围材料电阻率(Ω·m) 材料电阻率(Ω·m)超导体导体≤10-810—8~10-5半导体绝缘体10-5~107 107~1018除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的微量杂质的存在。

当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。

表2为高分子材料的电学性能及其研究的意义。

表2 高分子材料的电学性能及测量的意义电学性能电导性能①电导(电导率γ,电阻率ρ=1/γ)②电气强度(击穿强度Eb)介电性能③极化(介电常数εr)④介电损耗(损耗因数tanδ)测量的意义实际意义①电容器要求材料介电损耗小,介电常数大,电气强度高.②仪表的绝缘要求材料电阻率和电气强度高,介电损耗低。

电阻率、体积电阻率、表面电阻率的区别与测定方法

电阻率、体积电阻率、表面电阻率的区别与测定方法

电阻率、体积电阻率、表面电阻率的区别与测定方法什么是电阻率?电阻跟导体的材料、横截面积、长度有关。

导体的电阻与两端的电压以及通过导体的电流无关。

导体电阻跟它长度成正比,跟它的横截面积成反比.(1)定义或解释电阻率是用来表示各种物质电阻特性的物理量。

用某种材料制成的长为1米、横截面积为1mm2米。

的导体的电阻,在数值上等于这种材料的、电阻率。

(2)单位在国际单位制中,电阻率的单位是欧姆·米。

一般常用的单位是欧姆·毫米2/米。

(3)说明①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。

在温度变化不大的范围内,几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。

式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。

②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。

如一个220 V100 W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。

③电阻率和电阻是两个不同的概念。

电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的属性。

什么是体积电阻率?体积电阻率,是材料每单位体积对电流的阻抗,用来表征材料的电性质。

通常体积电阻率越高,材料用做电绝缘部件的效能就越高。

通常所说的电阻率即为体积电阻率。

,式中,h是试样的厚度(即两极之间的距离);S是电极的面积,ρv 的单位是Ω·m(欧姆·米)。

材料的导电性是由于物质内部存在传递电流的自由电荷,这些自由电荷通常称为载流子,他们可以是电子、空穴、也可以是正负离子。

在弱电场作用下,材料的载流子发生迁移引起导电。

材料的导电性能通常用与尺寸无关的电阻率或电导率表示,体积电阻率是材料导电性的一种表示方式。

简言之,在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻.什么是表面电阻率?表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;访伸展流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分.在两电极间可能形成的极化忽略不计.表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻.材料说明A、通常,绝缘材料用于电气系统的各部件相互绝缘和对地绝缘,固体绝缘材料还起机械支撑作用.一般希望材料有尽可能高的绝缘电阻,并具有合适的机械、化学和耐热性能.B、体积电阻班组可作为选择绝缘材料的一个参数,电阻率随温度和湿度的京戏化而显著变化.体积电阻率的测量常常用来检查绝缘材料是否均匀,或都用来检测那些能影响材料质量而又不能作其他方法检测到的导电杂质.C、当直流电压加到与试样接触的两电极间时,通过试样的电流会指数式地衰减到一个稳定值.电流随时间的减小可能是由于电介质极化和可动离子位移到电极所致.对于体积电阻小于10的10Ω.m的材料,其稳定状态通常在1min内达到.因此,要经过这个电化时间后测定电阻.对于电阻率较高的材料,电流减小的过程可能会持续几分钟、几小时、几天,因此需要用较长的电化时间.如果需要的话,可用体积电阻率与关系来描述材料的特性. D、由于体积电阻总是要被或多或少地包括到表面电阻的测试中去,因些近似地测量表面电阻,测得的表面电阻值主要反映被测试样表面污染的程度.所以,表面电阻率不是表面材料本身特性的参数,而是一个有关材料表面污染特性的参数.当表面电阻较高时,它常随时间以不规则的方式变化.测量表面电阻通常都规定11min的电化时间.电阻率的测量方法和精度1、方法:测量高电阻常用的方法是直接法和比较法.直接法是测量加在试样上的直流电压和流过试样的电流而求得试样电阻.直接法主要有检流计法和直流放大法(高阻计法)比较法主要有检流计法和电桥法.2、精度:对于大于10的10Ω的电阻,仪器误差应在±20%的范围内;对于不大于10的10Ω的电阻,仪器误差应在±10%的范围内.3、保护:测量仪器用的绝缘材料一般只具有与被测材料差不多的性能.试样的测试误差可以由下列原因产生:①外来寄生电压引起的杂散电流通渠道.通常不知道它的大小,并且有漂移的特点;②测量线路的绝缘材料与试样电阻标准电阻器或电流测量装置的并联.使用高电阻绝缘奢侈可以改善测量误差,但这种方法将使仪器昂贵而又笨重,而且对高阻值试样的测量仍不能得到满意的结果.较为满意的改进方法是使用保护技术,即在所有主要的绝缘部位安置保护导体,通过它截信了各种可能引起误差的杂散电流;将这些导电联接在一起组成保护系统,并与测量端形成一个三端网络.当线路连接恰当时,所有外来寄生电压的杂散电流被子保护系统分流到测量电路以下,这就可大大减少误差的可能性.在系统的保护端和被保护端之间存在的电解电势,接触电势或热电运势较小时,均能补偿掉,使它们在测量中不引起显著误差.在电流测量中,由于被保护端和保护端之间的电阻与电流测量装置并联可能产生误差,因此前者至少应为电流测量装置输入电阻的10倍,最好为100倍.在电桥法测量中,保护端与测量端带有大致相同的电位,但电桥中的一个标准电阻与不保护端和保护端之间的电阻并联,因此,后者至少为标准电阻的10倍,最好20倍.在开始测试前先断开电源和试样的连线进行一次测量,此时设备应在它的灵敏度许可范围内指示无穷大的电阻.可用一些已知值的标准电阻业检查设备运行是否良好.体积电阻率为了测业体积电阻率,使用的保护系统应能抵消由表面电流引起的误差.对表面泄漏可忽略的试样,在测量体积电阻时可以去掉保护.在被保护电极与保护电极之间的试样表面上的间隙宽度要均匀,并且在表面泄漏不致引起测量误差的条件下间隙应尽可能窄,实际使用时最小为1MM.表面电阻率为测定表面电阻率,使用的保护系统应尽可能地抵消体积电阻引起的影响。

高阻计

高阻计

高阻计法测定高分子材料体积电阻率和表面电阻率高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。

最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tg δ)。

共四个基本参数。

种类繁多的高分子材料的电学性能是丰富多彩的。

就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示。

多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。

高分子绝缘材料必须具有足够的绝缘电阻。

绝缘电阻决定于体积电阻与表面电阻。

由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求,必须知道体积电阻率与表面电阻率随温度、湿度的变化。

表1 各种材料的电阻率范围材料电阻率(Ω·m) 材料电阻率(Ω·m)超导体导体≤10-810-8~10-5 半导体绝缘体10-5~107 107~1018除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的微量杂质的存在。

当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。

表2为高分子材料的电学性能及其研究的意义。

表2 高分子材料的电学性能及测量的意义电学性能电导性能①电导(电导率γ,电阻率ρ=1/γ)②电气强度(击穿强度Eb)介电性能③极化(介电常数εr)④介电损耗(损耗因数tanδ)测量的意义实际意义①电容器要求材料介电损耗小,介电常数大,电气强度高。

②仪表的绝缘要求材料电阻率和电气强度高,介电损耗低。

③高频电子材料要求高频、超高频绝缘。

高分子材料专业实验实验指导书

高分子材料专业实验实验指导书

图 3 球晶的双折射示意图 由此可见,在起偏镜的方向上,为零,OR=;在检偏镜方向上,为零,OR= ; 在这些方向上分子链的取向使偏振光不能透过检偏镜,视野呈黑暗,形成 Maltase 十字。 此外,在有的情况下,晶片周期性地扭转,从一个中心向四周生长。这样,在偏光显微镜 中就会看到由此而产生的一系列消光同心圆环,如图 4 所示。 在多数情况下, 偏光显微镜下观察到的球晶形态不是球状, 而是一些不规则的多边形。 这是由于许多球晶以各自的任意位置的晶核为中心,不断向外生长,当增长的球晶和周围 相邻球晶相碰时,则形成任意形状的多面体(见图 2)。体系中晶核越少,球晶碰撞的机会愈 小,球晶可以长的很大;相反,则球晶长不大。
sp
(3)特性粘度[]
0 r 1 0
其定义为比浓粘度sp/c 或对数粘度 lnr/c 在无限稀释时的外推值, 即
lim c 0
sp
c
lim
ln r c 0 c
[]又称为极限粘度,其值与浓度无关,量纲是浓度的倒数。 实验证明,对于给定聚合物在给定的溶剂和温度下,[]的数值仅由样品的粘均相对分子质 量 M 所决定。实践证明,[]与 M 的关系如下:
图 2 乌氏粘度计
乌氏毛细管粘度计(如图 2 所示) 恒温装置(玻璃缸水槽、加热棒、控温仪、搅拌器),秒表(最小单位 0.01s),吸耳球, 夹子,2000mL 容量瓶,500mL 烧杯,砂芯漏斗(#5)。 四、实验步骤 1.溶液配制 取洁净干燥的聚乙烯醇样品,在分析天平上准确称取 2.000g± 0.001g,溶于 500mL 烧 杯内(加纯溶剂 200mL 左右),微微加热,使其完全溶解,但温度不宜高于 60℃,待完全溶 解后用砂芯漏斗滤至 2000mL 容量瓶内(用纯溶剂将烧杯洗 2—3 次滤入容量瓶内),稀释至 刻度,反复摇匀后待用。 2.安装粘度计 将干净烘干的粘度计,用过滤后的纯溶剂洗 2~3 次,然后将过滤好的纯溶剂从 A 管加 入至 F 球的 2/3~3/4,再固定在恒温 30.0℃± 0.1℃的水槽中,使其保持垂直,并尽量使 E 球 全部浸泡在水中,最好使 a、b 两刻度线均没入水面以下(如图 3 所示)。安装时除注意垂直 外,还应注意固定的是否牢固,在测量的过程中不至引起数据的误差。 3.纯溶剂流出时间 t0 的测定 恒温 10~15min 后,开始测定。闭紧 C 管上的乳胶管,用吸耳球从 B 管口将纯溶剂吸 至 G 球的一半,拿下吸耳球打开 C 管,记下纯溶剂流经 a、b 刻度线之间的时间 t0,重复 几次测定,直到出现三个数据,两两误差小于 0.2s,取这三次时间的平均值。

电阻率和表面电阻率

电阻率和表面电阻率

高阻计法测定高分子材料体积电阻率和表面电阻率2010年03月07日10:37 admins 学习时间:20分钟评论 0条高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。

最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tg δ)。

共四个基本参数。

种类繁多的高分子材料的电学性能是丰富多彩的。

就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示。

多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。

高分子绝缘材料必须具有足够的绝缘电阻。

绝缘电阻决定于体积电阻与表面电阻。

由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求,必须知道体积电阻率与表面电阻率随温度、湿度的变化。

表1 各种材料的电阻率范围材料电阻率(Ω·m) 材料电阻率(Ω·m)超导体导体≤10-810-8~10-5 半导体绝缘体10-5~107 107~1018除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的微量杂质的存在。

当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。

表2为高分子材料的电学性能及其研究的意义。

表2 高分子材料的电学性能及测量的意义电学性能电导性能①电导(电导率γ,电阻率ρ=1/γ)②电气强度(击穿强度Eb)介电性能③极化(介电常数εr)④介电损耗(损耗因数tanδ)测量的意义实际意义①电容器要求材料介电损耗小,介电常数大,电气强度高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验原理
• 仪器:
ZC36型高阻计外观图
实验原理
• 仪器结构
直流高压 测试电源
放电测试 装置
试样及电 极箱
高阻抗直 流放大器
指示 仪表
电源
实验原理
• 高阻计测量原理图
直 流 高 压 测 试 电 源
Uபைடு நூலகம்
R0
放大器
实验试样及制备
根据材料的不同要求,将试样制成如图所示形状。
实验步骤
1.使用前
• • • • • • • a“电源开关”置于“关”的位置。 b“额定电压选择”开关置于所需要的电压档 (一般额定电压为100V)。 c“方式选择”开关置于“放电”位置。 d“电阻量程选择”开关置于: 当被测物的阻值为已知时,则选相应的档。 当被测物的阻值为未知时,则选106Ω的档。 e“定时”设定开关置于“关”的位置。
实验六
高阻计法测定高分子材料 的体积电阻率和表面电阻率
实验目的
1. 掌握高分子材料体积电阻率和表面电阻率的测
试方法;
2. 了解电学测试中标准样的制备; 3. 学会材料电学性能测试常用仪器——高阻计的 基本操作; 4. 了解高分子材料产生电导的物理本质及特点; 5. 掌握影响高分子材料电阻率的主要因素。
开 关
实验步骤
结束时,先关闭总电源,取出试样,并
将面板上各开关恢复到测试前的位置。
数据处理
(1)求体积系数ρv
Ae v Rv t
Ae

4
( d1 g ) 2
数据处理
(2)求表面电阻系数ρs
2 s Rs d2 ln d1
安全提示
• 接到仪器输入端的导线必须用高绝缘屏蔽 线(绝缘电阻应>1017Ω),其长度不应超 过1m。
思考题
• 试样尺寸大小对测试结果有何影响?
• 高分子的电阻率温度依赖关系与金属的有 何不同?为什么? • 高分子的分子结构和聚集态结构与材料的 体积电阻率和表面电阻率之间有何关系?
实验步骤
(1)采用三电极系统测试材料的体积电阻(Rv)和表面电阻 (Rs)时可按下图接线:
接低压端
接低压端
被测试样 接高压端 接高压端
被测试 样
测Rv
测Rs
实验步骤
(2)开始测试 测试短路 a)充电 (500V)15s以上 b)测试 读取1min时的数值 c)放电 30s以上 短路
测试 短路
开关 开
实验步骤
2 接通电源,合上电源开关,电源指示灯亮,仪器 预热10min。 3 将“方式选择”开关置于“测试”位置,即可 读数;如用定时器时,可将“定时”设定开关置 于“开”的位置,待到达设定时间,即可自动锁 定显示值。在进行下一次测试前,需将“定时” 设定开关置于“关”的位置。在测试绝缘电阻时, 可能会发现显示值有不断上升的现象,这是由于 介质的吸收现象所致,若在很长时间内未能稳定, 在一般情况下是取其测试开始后1min时的读数, 作为被测物的绝缘电阻值。
• 本实验仪器一般情况下不能用来测量一端 接地试样的绝缘电阻。 • 每完成一个试样的测试后,务必先将方式 选择开关拨向放电位置,几分钟后方可取 出试样,以免受测试系统电容中残余电荷 的电击。
安全提示
• 在进行体积电阻和表面电阻测量时,应先测体积 电阻再测表面电阻,反之由于材料被极化而影响 体积电阻。当材料连续多次测量后容易产生极化, 会使测量工作无法进行下去,这时须停止对这种 材料测试,置于净处8h-10h后再测量或者放在无 水酒精内清洗,烘干,等冷却后再进行测量。 • 测试时,人体不能触及仪器的高压输出端及其连 接物,以防高压触电危险.同时仪器高压端也不能 碰地,避免造成高压短路。
相关文档
最新文档