复变函数中曲线积分论文
北京林业大学复变函数与积分变换结课论文

复变函数与积分变换结课论文题目:拉普拉斯变换及其在解微分方程(组)中的应用指导老师:学号:姓名:班级:学院:拉普拉斯变换及其在解微分方程(组)中的应用摘要拉普拉斯变换是一种用来解线性微分方程的较简单的工具。
它在电学、力学、控制论等很多工程技术与科学领域有着广泛的应用,由于它对像原函数f(t)要求的条件比傅氏变换要弱,故研究拉氏变换有极重要的意义。
本文将简单介绍拉普拉斯变换的定义以及其性质,并对其在解微分方程(组)中的应用做了简单的归纳总结。
关键词:拉普拉斯变换,性质,微分方程一、拉普拉斯变换的概念及其性质1.1问题的提出我们知道,一个函数当它除了满足狄氏条件外,还在(—∞,+∞)内满足绝对可积的条件时,就一定存在古典意义下的傅里叶变换。
但绝对可积的条件是比较强的,许多函数(如单位阶跃函数、正弦、余弦函数等)都不满足这个条件;其次,可以进行傅里叶变换的函数必须在整个是数轴上有定义,但在物理、无线电技术等实际应用中,许多以时间t 作为自变量的函数往往在t<0时是无意义的或者不用考虑的,想这些函数都不能取傅里叶变换。
虽然在引入δ函数后,傅里叶变换的适用范围被拓宽了许多,使得“缓增”函数也能进行傅氏变换,但仍然无法解决以指数级增长的函数。
[1]对于任意一个函数φ(t ),若用单位阶跃函数u (t )乘φ(t ),则可以使积分区间由(—∞,+∞)换成[0,+∞),用指数衰减函数tβ-e(β>0)乘φ(t )就有可能使其变得绝对可积,因此只要β选的恰当,一般来说,任意函数φ(t )的傅氏变换是存在的,这样就产生了拉普拉斯变换。
1.2拉普拉斯变换的定义当函数)(t f 满足条件:(1)当t<0时,)(t f =0;(2)当0≥t 时,函数)(t f 连续;(3)当∞→t 时,)(t f 的增长速度不超过某个指数函数,即存在常数M 及α,使得t Me t f α≤|)(|,则含参数s 的无穷积分 收敛。
复变函数中曲线积分若干问题的思考

复变函数中曲线积分若干问题的思考数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,复变函数现在是大学理工科专业的一门重要的基础科,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。
作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。
在这篇论文中,我们将对复变函数中难度最大的积分问题进行分类阐述,使我们对复变函数的积分这种问题变得不再桀骜难驯。
1 复变函数的发展历史在讲一门课之前,应当将这门课程的历史说一说,使得学生能对这门课程有个初步了解,便于学生对这门课程有个整体把握。
在十六世纪中叶,G. Cardano (1501-1576) 在研究一元二次方程x(10-x)=40时引进了复数。
他发现这个方程没有根,并把这个方程的两个根形式地表为。
在当时包括他自己在内,谁也弄不清这样表示有什麽好处。
复数被Cardano引入后,在很长一段时间内不被人们所理睬,并被认为是没有意义的,不能接受的“虚数”。
直到十七与十八世纪,随着微积分的产生与发展,情况才有好转。
特别是由于L.Euler的研究结果,复数终于起了重要的作用。
例如大家所熟知的Euler公式揭示了复指数函数与三角函数之间的关系。
然而一直到C.Wessel (挪威.1745-1818)和R.Argand(法国.1768-1822)将复数用平面向量或点来表示,以及K.F.Gauss (德国1777-1855)与W.R.Hamilton (爱尔兰1805-1865) 定义复数a+ib 为一对有序实数后,才消除人们对复数真实性的长久疑虑,“复变函数”这一数学分支到此才顺利地得到建立和发展。
柯西写于1814年的关于定积分的论文是他创立复变函数论的第一步。
文中给出了所谓柯西-黎曼方程;讨论了改变二重积分的次序问题,提出了被积函数有无穷型间断点时主值积分的观念并计算了许多广义积分。
复变函数与积分变换论文 电子信息

(3)求方程的全解
Y(0)=A+B+1/3=1
解得A=5/2,B=-11/6
拉氏变换方法
由本例题可以看出经典方法和拉氏变换方法都能解决连续信号系统的零输入响应、零状态响应、完全响应方面的问题。经典方法做题,思路比较简单,容易想出办法,但是计算比较繁琐,容易出错。用拉氏变换方法思路上稍显麻烦,但是计算要简单得多,减少了错误发生的概率。如果微分方程右边激励项较复杂,用经典方法就难以处理,用拉氏变换方法将数学模型转化为代数式,做起来就显得容易很多,既明了又简洁。如果激励信号发生变化,用经典方法做,就需要全部重新求解,相对与拉氏变换就麻烦得多。如果初始信号发生变化,用经典方法做题要全部重新求解,相当复杂。经典方法是一种纯数学的方法,无法突出系统响应的物理概念。拉氏变换相对的能够突出系统响应的物理概念。具体用哪种方法做题还得依题而论,如果题目比较简单,激励信号不发生变化,初始条件不发生变化,就用经典方法做题,因为经典方法思路比较简单,方法比较好想,减少了做题的时间,如果题目比较复杂,或者激励信号,初始条件发生变化,就用拉氏变换方法,做题步骤简单,节省时间,又减少了错误发生的概率。
由于篇幅有限,本文介绍的复变函数与积分变换中与解决本专业的问题只是冰山一角。在复变函数和积分变换的学习中,我们得到的不仅要作为科学创新基础的数学原理,还有一些创新思想方法,如解析函数高阶导数和积分变换中导数公式的归纳法思想、复数几何意义的直观性在初等几何中的应用思想、保形变换和积分变换中,对称思维、两类积分变换应用的同中求异和理论中的异中求同、复势应用中的猜想与证明,观察与实验等等都体现了创新思维的火花。我们在学习中掌握了这些方法,有利于在今后的工作和生活中发挥巨大的作用,因此,复变函数与积分变换课程的学习,有助于我们创新思维能力的训练和培养,培养我们运用基本理论和方法,解决实际问题的意识,兴趣和能力,尤其是解析函数在平面向量场中的应用,留数理论的应用,积分变化换在解微分方程中的应用和求广义积分,培养我们打破思维定势,打破常规惯例,用新的眼光看复变函数和积分变换,就是说变量从实数到复数,积分从直线到曲线,尤其是封闭曲线。
曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,具有广泛的应用领域。
本论文旨在介绍曲线积分和曲面积分的概念和计算方法,并讨论在实际应用中的一些应用情况。
曲线积分在微积分中,曲线积分用于计算沿一条曲线的函数的积分。
曲线积分有两种类型:第一类是沿曲线的弧长对函数进行积分,称为第一类曲线积分,第二类是对曲线上的函数在曲线元素上积分,称为第二类曲线积分。
第一类曲线积分第一类曲线积分表示为:$$ \\int_C f(x, y) ds $$其中,f(f,f)是曲线上的函数,ff表示沿曲线元素的弧长。
计算第一类曲线积分的方法通常包括参数化曲线和坐标变换两种。
例如,计算函数f(f,f)=f2+f2在曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 上的第一类曲线积分。
首先,通过参数化得到曲线的弧长元素:$$ ds = \\sqrt{\\left(\\frac{dx}{dt}\\right)^2 +\\left(\\frac{dy}{dt}\\right)^2} dt $$代入曲线方程得到:$$ ds = \\sqrt{\\left(-\\sin(t)\\right)^2 +\\left(\\cos(t)\\right)^2} dt = dt $$然后,将函数和弧长元素代入积分得到:$$ \\int_C f(x, y) ds = \\int_0^{2\\pi} (1) dt = 2\\pi $$第二类曲线积分第二类曲线积分表示为:$$ \\int_C \\mathbf{F} \\cdot d\\mathbf{r} $$其中,$\\mathbf{F}$ 是曲线上的向量函数,$d\\mathbf{r}$ 表示曲线元素。
计算第二类曲线积分的方法通常包括参数化曲线和曲线方程两种。
例如,计算向量函数 $\\mathbf{F}(x, y) = (x, y)$ 沿曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 的第二类曲线积分。
复变函数小论文

复变函数小论文本学期我学习了复变函数,丰富了数学的见识。
从实数到复数的延伸,形成一个全面的知识体系。
复变函数是以复数为中心进行一系列讨论和分析,而复数的独特之处在于它的虚部,也就是虚数部分;之前对虚数域的认识,完全在于一个虚字。
复数的出现,使得基本运算中的开方运算不再存在无解情况,n此多项式也不再存在增根,这为在某些运算提供了帮助。
复数可以解决一些物理数学上的问题,解题到最后经过转化所得到的实数解,才有物理上的意义。
虚数是有很大的的现实意义的,通过引入虚数,那些没有意义根式也变得有理可寻。
复数的集合复平面是一个二维平面,实数有自己的直角坐标系,而类似的复数也有坐标。
复数有实轴和虚轴,用(x,y)表示。
复变函数的极限与连续和实函数一样提到邻域的含义。
复函数是一元实变函数概念的推广,二者表述有所不同:1.实变函数是单值函数,而复变中有了多值函数。
2.复变函数实现了不同复平面的转化,运用了曲线或图形的映射。
复变函数的导数和微分定义与实变函数一致,但是前者多了一个要求,即对极限式要求是与路径和方式无关。
复变函数的积分许多与高等数学中曲线积分相似的性质,积分可化为第二类曲线积分,也可化为参数方程直接关于t的积分。
复数列极限在定义与性质上与实数列极限相似,可以将复数列极限的计算问题转化到实数列上,这其中的级数的敛散性与和的定义形式都与实数项级数相同。
通过课程的学习,我们可以了解到,复数可以应用的现实中的数学建模,其在很多运算中都有着不可思议的性质和规律。
复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。
王琪材料31 2130201019。
复变函数与积分变换结业论文

基于matlab对复变函数与积分变量的研究姓名:徐庆学号:101044113单位:北京林业大学工学院自动化10-1内容摘要:《复变函数与积分变量》这门课程作为自动化专业的专业基础课程,对于后继课程有着极其重要的意义,但在学习过程中,很多量的求解需要繁琐的计算步骤与复杂的计算过程。
同时,作为一种抽象的函数,复变函数一般来说很难用具体图像来描绘其信息。
Matlab作为一款功能强大的科学计算软件,利用一些编程语句可以很轻松的解决上述问题。
例如,利用matlab可以对一个复常数进行基本的求模,求幅角,求实部、虚部的运算。
更进一步地,还可以求复数的指数、对数,对复数进行三角运算。
在对于复变函数的研究中,可以求解复变函数的留数,并用来求复变函数的积分,对复变函数进行泰勒级数展开。
在积分变换方面,可以对函数进行傅里叶变换、逆变换,进行拉普拉斯变换、逆变换。
在编程化的语句中,可以对同一类的问题进行统一的解决。
关键字:复变函数积分变量matlab语句运算结果目录1 matlab在复常数中的应用 (4)1.1 Matlab中对单个复常数的简单运算 (4)1.2 Matlab中对于单个复常数进行复杂的运算 (5)1.3Matlab中对于两个复常数之间进行乘法、除法运算 (7)2.利用matlab对函数进行泰勒级数展开 (8)3 matlab在留数和积分中的应用 (9)3.1利用matlab计算复变函数的留数 (9)3.2在matlab中,利用留数定理求解复变函数的积分 (10)4 利用matlab对信号做傅氏、拉氏变换 (11)4.1 利用matlab对信号做傅里叶变换 (11)4.2 利用matlab对信号做拉普拉斯变换 (13)5 利用matlab绘制复变函数 (14)1 matlab在复常数中的应用1.1 Matlab中对单个复常数的简单运算在matlab中,生成复数的形式分为两种:代数形式(如z=x+y*i)与指数形式(如z=r*exp(theta i),其中r为模长,theta为幅角的弧度值)。
复变函数论文(DOC)

复变函数论文《复变函数与积分变换》与《信号系统》的相互联系和运用系别:专业名称:学号:姓名:指导老师:年月日《复变函数与积分变换》与《信号系统》的相互联系和运用摘录:随着现代科学技术理论的发展,学课间的联系越来越紧密,通过相互协助,使复杂的问题能够利用较简单的方法方便,快捷的解决。
由于复变函数与积分变换的运算是实变函数运算的一种延伸,且由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,以及Taylor级数展开,Laplace变换和Fourier变换之后而使其显得更为重要,因此学习复变函数与积分变换对学习信号与系统具有很大的促进作用。
文章主要介绍了:1,Fourier变换是怎样在信号系统的频域分析中进行运用的;2,怎样利用复变函数中的“留数定理”对Laplace反变换进行计算; 3,复变函数中的Z变换是怎样解决信号系统中离散信号与系统复频域问题分析的;4,复变函数与积分变换中的各种运算是怎样通过信号系统中的MATLAB来实现的。
关键词:留数,Laplace变换,Z变换, Fourier变换,Taylor级数,MATLAB。
1,Fourier变换是怎样在信号系统的频域分析中进行运用的;当对一个信号系统进行分析和研究时,首先应该知道该信号系统的数学模型,即建立该信号系统的数学表达式,例如:根据Fourier 级数的理论,连续时间周期信号的频域分析的数学表达式即为无限项虚指数序列的线性叠加;而且信号的Fourier 变换建立了信号的时域与频域之间的一一对应的关系,并揭示了其在时域域频域之间的内在联系,因此为信号和系统的分析提供了一种新的方法和途径。
例1:已知描述某稳定的连续时间LTI 系统的微分方程为''''()3()2()2()3(),y t y t y t x t x t ++=+系统的输入激励3()()t x t e u t -=,求该系统的零状态响应()zs y t 。
复变函数论文

期中考试复变函数的微积分理论与实变函数微积分理论的比较与应用学院:数学与计量经济学院班级:10级数学与应用数学01班姓名:***学号:***********一·复变函数微积分理论1复变函数微分 (3)2复变函数积分 (4)二·复变函数微积分与实变函数微积分的比较······永远的对手或者同伴?1复变函数微积分与实变函数微积分的联系 (5)2复变函数微积分与实变函数微积分的区别 (6)三·复变函数微积分理论在实际中的应用1复变解析函数的应用:平面向量场 (7)2应用复变积分求积分的几个例子 (8)四.附注之写在论文后头的话 (8)1·复变函数微分仿照实变函数的定义,我们对复变函数的导数给出定义,我们说的是,在某点在Z 0的某领域有定义,且Δz 以任意方式趋于0的时候,如果比值Δf/Δz 的极限z f ∆-∆+→∆)(z f lim Z Z 000z )(存在,就说此极限为函数f (z )在Z 0处的导数。
同样,仿照实变函数,复变函数出现了微分,就在我们以为复变函数会依照实变函数的老路子一直走下去的时候,解析函数的概念横空出世,一个函数在某点解析比起它在这点可微要严格多了,因为解析就是配合区域出现的,好的,如果你在某点可导,没有其他选择,必须有这样一个区域包含该点,然后你在这个区域类可导。
如果函数在某点z (0)处不解析,但是在它的任意一个邻域内都有f (z )的解析点,则z (0)为函数f (z )的奇点,对这一点来说,它应该感到很无奈,明明可以构建一个解析点的点列以它为极限,但它就是就是不解析,这也就是说解析点不能“求极限”。
这个点又是骄傲的,沿环绕它的周线积分,积分值不再是0,比如i 2a -z dz cπ=⎰,其中C 为绕点a 的周线,此时尽管周线线上每点都是解析的,但函数沿周线积分不等于01,即奇点所在区域积分与路径有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于复变函数中曲线积分的心得与体会摘要:复变函数理论推动了许多学科的发展,它已经成为理工科很多专业的必修课程,但是由于复变函数的抽象性,大部分学生在学习过程中感觉这门课程的概念以及定理非常难懂,尤其是在复变函数积分方面更是无从下手,本文就是对我们复变函数的积分进行分类,然后对每一类积分给出处理的方法,让学生对积分问题有一个清晰的把握。
关键词:复变函数积分发展历史柯西积分高阶导数
中图分类号:g642文献标识码:a文章编号:
1673-9795(2012)01(b)-0000-00
数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,复变函数现在是大学理工科专业的一门重要的基础科,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。
作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。
在这篇论文中,我们将对复变函数中难度最大的积分问题进行分类阐述,使我们对复变函数的积分这种问题变得不再桀骜难驯。
1 复变函数的发展历史
在讲一门课之前,应当将这门课程的历史说一说,使得学生能对这门课程有个初步了解,便于学生对这门课程有个整体把握。
在
十六世纪中叶,g. cardano (1501-1576) 在研究一元二次方程
x(10-x)=40时引进了复数。
他发现这个方程没有根,并把这个方程的两个根形式地表为。
在当时包括他自己在内,谁也弄不清这样表示有什麽好处。
复数被cardano引入后,在很长一段时间内不被人们所理睬,并被认为是没有意义的,不能接受的“虚数”。
直到十七与十八世纪,随着微积分的产生与发展,情况才有好转。
特别是由于 l.euler的研究结果,复数终于起了重要的作用。
例如大家所熟知的euler公式揭示了复指数函数与三角函数之间的关系。
然而一直到c.wessel (挪威.1745-1818)和r.argand(法国.1768-1822)将复数用平面向量或点来表示,以及k.f.gauss (德国1777-1855)与w.r.hamilton (爱尔兰1805-1865) 定义复数 a+ib 为一对有序实数后,才消除人们对复数真实性的长久疑虑,“复变函数”这一数学分支到此才顺利地得到建立和发展。
柯西写于1814年的关于定积分的论文是他创立复变函数论的第一步。
文中给出了所谓柯西-黎曼方程;讨论了改变二重积分的次序问题,提出了被积函数有无穷型间断点时主值积分的观念并计算了许多广义积分。
柯西写于1825年的关于积分限为虚数的定积分的论文,是一篇力作。
文中提出了作为单复变函数论基础的“柯西积分定理”。
柯西本人用变分方法证明了这条定理,证明中曲线连续变形的思想,可以说是“同伦”观念的萌芽。
文中还讨论了被积函数出现一阶与m阶极点时广义积分的计算。
从此以后复变函数的积分有了长足的发展。
2 复变函数积分的方法
复变函数的积分一直是学生学习这门课程当中的一个难点,就是很多学生面对一个积分时感觉无从下手,其实很简单,只要掌握了其中的技巧,我们就可以轻松应付。
首先复变函数的积分分为两大类,一类是被积函数是解析的情况,我们暂且将这种积分记为a 类积分;另一种是被积函数有奇点的情况,简记为b类积分。
2.1 对于a类积分
我们又可以分为a1类非闭曲线积分和a2类闭曲线积分。
(1)a1类积分:我们处理的方法是有两种:一种是参数方程方法,即:,或者另一种方法,如果被积函数在单连通区域区域内解析,那么对此单连通区域的任意两点,我们有。
对于a2类积分,如果积分曲线是闭的,而且被积函数在积分曲线所围成的单连通区域内解析,那么我们就可以由柯西-古莎定理直接得出此a2类积分为零。
2.2 对于b类积分
(1)如果被积函数在闭曲线c所围成的区域内只有一个奇点,采用的方法有两个,第一种方法是柯西积分,也就是:。
如果被积函数的分母是(n>1)的话,那么我们需要用高阶导数公式。
(2)如果被积函数在闭曲线c所围成的区域内有两个或两个以上的奇点,那么我们这时候要先用一下复合闭路定理,具体的操作步骤就是首先要在积分曲线c内画几个互不相交,也互不包含的小圆周,使得每一个小圆周只包含一个奇点,然后由复合闭路定理可
知道,只要求出每个小圆周的积分就可以,这时只需要再用一下柯西积分或者高阶导数公式即可。
(3)对于实变函数的积分,我们一般是用留数公式处理,我们的教材中已经给了很好的分类,我们就不再赘述。
从上面我们总结的看来,我们面对一个积分时,首先应判断这个被积函数在积分曲线所围成的区域内是不是解析的,然后看看积分曲线是不是闭的,最后根据以上的判断看看这个积分应该属于我们所说的a类还是b类,选择适当的办法就可以求出最后结果。
3 复变函数积分的应用性
我们知道,在实变函数性质的研究中,积分是一个非常重要的工具,那么复变函数的积分同样有很多的实际意义。
积分的理论和方法在自然科学和工程技术的许多领域有着广泛的应用。
复变函数积分是解决流体力学、电磁学、热学等理论中平面问题的有力工具。
因此,学好复变函数的积分将为我们学习其它科目提供强有力的理论基础。
参考文献
[1] 王锦森.复变函数[m].高等教育出版社,2008.
[2] 郑建华.复变函数[m].清华大学出版社,2005.
[3] 闻国椿,殷慰萍.首都师范大学出版社,1999.。