复变函数与积分变(北京邮电大学)课后的习题答案

合集下载

复变函数与积分变量课后习题答4(全).doc

复变函数与积分变量课后习题答4(全).doc

(1)% =解 (1)当刀f 8⑵I …殍(3卜=M / _ J|2”=cos 2n0 + i sin 2月们贫-► 8时,cos 2sin 2H0的极限都不存在,故z n=$土发散.故急捉+)发散.习题四1.下列序列是否有极限?如果有极限,求出其极限.+ 土 (2)% =吗气(3)礼=(号). n n \z ) 时,衫不存在极限,故%的极限不存在.0 (n — 8),故[血z n — 0. ir —8 令m 二厂普r 2n.=信)"无极限.2. 下列级数是否收敛?是否绝对收敛?⑴§(螺+ :);⑵名首;(3疙(l+i )". 解(1)因无上A 】n⑵»1彳=史吉收敛:故(2)绝对收敛.91-1 M • I Al n•(3) lini (l + i )rt= lim (再)%孕,*0,故发散.庶—8 ”一>8 3. 试证级数£ (2之尸当J I <号时绝对收敛.当危\(2z)n\= 2” •\(2z)n\ = (2r)n < 1. S(2r)rt收敛,故S(2z)n绝对收敛.M a 1 It « 1解⑴击4. 试确定下列慕级数的收敛半径. ⑴、狎(2)£(1 +』)心气(3)S解 (1) lim 勺为 | — lim "-— 1,故 R 二 1, n —^8| >1—8 Tl(2) lim V \C n \ = lim J (1 + —) = lim(l + —)n= e,l|f 8A Y \Tl f ”—8 fl故R =』・ e(3) lim I 1 = lim y~~“ = lim —= 0,Wf 8 I C n I 闻f 8 ( Tl + I / ! JI —8 ?1 + 1故 R = 8.5. 将下列各函数展开为z 的幕级数,并指出其收敛区域.⑴ 7~~~~j ; (2) 7 ----- K ---- (a 工 0,& 会 0);1 + z \z - a)\z - b)fl N〈3) ~ ; (4)ch z; (5)sir?z ; (6)6*-1. (1 + z )]1- (- z') 8 8、(-/)”=云(-I)”』,原点到所有奇点的距离最小值为1 ,故I Z | < 1.(2)1 .(a = b )4- a -Z-an oc=z -=an 0原式收敛区域:2.(a h b )1 ( 1a -b z - a原式)2 尊一=、(- 1)1 次”-2,力=1(4)ch ze[+e" ―2—z2n一2(:〃!二 n!S(2”)!,1 一cos2z< 8.-[1 V (2z)H • (- 1)”2 一 2 2 乙_ JL 小(一1)2 •一2:(2Q!(5)sin2in =0(2n)!< 8.E)=广•六(。

复变函数与积分变换第四章习题解答

复变函数与积分变换第四章习题解答

2!
3!
2!
3!
3!
5!
2
4
而收敛半径 R=扛'fJ •
而收敛半径 R=+oo;
(7)
z
而收敛半径 R=l 。
cos 土 ==1- 上 (z+z2 + z3 + .. 一上 (z+z2 +z3 + ...r +... =1-2. z2 - z 3 +...' I zI< 1 I 1-z 2 4! 2

In n
1
n
1
4)因 cos in= cbn,
( 1)每一个幕级数在它的收敛圆周上处处收敛 ;
4. 下列说法是否正确?为什么?
而lim—-=1=0,
II�")
chn
2"

cosm 2 — " 发散。 11=2 2
00
(2)每一个幕级数的和函数在收敛圆内可能有奇点;
解 (1)不对。如Iz"在收敛圆lzl < 1内收敛, 但在收敛圆周日=l上井不收敛; (3)不对。如八 z) 三在全平面上连续, 但它在任何点的邻域内均不能展开成 Taylor 级 5幕级数LC11 (z-2)" 能否在z=0收敛而在z=3发散?
=
=早-(于)2 f ()
11=]
一I
干是收敛半径 R=2 。 (2)因
(-1t z-1 "' "
2
+ ... + ( -1 y,-1
(早厂
lz-11<2
l

飞(z�2 一言) = z�2 一士 2 = = 1-'� 厂; J- J [ =』 z�2 4 +(:-2i ± + � 2 �

复变函数与积分变化答案北京邮电大学第九章

复变函数与积分变化答案北京邮电大学第九章

1. 求下列信号的离散傅里叶变换。

()()(01).n x n a u n a a =<<为实数,解:1()()()(),1jwjwnjwnjw n jwn n n X e x n ea n eae ae ∞∞∞----=-∞=-∞=-∞====-∑∑∑幅度谱为21/21(),(12cos )jw X e a a w =+- 相位谱为sin ()arg ()arctan.1cos jw a ww X e a wφ==--2.求1, 1;().0, 1.n n x n Z n ≥⎧=⎨<⎩ 的变换解:该序列是一个右边序列,由定义得11().n n X z z n∞-==∑因为11211d ()11()(), 1.d n n n n X z n z z z z n z z ∞∞----===-=-=>-∑∑ 则()ln ln(1)ln.1z X z z z z=--=-3.求长度为N 的有限长序列00()(), 0x n n n n N δ=-<<的DFT.解:由定义得21()()()N jnk NN n X k x n eR k π--==∑2100()()N jnk NN n n n eR k πδ--==-∑02(),jn k NN eR k π-=其中()N R k 为矩形序列.4. 已知x(n )是N 点有限长序列,X(k)=DFT[x(n)].现将长度变为rN 点的有限长序列y(n),(), 01;()0, 1.x n n N y n N n rN ≤≤-⎧=⎨≤≤-⎩ 试求rN 点的DFT[y(n)]与X(k)的关系. 解:由21()[()](),01,N jnk Nn X k DFT x n x n ek N π--===≤≤-∑可得(1)1()[()]()()r N N nk nkrNrN n n Y k DFT y n y n Wx nW --=====∑∑ 210(),,0,1,, 1.k N j n N rn k x n eX k lr l N ar π--=⎛⎫====- ⎪⎝⎭∑所以在一个周期内,()Y k 的抽样点数是()X k 的r 倍,相当于在()X k 的每两个之间插入1r -个其他的数值(比一定为零),而当k 为r 的整数l 倍时,()Y k 与k X r ⎛⎫⎪⎝⎭相等.5.已知X(k),Y(k )是两个N 点的实序列x(n),y(n)的DFT 值,今需要从X(k),Y(k)求x(n),y(n)的值,为了提高运算效率,试用一个N 点IFFT 运算一次完成. 解:依据题意()(),()(),x n X k y n Y k ⇔⇔取序列()()(),Z k X k jY k =+对()Z k 作N 点IFFT 可得序列()z n .又根据DFT 的性质[][][]IDFT ()()IDFT ()IDFT ()()().X k jY k X k j Y k x n jy n =+=+=+由原题可知,(),()x n y n 都是实序列.再根据()()()z n x n jy n =+,可得[]()Re ()x n z n =以及[]()Im ().y n z n =6.如果一台计算机的速度为平均每次复乘5 μs ,每次复加0.5 μs ,用它来计算512点的DFT[x(n)],问:直接计算需要多长时间?用FFT 需要多长时间?解:(1)直接计算 复乘所需时间62621510510512 1.31072();T N s --=⨯⨯=⨯⨯=复加所需时间6620.510(1)0.510512(5121)0.130816().T N N s --=⨯⨯⨯-=⨯⨯⨯-=所以12 1.441536().T T T s =+=(2)用FFT 计算 复乘所需时间66122512510log 510log 5120.01152();22N T N s --=⨯⨯=⨯⨯= 复加所需时间662220.510log 0.510512log 5120.002304().T N N s --=⨯⨯=⨯⨯=所以120.013824().T T T s =+=。

复变函数与积分变换习题答案

复变函数与积分变换习题答案

第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。

复变函数与积分变换习题解答

复变函数与积分变换习题解答

练 习 一1.求下列各复数的实部、虚部、模与幅角。

(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。

1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。

(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。

证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

26 7

π
+
2kπ
= arctan 26 + (2k −1)π ,
7
k = 0,±1,±2," .
( ) ( ) (4) i8 − 4i21 + i = i2 4 − 4 i2 10i + i = (−1)4 − 4(− )1 10i + i
所以
= 1 − 4i + i = 1 − 3i
{ } { } Re i8 − 4i21 + i = 1, Im i8 − 4i21 + i = −3
习题一解答
1.求下列复数的实部与虚部、共轭复数、模与辐角。
(1) 1 ; (2)1 − 3i ; (3) (3 + 4i)(2 − 5i) ;
3 + 2i
i 1−i
2i

(1)
1 3 + 2i
=
(3
+
3 − 2i
2i)(3 −
2i)
=
1 13
(3

2i)
所以
(4)i8 − 4i 21 + i
Re⎨⎧ ⎩3
2)如果 R(z) 为 1)中的有理分式函数,但具有实系数,那么 R(z ) = X − iY ;
3)如果复数 a + ib 是实系数方程
a0 zn + a1zn−1 +" + an−1z + an = 0
的根,那么 a − ib 也是它的根。
证 1) R(z) = P(z) = P(z)Q(z) = Re(P(z)Q(z)) + Im(P(z)Q(z)) ;
3i 1−

复变函数与积分变换课后习题答案详解

复变函数与积分变换课后习题答案详解

…复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)/——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππ2222e cos isin i i 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 3331313;;;.22n i i z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解: ∵()()()()(){}332321i 31i 3113133133288-+⎛⎫-+⎡⎤⎡⎤==--⋅-⋅+⋅-⋅-⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ④解:∵()()()()()2332313133133i 1i 328⎡⎤--⋅-⋅-+⋅-⋅-⎛⎫⎢⎥-+⎣⎦= ⎪ ⎪⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i 415-+=+=.2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i 51365++=++=⋅=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 2222++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈,则z x x ==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式 3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i 17e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π13i 16ππ3θ-==-.∴()2πi 38π13i 16πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 33i的平方根.⑴i 的三次根. 解:()133ππ2π2πππ22i cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ31cosisin i 662=+=+z .25531cos πisin πi 662=+=z39931cos πisin πi 662=+=-z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-+=+=∴1ππ13cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin π332=+=-z33i 的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i44ππ2π2π4433i 6e 6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换课后习题答案详解

复变函数与积分变换课后习题答案详解

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

(4)、Re(z )>Im z .解:表示直线y =x 的右下半平面5、Im z >1,且|z |<2.解:表示圆盘内的一弓形域。

习题二 1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则2222221i i i i i()i x y x yu v x y x y x y x y x y x y x y -+=++=++=++-++++因为224x y +=,所以53i 44u iv x y +=+所以 54u x =,34v y=+5344,u v x y == 所以()()2253442uv+=即()()222253221u v +=,表示椭圆.2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ϕρ=或i w u v =+. (1)π02,4r θ<<=; (2)π02,04r θ<<<<;(3) x=a, y=b.(a, b 为实数)解:设222i ()2i w u v x iy x y xy =+=+=-+所以22,2.u x y v xy =-= (1) 记e i w ϕρ=,则π02,4r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2ρϕ<<=(2) 记e i w ϕρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2ρϕ<<<<(3) 记w u iv =+,则将直线x=a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y=b 映成了22,2.u x b v xb =-=即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示.3. 求下列极限.解:令1z t =,则,0z t →∞→.于是22201lim lim 011z t t z t →∞→==++.(2) 0Re()limz z z →;解:设z=x+yi ,则Re()i z xz x y =+有 000Re()1limlim i 1i z x y kx z x z x kx k →→=→==++显然当取不同的值时f(z)的极限不同 所以极限不存在. (3) 2lim(1)z i z i z z →-+;解:2lim(1)z iz iz z →-+=11lim lim ()()()2z i z i z i z i z z i z i z →→-==-+-+. (4) 2122lim1z zz z z z →+---.解:因为222(2)(1)2,1(1)(1)1zz z z z z z z z z z +--+-+==-+-+所以2112223limlim 112z z zz z z z z z →→+--+==-+.4. 讨论下列函数的连续性: (1)22,0,()0,0;xyz x y f z z ⎧≠⎪+=⎨⎪=⎩解:因为22(,)(0,0)lim ()limz x y xyf z x y →→=+,若令y=kx,则222(,)(0,0)lim 1x y xy kx y k →=++, 因为当k 取不同值时,f(z)的取值不同,所以f(z)在z=0处极限不存在.从而f(z)在z=0处不连续,除z=0外连续. (2)342,0,()0,0.x yz f z x y z ⎧≠⎪=+⎨⎪=⎩解:因为33422022x y x x yx y x y ≤≤=+,所以342(,)(0,0)lim 0(0)x y x yf x y →==+所以f(z)在整个z 平面连续.5. 下列函数在何处求导?并求其导数.(1) 1()(1)n f z z -=- (n 为正整数);解:因为n 为正整数,所以f(z)在整个z 平面上可导.1()(1)n f z n z -'=-.(2)22()(1)(1)z f z z z +=++.解:因为f(z)为有理函数,所以f(z)在2(1)(1)0z z ++=处不可导.从而f(z)除1,i z z =-=±外可导.2222232222(2)(1)(1)(1)[(1)(1)]()(1)(1)2543(1)(1)z z z z z z f z z z z z z z z ''+++-+++'=++-+++=++(3)38()57z f z z +=-.解:f(z)除7=5z 外处处可导,且223(57)(38)561()(57)(57)z z f z z z --+'==---.(4) 2222()i x y x yf z x y x y +-=+++.解:因为2222222i()i i(i )(i )(1i)(1i)1i()x y x y x y x y x y z f z x y x y x y z z++--+--+++=====+++.所以f(z)除z=0外处处可导,且2(1i)()f z z +'=-.6. 试判断下列函数的可导性与解析性.(1) 22()i f z xy x y =+;解:22(,),(,)u x y xy v x y x y ==在全平面上可微. 22,2,2,yuvv y xy xy x x y xy ∂∂∂∂====∂∂∂∂所以要使得u v x y ∂∂=∂∂, u vy x ∂∂=-∂∂,只有当z=0时,从而f(z)在z=0处可导,在全平面上不解析.(2) 22()i f z x y =+.解:22(,),(,)u x y x v x y y ==在全平面上可微.2,0,0,2uu v vx y x y xy ∂∂∂∂====∂∂∂∂只有当z=0时,即(0,0)处有u v x y ∂∂=∂∂,u vyy ∂∂=-∂∂. 所以f(z)在z=0处可导,在全平面上不解析.(3) 33()23i f z x y =+;解:33(,)2,(,)3u x y x v x y y ==在全平面上可微.226,0,9,0uu vv x y x y xy ∂∂∂∂====∂∂∂∂=时,才满足C-R 方程. 从而f(z)0±=处可导,在全平面不解析. (4)2()f z z z =⋅.解:设i z x y =+,则23232()(i )(i )i()f z x y x y x xy y x y =-⋅+=+++ 3232(,),(,)u x y x xy v x y y x y =+=+22223,2,2,3uuvvx y xy xy y x xyxy ∂∂∂∂=+===+∂∂∂∂所以只有当z=0时才满足C-R 方程.从而f(z)在z=0处可导,处处不解析.7. 证明区域D 内满足下列条件之一的解析函数必为常数. (1) ()0f z '=;证明:因为()0f z '=,所以0u u x y ∂∂==∂∂,0v vx y ∂∂==∂∂.所以u,v 为常数,于是f(z)为常数. (2) ()f z 解析.证明:设()i f z u v =-在D 内解析,则 ()u v u vx y x y ∂∂-∂∂=⇒=-∂∂∂∂ ()u v v y x y ∂-∂-∂==+∂∂∂ ,u v u vx yy x ∂∂∂∂=-=∂∂∂∂而f(z)为解析函数,所以,u uu v x yy x ∂∂∂∂==-∂∂∂∂所以,,v v v v xx y y ∂∂∂∂=-=-∂∂∂∂即0u u v vx y x y ∂∂∂∂====∂∂∂∂从而v 为常数,u 为常数,即f(z)为常数.(3) Ref(z)=常数.证明:因为Ref(z)为常数,即u=C1, 0u u x y ∂∂==∂∂ 因为f(z)解析,C-R 条件成立。

相关文档
最新文档