X射线(多晶)衍射概述

合集下载

多晶x射线衍射技术与应用 pdf

多晶x射线衍射技术与应用 pdf

多晶x射线衍射技术与应用pdf
多晶X射线衍射技术是一种用于研究晶体结构、形貌和性质的实验方法。

它通过测量晶体对X射线的衍射强度,从而得到晶体中原子或分子的排列信息。

这种技术在材料科学、化学、物理等领域具有广泛的应用。

多晶X射线衍射技术的基本原理是:当一束平行的X射线射入一个多晶样品时,由于晶体中原子或分子的排列具有一定的周期性,X 射线会在不同方向上发生衍射。

通过测量衍射角度和强度,可以得到晶体的结构参数,如晶胞尺寸、原子间距离等。

多晶X射线衍射技术的主要应用包括:
1.晶体结构分析:通过测量衍射角度和强度,可以得到晶体的结构参数,如晶胞尺寸、原子间距离等。

这对于了解材料的组成和性质具有重要意义。

2.材料表征:多晶X射线衍射技术可以用于研究材料的形貌、表面粗糙度、晶粒尺寸等性质。

这些信息对于评估材料的质量和性能至关重要。

3.相变研究:通过观察材料在不同温度、压力或气氛条件下的衍射图案变化,可以研究材料的相变过程和相图。

这对于开发新型材料和优化工艺条件具有重要意义。

4.纳米材料研究:多晶X射线衍射技术可以用于研究纳米材料的结构和性质。

这对于开发新型纳米材料和优化纳米加工技术具有重
要意义。

5.生物大分子研究:多晶X射线衍射技术可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能。

这对于理解生物过程和疾病机制具有重要意义。

第二章 X射线多晶衍射方法及应用

第二章 X射线多晶衍射方法及应用

49
50
51
52
2-Theta(°
五、Kα双线的分离
Kα双线Rachinger分离方法: 这种方法假定Kα1、Kα2双线的 衍射线形相似、底宽相等、强
度比值为2:1,双线的分离度δ
δ = 2 tanθ ⋅ Δλ / λ(弧度 )
Δλ = λ(α2 )- λ(α1 )
θ为相应的Kα的布拉格角
2d sinθ = λ
五、Kα双线及其分离
Kα双线Rachinger分离方法:
1. 首先计算出双线分离度δ , 以δ/m(m为大于1的整数, 视δ大小而定,δ小时m可取 1,在中等分离度情况m可 取2、3, δ大时m可以取大 于3)为间距将曲线底宽分为 若干等分并按0, 1, 2, 3,….., i,……n编号。
δ = 2 tanθ ⋅ Δλ / λ(弧度 )
当衍射峰轮廓光滑时,具有较高的可靠性。 但当计数波动显著,衍射峰的轮廓不光滑时,P点、ab直线、 M点及N点的确定都会带来一些随意性。
三. 衍射峰位置的正确确定
(3) 切线法 衍射峰两侧的直线部位较长时,取峰顶两侧直线部分 延长线的交点作峰位。
(4) 弦中法 以半高宽(背底线以上衍射峰高度一半处的峰宽)或2/ 3高宽、3/4高宽……的中点连线的延长线与峰的交
四、衍射强度的测定
(3)相对强度
卡片号
三强线面 间距及相 对强度
I = [ I1 ×100]取整 I1 Imax
最大面间距及其强度 可靠性标志
化学式及英文名称
实验条件
晶体学参数
物理性质
试样来源 及化学分 析数据
衍射数据(面间 距、相对强度、 面指数)
五、Kα双线的分离
由于实验中所用的Kα辐射包含Kα1、Kα2双线,它们各自产 生的衍射线形将重叠在一起,即使无物理宽化因素的标准样品 的高角度线,它们也不能完全分得开。

多晶x射线衍射的应用原理是什么

多晶x射线衍射的应用原理是什么

多晶x射线衍射的应用原理是什么1. 引言多晶X射线衍射(Poly-crystalline X-ray diffraction)是一种重要的材料表征技术,广泛应用于材料科学、化学、地质学等领域。

本文将介绍多晶X射线衍射的应用原理及其在材料表征中的重要性。

2. 多晶X射线衍射的原理多晶X射线衍射原理基于X射线与多晶体结晶格之间的相互作用。

当X射线照射到多晶体上时,由于多晶体中存在不同晶向的晶粒,X射线将被晶粒中的晶面衍射。

每个晶面都可以被视为反射X射线的光栅,产生特定的衍射图案。

3. 多晶X射线衍射仪器多晶X射线衍射实验通常采用X射线衍射仪来进行。

X射线衍射仪主要由X射线源、样品台、衍射加倍器和探测器等组成。

X射线源发射出高能X射线束,经过样品后形成衍射图案。

衍射图案经过衍射加倍器放大后被探测器捕获,最终通过数据处理得到样品的晶体结构信息。

4. 多晶X射线衍射的应用多晶X射线衍射在材料表征中有着广泛的应用。

以下列举了一些常见的应用场景:•晶体结构分析:多晶X射线衍射可以通过分析衍射图案的位置和强度,得到材料的晶体结构信息,如晶格常数、晶胞参数等。

这对于理解材料的物理、化学性质具有重要意义。

•晶体缺陷研究:通过研究衍射图案中的缺陷点、峰形和峰宽等信息,可以获得材料中的晶格缺陷(如位错、晶体界面等)信息。

这有助于理解材料的力学性能和热学性质。

•相变研究:多晶X射线衍射可以用于研究材料在温度、压力等条件下的相变行为。

通过观察衍射图案的变化,可以确定相变温度、相变的机理等。

•晶体取向分析:多晶X射线衍射可以用于测定材料中晶粒的取向信息。

通过测量不同方向上的衍射强度,可以分析材料中晶粒的取向分布、晶粒生长方向等。

•相对定量分析:多晶X射线衍射还可以用于相对定量分析材料中各个晶相的含量。

通过测量不同晶相的衍射强度,可以计算各个晶相的相对含量。

5. 结论多晶X射线衍射是一种重要的材料表征技术,可以用于获取材料的晶体结构、晶格缺陷、相变行为等信息。

多晶材料X射线衍射-实验原理方法与应用课程设计

多晶材料X射线衍射-实验原理方法与应用课程设计

多晶材料X射线衍射-实验原理方法与应用课程设计一、前言X射线衍射是一种广泛应用于化学、物理、材料科学等领域的分析方法。

在材料科学中,X射线衍射被广泛用于表征多晶材料的结构与性质。

本课程设计旨在介绍多晶材料X射线衍射实验的原理、方法与应用。

二、实验原理X射线是一种高能量电磁辐射,在多晶材料中经过散射后形成衍射图案。

衍射图案的形状与多晶材料的晶格结构有关。

X射线衍射实验通过测量衍射图案的强度和角度,可以得到多晶材料的晶格常数、晶格类型、晶体方位关系等信息。

三、实验方法3.1 实验设备本实验所需设备如下:•X射线仪•样品架•X光学计数器•计算机3.2 样品制备在样品制备中,需要采取下列步骤:1.选取合适的多晶材料,如Cu、Fe等。

2.切割样品,并将其磨平,以保证样品表面的平整度。

3.在样品表面涂覆聚乙烯醇(PVA)等化学试剂,以保证样品表面的光滑度和保水性。

4.将样品放入样品架中,并将样品架固定在X射线仪上。

3.3 实验操作在实验操作中,需要采取下列步骤:1.开启X射线仪,并将样品架调整到适当的位置,使其与X射线束对准。

2.通过计算机控制X射线成像,得到样品的衍射图案。

3.将衍射图案进行处理,得到样品的晶格常数等信息。

4.通过对处理结果的分析,得到样品的晶体结构与性质等信息。

3.4 实验注意事项在进行实验时,需要注意以下事项:1.在样品制备过程中,要注意样品表面的平整度和光滑度。

2.在固定样品架时,要注意固定力度,以确保样品不会移动。

3.在进行X射线衍射时,要注意X光线的电功率和曝光时间,避免对样品造成伤害。

4.在处理衍射图案时,要注意算法和参数的选择,以确保处理结果的准确性。

四、实验应用多晶材料X射线衍射在材料科学中有广泛的应用,如:1.对多晶材料的晶格结构与性质进行表征;2.对材料的晶体成长、物理、化学等性质进行分析和预测;3.帮助化学研究人员优化合成反应条件,提高反应产率和产品质量;4.用于研究新材料的晶体结构和物理性质,如了解晶体缺陷和非晶结构等信息。

材料分析方法第三章多晶体X射线衍射分析方法

材料分析方法第三章多晶体X射线衍射分析方法

2021/3/7
31
• 令N=h2+k2+l2 ,则有:
sin 2 1 : sin 2 2 : sin 2 3 :: sin 2 n N1 : N2 : N3 :: Nn
• 即掠射角正弦的平方之比等于晶面指数平方和之比。
• 根据立方晶系的消光规律,相应的N值序列规律如下:
点阵类型 简单立方 体心立方 面心立方
第三章 多晶体X射线衍射分析方法
• 内容提要: • 引言 • 第一节 德拜照相法 • 第二节 X射线衍射仪法
2021/3/7
1
引言
• 粉末法的衍射原理:
• 对于粉末(或多晶)试样,当一 束X射线从任意方向照射到试 样上时,总会有足够多的晶 面满足布拉格方程。
• 在与入射线呈2θ角的方向上 产生衍射,衍射线形成一个 相应的4θ顶角的反射圆锥。
2021/3/7
26
• 2、实验参数
• 与德拜法中一样的实验参数: 阳极靶和滤波片的 选择;X射线管的电压和电流。
• 与德拜法不同的实验参数:狭缝光栏宽度、时间 常数和扫描速度。
• 物相分析时,扫描速度常用3~ 4 /min。
2021/3/7
27
• 3、扫描方式 • 多晶体衍射仪扫描方式分为连续扫描和步进扫
• 探测器在运转过程中,聚焦圆半径时刻变化着。 当 θ→ 0º,r → ∞; θ→ 90º,r → rmin = R/2。
• 因此,衍射仪采用平板试样。目的是使试样表面始终 保持与聚焦圆相切,近似满足聚焦条件。
2021/3/7
20
3、测角仪的光路布置
• 光路布置如图。 • 狭缝的宽度以度
()来计量,有 一系列的尺寸供 选用。 • 在测定时,可根 据样品的情况选 择各狭缝的宽度。

X射线多晶衍射法

X射线多晶衍射法

I’=(I –62– 2162)/168=[2sin(2RS)+3sin(RS)]/RS
I’对RS作图
I’(I)最大处的 (RS)i = 7.1; 13.5; 19.7
20计19/7算/30 得: Ri = (RS)i /Si = 153pm谱; 1学55导p论m; 157pm 平均 R=155±1pm 10
7.3.3粉末衍射的应用
1、物相分析
由粉末衍射图得:I(2) d
n 2sin
各种晶体的谱线有自已特定的位置,数目和强度。 其中更有若干条较强的特征衍射线,可供物相分析。
JCPDS(Joint Committee on Powder Diffrac-tion Standards)(也称 PDF卡 Powder Diffration File)
由 实 验 得 S1 = 0.04713pm-1; S2 = 0.08698pm-1; S3 = 0.1265pm-1
由衍射强度公式计算: [ S RC R S ]
I=Z+2Z+[4ZCZSsin(RS)/RS]+2Zsin(R’ S)/ R’ S 即
I=62+2•162+[4•6•16sin(RS)/RS]+[2•162sin(2RS)/2RS]
dA、dB、dC、dD、dE、dF、dG、dH dB、dC、dA、dD、dE、dF、dG、dH dC、dA、dB、dD、dE、dF、dG、dH
§7.3 X射线多晶衍射法
2、衍射图的指标化
利用粉末样品衍射
图确定相应晶面的 晶面指面h k l的值 (又称米勒指数)就 称为指标化。
立方晶系a = b = c = ao , = = = 90

第3章X射线多晶衍射法(2010)

第3章X射线多晶衍射法(2010)

2.粉末法成像原理
材料学科中运用X射线衍射分析的主要目的是进行 物相的分析以及组织结构的测定等。况且,大多数的 材料是多晶质的。所以,在X射线衍射分析的三个主 要方法中我们最常用的是粉末法。这种方法最早是由 德国的德拜和谢乐于1916年提出来的。
粉末法的基本原理在第二章中已有简单的论述。粉 末法故名思义,它样品是“粉末”,即样品是由细小 的多晶质物质组成。理想的情况下,在样品中有无数 个小晶粒(一般晶粒大小为1μm,而X射线照射的体 积约为1mm3,在这个体积内就有109个晶粒),且 各个晶粒的方向是随机的,无规则的。或者说,各种 取向的晶粒都有。
(线型)和二维(面型)阵列探测器来满足此
类快速、同时多点测量的实验要求。所谓阵 列探测器就是将许多小尺寸(如50μm)的固 体探测器规律排列在一条直线上或一个平面 上,构成线型或平面型阵列式探测器。阵列 探测器一般用硅二极管制作。这种一维的 (线型)或二维的(面型)阵列探测器,既 能同时分别记录到达不同位置上的X射线的能 量和数量,又能按位置输出到达的X射线强度 的探测器。阵列探测器不但能量分辨率好, 灵敏度高,且大大提高探测器的扫描速度, 特别适用于X射线衍射原位分析。
X射线探测器
衍射仪的X射线探测器为计数管。它是根 据X射线光子的计数来探测衍射线是存在与 否以及它们的强度。它与检测记录装置一 起代替了照相法中底片的作用。其主要作 用是将X射线信号变成电信号。探测器的有 不同的种类。有使用气体的正比计数器和 盖革计数器和固体的闪烁计数器和硅探测 器。目前最常用的是闪烁计数器,在要求 定量关系较为准确的场合下一般使用正比 计数器。盖革计数器现在已经很少用了。
我们知道,当X射线照射到晶体上时,要产生 衍射的必要条件是掠过角必须满足布拉格方程。 由于晶体的晶面间距是固定的,采用单色X射 线照射时,λ是也是固定的。因此,要使X射线 产生衍射需通过改变θ角,以创造满足布拉格 方程的条件。这可以通过转动晶体来实现。如 在旋转法中。在粉末法中是通过另一种方式来 达到这个目的的。由于粉末法的试样中存在着 数量极多的各种取向的晶粒。因此,总有一部 分晶粒的取向恰好使其(hkl)晶面正好满足 布拉格方程,因而产生衍射线。由于

多晶X射线衍射分析

多晶X射线衍射分析

多晶X射线衍射分析
多晶X射线衍射分析的原理基于布拉格定律,即当X射线入射在晶体上时,由于衍射现象,会形成一系列衍射峰。

这些衍射峰可以通过布拉格方程来计算,即2dsinθ=nλ,其中d为晶胞间距,θ为入射角,n为衍射级数,λ为X射线波长。

通过测量衍射角θ和计算相应的2θ值,可以反推出晶胞间距和晶胞参数。

多晶X射线衍射实验通常使用X射线衍射仪进行。

X射线衍射仪主要由两部分组成:X射线源和X射线检测器。

X射线源通常使用钨或铜靶产生X射线,X射线检测器则用于记录X射线衍射图样。

常见的X射线检测器有电子学多道计数器和像素探测器。

X射线衍射图样可以通过旋转样品和探测器的方式进行实验测量。

多晶X射线衍射分析具有广泛的应用。

首先,它可以用于材料的相同定性分析。

不同的晶体结构会产生不同的X射线衍射图样,通过比对实验测得的衍射图样和数据库中的标准图样,可以鉴定材料的相同。

其次,多晶X射线衍射分析可以用于测量材料的晶胞参数和结晶度。

通过测量衍射图样的峰位置和强度,可以计算出晶胞参数和晶粒尺寸。

此外,多晶X射线衍射分析还可以用于材料的质量控制和表征。

例如,可以通过衍射峰的宽度和峰强度来评估材料的结晶度和晶粒尺寸分布。

综上所述,多晶X射线衍射分析是一种非常重要和常用的材料表征和结构分析方法。

它通过测量材料的X射线衍射图样,获得材料的晶体学信息,可以用于相同的鉴定、晶胞参数和结晶度的测量,以及质量控制和表征。

多晶X射线衍射分析在材料科学、地质学、化学、物理学等领域都有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

112
立方系 11 11 12
取向的{100}极图
001
010
100
100 111 010
00 1
● 11 11 12 ○ 11 112 1
■ ▲
■ ▲
▲■ ▲
▲ ■
▲ ■
冷轧纯铁{100}极图
● {111}〈112〉 ■ {100}〈110〉 ▲ {112}〈110〉
★ 反极图
以晶轴OXYZ为参照坐标系,以各晶粒的某一特征外 观方向在晶体学空间的分布,来表示织构。
以材料外观特征方向 (如轧向、横向和轧面法线)为轴建立参照 坐标架OABC。
以晶轴OXYZ为参照坐标架固定在晶粒上代表晶粒取向。 为表示晶粒取向,即OXYZ相对于OABC的取向,用三个参数 (ψ、θ、φ)表示。 晶粒的每一取向,均用一组参数(ψ、θ、φ)表示。 以ψθφ为坐标轴,建立直角坐标系Oψθφ,则晶粒的每一取 向均可在此图中用一点表示,将材料所有晶粒的取向均标于图中, 即为该材料的取向分布图。(ODF图)
如 00100在(0°,0°,0°)点;
00 110 在(0°,0°,45°)点等。
冷轧含磷钢板ODF图,恒ψ截面
φ
ψ
面一为 图般便 。做于
成分 恒析
, 或 恒
图 截
ODF
★ 极图
表示的是试样中各晶粒任一选定的{HKL}面的法向在试 样空间的(以材料外观特征方向OABC为参照坐标系)分布。
按试样特征外观建立坐标架OABC,
第二类内应力 在数个晶粒范围内存在并平衡的应力,衍射效应主要是引起线形的 变化。如双相合金经变形后,各相处于不同的应力状态时,此应力同时 引起衍射线位移。(微观应力) 第三类内应力 在若干原子范围内存在并平衡的应力,如各种晶体缺陷周围的应力 场。此类应力使衍射强度降低。(微观应力)
丝织构:
晶粒以某一方向〈uvw〉倾向于与材料某一特征外观方向平 行。以〈uvw〉表示。
板织构:
晶粒以某一方向〈uvw〉倾向于与材料某一特征外观方向平 行,同时还以某一晶面{hkl}倾向于平行材料的某一特征外观 平面。以{hkl}〈uvw〉表示。
出现织构的材料宏观表现为各向异性,而充分利用各向异性,是 发挥材料性能潜力的有效途径之一。


有强度脚标的八个d值、物质名称、卡片号。
按八数组第一值递减分成若干小组,d值范围

印在页眉。如 3.49-3.45Å,3.44-3.40Å


按物质英文名的字母顺序编排。


名称、化学式、三强线的d值及强度、卡片号。
定性物相分析的步骤:
1. 测衍射花样,求d值,强度分五级(最强、强、中、弱、最弱); 2. 按d值递减为序,列出全部被测物花样的d值; 3. 将数据改排, 在2θ<90°内三强线先排,其余按强度递减跟上; 4. 查数字索引,按d1找可能卡片的小组,按d2找可能的卡片号; 5. 将可能相的卡片与被测花样数据仔细对照,最吻合者即为被测物。
8. 质量标志 (★ 最可信 ;i 次之;
○ 稍差;C 计算值) 9. 衍射线的 hkl 及 I/I1 值
43 → 卡片批号,1455 → 该批序号
为便于在数万张卡片中挑出某些有意义花样八强线的d值编制而成。

前三线为特征线,2θ<90°中取。

后五线按强度排出,强度分十级用脚标。
织构的测定
通过逐个晶粒取向测定而后综合。TEM、SEM和X射线单 晶定向,用SEM的电子背散射衍射测定晶粒取向是全新的技术。
通过多晶衍射测出材料某一晶面的取向在空间的分布,再 经数据处理而得。电子衍射、中子衍射和X射线衍射测定。
X射线多晶衍射测定织构应用最广。
织构的表示方法
★ 取向分布函数(图)
晶粒取向是指晶粒相对其所在材料的取向。
5. X射线 (多晶)衍射技术的应用
5.1 物相分析
分析依据:各物相有独具的晶体结构、特定花样 定性分析:被测物衍射花样与标准纯物相花样对照 定量分析:不同相间衍射线累积强度互比
建立花样(数据)库和有效率的对比程序
花样库:衍射线的面间距d和累积强度I/I1 ,附有化学、晶 体学及可供参考的信息,记录为8×13cm的卡片。 旧名为ASTM卡,现名PDF(Powder Diffiraction File)
晶面法向用极角 和辐角 表示。
用极密度定量表示
{HKL}法向分布
qhkl ,Kqsi n V /V
无织构时在所有方向 的极密度均为1。
以OABC的O点为球心作球面,以等值线标出所有方向的{hkl} 极密度值,所成球面图表示了试样中{hkl}法向(极密度)的分布。
为方便构绘和交流,用极射赤面投影将球面投影到OAB平面,此 平面即为试样的{hkl}极图
5.3 宏观残余应力的测定
内应力的分类
残余应力是一种内应力,是指产生应力的各种因素不复存在时,由 于形变、体积变化不均匀而存留在工件内部并自身保持平衡的应力。
按平衡的范围分为三类: 第一类内应力 在物体宏观体积内存在并平衡的应力,此应力的释放,会引起物体
的宏观体积或形状发生变化。又称宏观应力或残余应力。宏观应力使衍 射线位移。
Al-Li合金棒轴反极图
由于晶 体的对称性, 反极图一般只 绘出晶体学空 间的无对称子 空间部分。
★ 极图的测绘 透射法
试样厚约 0.03~0.1mm, 探测器固定在2θhkl处, α转动自N到接近探测器, β转动360°。 只能探测90°至接近θhkl的 极图外围部分。
反射法
探测器固定在2θhkl , α 转动 0°~75°, β 转动 360° 。
☆ 分析时要考虑实验误差,允许d值±0.01d ☆ 实验条件的差别,线条强度仅供参考,卡片上弱线条被测花样
可不出现,但花样上的线条卡片上必须有。 ☆ 被测物所用辐射比卡片短时,可出现卡片没有的小d值线条。
5.2 织构测定
多晶材料经不同处理后,晶粒取向可能不再呈统计分布,而是呈 现出某种程度的规律性。晶粒取向的这种规律性分布称为择优取向, 具有择优取向的组织即是织构。
1. 卡片号 5. 晶体学数据 2.3. 物相名 6. 光学数据 4. 实验条件 7. 试样参考资料
卡片号
实验条件 晶体学数据
光学数据 试样参考资料
物相名
质量 标志
83年前
衍射线的 hkl 及 I/I1 值
卡片号 物相名 实验条件
晶体学数据 光学数据
试样参考资料
质量标志
84年后
衍射线的 hkl 及 I/I1 值
相关文档
最新文档