(完整版)常见数字整除判定法则

合集下载

整除判定口诀

整除判定口诀

整除判定口诀好的,以下是根据你的要求生成的五个口诀:1. **整除口诀**:
整除很简单,一除就知道。

二数相除时,整除有规律。

若要判断它,除数需整除。

余数为零时,整除就成立。

2. **倍数口诀**:
倍数更容易,乘法来表示。

一数乘另一,结果是倍数。

倍数有大小,顺序要排好。

最小是一倍,依次往上加。

3. **约数口诀**:
约数也不难,因数找一找。

一数能整除,另一数是约。

约数有多少,因数来决定。

最大公约数,顺序要排好。

4. **质数口诀**:
质数有特点,只有一和它。

合数不一样,至少有三个。

二是唯一偶,其他是奇数。

质数合数分,因数来帮忙。

5. **分解质因数口诀**:
分解质因数,方法很简单。

短除来帮忙,除数要质数。

一直除到商,也是质数止。

所有因数乘,结果就是它。

这些口诀都比较口语化,简单易懂,适合小学生记忆。

希望对你有所帮助!。

最全的能被特殊数7、11、13等整除的数的判别法

最全的能被特殊数7、11、13等整除的数的判别法

一、特殊数字的整除。

1、能被3、9整除的数:数位之和能被3、9整除(注意消倍)。

例:76935、3165493能否被3整除?例:1349982、367594737能否被9整除?2、能被2、5整除:末位上的数字能被2、5整除。

能被4、25整除:末两位的数字所组成的数能被4、25整除。

能被8、125整除:末三位的数字所组成的数能被8、125整除。

3、能被7整除的数:1)割尾法。

故133可以被7整除。

2)将它三位三位截断后,奇数段之和减去偶数段之和的差的绝对值能被7整除。

例如判断1798638345能否被7整除?3)末三位上数字所组成的数与末三位以前的数字所组成数之差绝对值能被7整除。

例如判断69272、13275能否被7整除?4、能被11整除的数:1)割尾法。

若将一个整数的个位数字截去,再从余下的数中,减去个位数的1倍,如果差是11的倍数,则原数能被11整除。

如果差太大或心算不易看出是否为11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如判断6259能否被11整除?2)将它三位三位截断后,奇数段之和减去偶数段之和的差的绝对值能被11整除。

例如判断55138028、44142405能否被11整除?3)该数的奇数位数字和减去偶数位数字和所得的差的绝对值能被11整除。

例如判断55138028、44142405能否被11整除?4)注意:奇数位数首位单独为一节。

5)末三位上数字所组成的数与末三位以前的数字所组成的数之差绝对值能被11整除。

例如判断44528能否被11整除?5、能被13整除的数:1)末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

例如判断5005、73853能否被13整除?2)将它三位三位截断后,奇数段之和减去偶数段之和的差的绝对值能被13整除。

例如判断106736097、57157059能否被13整除?3)逐次去掉最后一位数字并加上末位数字的4倍后能被13整除。

公务员考试行测常见数字整除的判定

公务员考试行测常见数字整除的判定

据了解,公考热已经持续了很多年,随着报考人数的逐年增多,考试题目的难度也在逐渐加大。

诸多考生感觉这是速度与激情的碰撞。

因为历来的江苏公务员考试行测都是90分钟125道题目。

这样的时间和题目数量让广大考生的做题速度备受考验。

江苏公务员考试网()专家认为,行测考试题目中不乏难度极高的题目,考生要在有限的时间里尽可能的快且准地答题,就需掌握一定的节省时间的小技巧。

一、概念与核心两个整数相除,得到一个整数,这就称之为整除,比如,15÷5=3,我们就可以说5能够整除15,或者15能够被5整除。

在国考中,整除法的核心主要是利用整除关系来快速判断选项,比如题目里面出现了分书、分人、分球等条件,一般情况下用整除就可以迅速选出选项。

二、常见数字的整除判定第一类,局部看。

,是2和5的几次方就看末几位,比如说,判断2和5的整除特性,因为它们分别是2和5的一次方,所以看末一位就可以,也就是说如果一个数字它的末一位能够被2,被5整除,那么这个数字本身就能够被2,被5整除;再比如说,判断4和25的整除特性,因为它们分别是2和5的二次方,所以看末两位就可以,也就是说如果一个数字它的末两位能够被4,被25整除,那么这个数字本身就能被4,被25整除。

第二类,整体看。

以3和9为主,判定3和9的整除,只需要把这个数字本身各位数字加和,如果它们的和能够被3和9整除,那么这个数字本身就能被3和9整除。

比如说,12345这个数字,各位数字加和之后为15,15能够被3整除,所以12345这个数字本身能够被3整除;15不能被9整除,那么12345这个数字本身不能被9整除。

以7、11和13为主,判定7、11和13的整除,需要把这个数字从后往前数,数三位划线,大数减小数,得到的结果如果能被7、被11、被13整除,那么这个数字本身就能被7、11、13整除。

比如说,12345这个数字,从后往前数,数三位,得到345和12,用345减去12,得到333,333不能被7整除,所以12345这个数字不能被7整除。

一个数被整除的判断方法

一个数被整除的判断方法

被2整除特征是个位上是偶数,被3整除特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)被4整除:若一个整数的末尾两位数能被4整除,则这个数能被4整除。

被5整除:若一个整数的末位是0或5,则这个数能被5整除。

被6整除:若一个整数能被2和3整除,则这个数能被6整除。

被7整除:(比较麻烦一点)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

被8整除:若一个整数的未尾三位数能被8整除,则这个数能被8整除。

被9整除:若一个整数的数字和能被9整除,则这个整数能被9整除。

被10整除:若一个整数的末位是0,则这个数能被10整除。

被11整除:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!被12整除:若一个整数能被3和4整除,则这个数能被12整除。

被13整除:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

被17整除:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

小升初数学知识点:数的整除

小升初数学知识点:数的整除

小升初数学知识点:数的整除
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1.能被3、9整除:各个数位上数字的和能被3、9整除。

2能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

3.能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

4.能被2、5整除:末位上的数字能被2、5整除。

5.能被4、25整除:末两位的数字所组成的数能被4、25整除。

6.能被8、125整除:末三位的数字所组成的数能被8、125整除。

7.能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

小学奥数 数的整除之四大判断法综合运用(一)

小学奥数 数的整除之四大判断法综合运用(一)

5-2-1.数的整除之四大判断法综合运用(一)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b |a,且d|c,那么bd|ac;例题精讲模块一、2、5系列【例 1】975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【考点】整除之2、5系列【难度】2星【题型】填空【例 2】从50到100的这51个自然数的乘积的末尾有多少个连续的0?【考点】整除之2、5系列【难度】4星【题型】解答【例 3】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【考点】整除之2、5系列【难度】4星【题型】解答【例 4】11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?【考点】整除之2、5系列【难度】4星【题型】解答【例 5】201202203300⨯⨯⨯⨯的结果除以10,所得到的商再除以10……重复这样的操作,在第____次除以10时,首次出现余数.【考点】整除之2、5系列【难度】5星【题型】填空【关键词】学而思杯,5年级,第7题【例 6】用1~9这九个数字组成三个三位数(每个数字都要用),每个数都是4的倍数。

数字的整除规律

数字的整除规律

学习领会最高人民法院发布的5件提级管辖典型案例心得体会提级管辖是对级别管辖一般规定的微调,也是保障司法公正、提升司法权威的特别程序构造近日,最高人民法院发布5件提级管辖典型案例。

这些案例充分体现了提级管辖在促推诉源治理、明确新类型案件裁判规则、统一类案裁判尺度等方面的重要作用,是提级管辖制度运用的鲜活例证。

我国民事诉讼法、行政诉讼法、刑事诉讼法均规定了级别管辖制度,即上下级人民法院之间受理一审诉讼案件的权限和分工。

除了审理一审案件,中级以上的人民法院还要审理二审案件。

为了兼顾不同级别人民法院的职能和工作均衡负担,级别管辖的基本做法是尽量将一审诉讼案件交由级别较低的人民法院审理。

于是,绝大多数诉讼案件都由基层人民法院管辖。

尽管由级别较低的人民法院审理一审案件,具有便利当事人参加诉讼、便利人民法院调查收集证据进而查明事实,以及便利裁判执行等优势,但也可能带来一些问题:级别较低的人民法院往往与当事人的距离较近,裁判结果容易受到人际关系、地方保护等因素的干扰,进而影响司法公正;下级法院作出的裁判没有上级法院作出的裁判的权威性高,对其他案件裁判难以起到指导作用。

为了维护司法公正和司法权威,我国三大诉讼法均规定在一定条件下可以调整案件管辖法院的级别,提级管辖即是对级别管辖一般规定的微调,也是保障司法公正、提升司法权威的特别程序构造。

2019年,中央办公厅印发的《关于政法领域全面深化改革的实施意见》提出,“健全完善案件移送管辖和提级审理机制,探索将具有法律适用指导意义、关乎社会公共利益的案件交由较高层级法院审理。

“2023年,最高法发布《关于加强和规范案件提级管辖和再审提审工作的指导意见》,要求各级人民法院应通过积极、规范、合理适用提级管辖,推动将具有指导意义、涉及重大利益、可能受到干预的案件交由较高层级人民法院审理,发挥典型案件裁判的示范引领作用,实现政治效果、社会效果、法律效果的有机统一。

首先,一般来说,法院层级越高,其政治站位越高、政策把握越准,对于一些疑难复杂案件进行提级管辖,可以确保裁判结果更准确地体现立法精神和相关政策,从而有效解决法律分歧。

五年级奥数数的整除之四大判断法综合运用(三)学生版

五年级奥数数的整除之四大判断法综合运用(三)学生版

5-2-1.数的整除之四大判断法综合运用教学目标1.五年级奥数数的整除之四大判断法综合运用(三)学生版2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a, c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a 能被数b 整除,那么am 也能被bm 整除.如果 b |a ,那么bm |am (m 为非0整数);性质6 如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果 b |a ,且d |c ,那么bd |ac ;综合系列【例 1】 甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【例 2】 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【例 3】 173□是个四位数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、4、8、5、25、125整除判定
1.能被2(或5)整除的数,末一位数字能被2(或5)整除;
2.能被4(或25)整除的数,末两位数字能被4(或25)整除;
3.能被8(或125)整除的数,末三位数字能被8(或125)整除;
4.一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数
5.一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数
6.一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数
3、9整除判定
1.能被3(或9)整除的数,各位数字和能被3(或9)整除。

2.一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。

11整除判定
1.能被11整除的数,奇数位的和与偶数位的和之差,能被11整除。

7整除判定
1.能被7整除的数,末三位与前位数的差,能被7整除。

2.能被7整除的数,末一位的两倍与前位数的差,能被7整除。

相关文档
最新文档