能被4或25整除的数的特征

合集下载

(完整版)常见数字整除判定法则

(完整版)常见数字整除判定法则

2、4、8、5、25、125整除判定
1.能被2(或5)整除的数,末一位数字能被2(或5)整除;
2.能被4(或25)整除的数,末两位数字能被4(或25)整除;
3.能被8(或125)整除的数,末三位数字能被8(或125)整除;
4.一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数
5.一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数
6.一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数
3、9整除判定
1.能被3(或9)整除的数,各位数字和能被3(或9)整除。

2.一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。

11整除判定
1.能被11整除的数,奇数位的和与偶数位的和之差,能被11整除。

7整除判定
1.能被7整除的数,末三位与前位数的差,能被7整除。

2.能被7整除的数,末一位的两倍与前位数的差,能被7整除。

整除的特征

整除的特征

整除的特征:一个数能否被另一个数整除,要根据一定的规律来判断,所以要掌握一些特征。

(1)能被2 整除的数的特征:个位数是0、2、4、6、8的整数能被2整除。

例如:10、72、34、56、98都能被2整除。

(2)能被5整除的数的特征:个位数是0或5的整数能被5整除。

例如:180、315都能被5整除。

(3)能被3或9整除的数的特征:各个数位上数字的和是3或9的倍数的整数,能被3或9整除。

例如:5037各数位上的数的和是15,15是3的倍数,所以5037能被3整除。

4878各数位上的数的和是27,27是9的倍数,所以4878能被9整除。

能被9整除的数必然能被3整除,但能被3整除的数不一定能被9整除。

一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同。

(4)能被4 和25整除的数的特征:末尾两位数是4或25的倍数的整数,能被4或25整除。

例如:712末尾两倍数是12,12是4 的倍数,所以712能被4整除。

975的末尾两倍数是75,75是25的倍数,所以975能被25整除。

如果一个数既能被4整除,又能被25整除,那么这个数一定是整百数。

如700、2800都能同时被4 和25整除。

(5)能被8和125整除的数的特征:末尾三位数是8或是125的倍数,能被8或25整除。

例如:2408的末尾三位数是408,408是8的倍数,所以2408能被8整除。

9250末尾三位数是250,因为250是125的倍数,所以9250能被125整除。

如果一个数既能被8整除,又能被125整除,那么这个数一定是整千数。

如1000、3000、78000等。

(6)能被11整除的数的特征:如果一个数奇数位上的数之和与偶数位上的数之和的差是11的倍数,那么这个整数就能被11整除。

例如:189354奇数位上的数之和是1+9+5=15,偶数位的数之和是8+3+4=15,它们的差是15-15=0,因为0能被11整除,所以189354能被11整除。

数的整除的特征

数的整除的特征

一、数的整除的特征1.前面我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。

因此,有下面的结论:末位数字为0、2、4、6、8的整数都能被2整除。

偶数总可表为2k,奇数总可表为2k+1(其中k为整数)。

2.末位数字为零的整数必被10整除。

这种数总可表为10k (其中k为整数)。

3.末位数字为0或5的整数必被5整除,可表为5k(k为整数)。

4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。

如1996=1900+96,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。

由于4|96能被25整除的整数,末两位数只可能是00、25、50、75。

能被4整除的整数,末两位数只可能是00,04,08,12,16,20,2 4,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。

5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。

由于1000=8×125,因此,1000的倍数当然也是8和125的倍数。

如判断765432是否能被8整除。

因为765432=765000+432显然8|765000,故只要考察8是否整除432即可。

由于432=8×54,即8|432,所以8|765432。

能被8整除的整数,末三位只能是000,008,016,024, (9)84,992。

由于125×1=125,125×2=250,125×3=375;125×4=500,125×5=625;125×6=750;125×7=875;125×8=10000故能被125整除的整数,末三位数只能是000,125,250,3 75,500,625,750,875。

6.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。

数的整除特征

数的整除特征

数的整除特征一、整除特征------尾数分析法1、尾数分析法判断整除性(1)一个数的末一位能被2或者说整除,这个数就能被2或5整除。

(2)一个数的末两位数能被4或25整除,这个数就能被4或25整除。

(3)一个数的末三位数能被8或者125整除,这个数就能被8或是25整除。

2、被25或125整除的数的特点(1)被25整除的数必须是以25、75、00结尾的数(2)被125整除的数必须是以125、250、375、500、625、750、875、000结尾的数。

二、整除特征-----数位和分析法1、数位和分析法判断整除性(1)一个数各个数位上的数字和能被3整除,这个数能被3整除。

(2)一个数各个数位上的数字和能被9整除,这个数就能被9整除.2、数位和分析法原理数位和分析法同样是根据位值原理推导出来的,举例:1234=1×1000+2×100+3×10+4×1=1×(999+1)+2×(99+1)+3(9+1)+4×1=1×999+2×99+3×9+(1+2+3+4)其中999、99、9都能被3或9整除,所以只需要看1234的各位数字和1+2+3+4能否被3或9整除即可,用这种方法同样能求出1234除以3或9的余数。

3、弃9法“弃九法”也叫做弃九验算法,利用这种方法可以验算加、减、乘计算的结果是否错误,把一个数的各位数字相加,直到和是一个一位数(和是9,要减去9得0),这个数就叫做原来数的弃九数。

三、整除特征---数位差分析法1、 11的整除特征:如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。

2、 7、11、13的整除特征如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11、或者3整除,那么这个数能被7、11、或者3整除。

+、、、、。

数的整除

数的整除

2. 与3有同种倍数特征的数据: 9的倍数的特征:一个数的各个数位上的数的和 是9的倍数,这个数就是9的倍数。 例:4536是9的倍数吗? 解答:(4+5+3+6)÷9=2,是9的倍数, 所以4536是9的倍数。
3. 其他一些数据的倍数的特征:
7的倍数的特征:把一个数的末尾数字割去,从留下的 数中减去所割去的数字的2倍,这样继续 做下去,如果最后的结果是7的倍数,那么 原来这个数就是7的倍数。 例:判断:4151能否被7整除?
判断1884924与2560437, 能否被27或37整除。 能被27(或37)整除的数的特征:对于任何一个 自然数,从个位开始,每三位为一节将其分成若 干节,然后将每一节上的数连加,如果所得的和 能被27(或37)整除,那么这个数一定能被27 (或37)整除。
判断1884924与2560437,能 否被27或37整除。 解:1884924=1,884,924, 1+884+924=1809。 因为,1809能被27整除,不能被37整除。 所以,1884924能被27整除,但不能被37整除。
所有六位数是:123654、321654
5. 一个整数乘以17后,乘积的后四位数是2002, 这样的整数中最小的是多少? 解答:用□2002除以17,要求整数中最小的 是多少?这个数字最小就是12002。 12002÷17=706, 符合题目要求的最小的整数是706。
ABC分别是几时,使得七位数A6474BC能分别 被8、9和25整除。 分析:本体可以利用能被8、9和25整除的数的特 征,以及整除的性质3来解决。 ① 能被8整除的数的特征:一个数的末三位能被8整除。 ② 能被9整除的数的特征:一个数各个数位上的数字 之和能被9整除。 ③ 能被25整除的数的特征:一个数的末两位能被25整除。

数学运算整除

数学运算整除

一、整除1、末位法:判断一个数能否被某一个数(0除外)整除,需要看末几位的数字。

(1)能被2、5整除的数的特征:一个数末一位上的数能被2或5整除,这个数就能被2或5整除。

(2)能被4、25整除的数的特征:一个数末两位上数字组成的数能被4或25整除,这个数就能被4或25整除。

(3)能被8、125整除的数的特征:一个数末三位上数字组成的数能被8或125整除,这个数就能被8或125整除。

练习1:判断下面7个数的整除性:17689,2580,48681,4234,83625,51064,725(1)这些数中能被2或5整除的数分别有哪些?(2)这些数中能被4或25整除的数分别有哪些?(3)这些数中能被8或125整除的数分别有哪些?2:运动场上有8名运动员在参加110米跨栏比赛,他们的编号分别是2501,2533,2825,2671,2864,2931,2811,2439。

比赛结束时老师宣布:“编号能被8整除的是冠军,能被5整除的是亚军。

”你知道冠军和亚军的编号吗?2、逐位法:判断一个数能否被某一个数(0除外)整除时,需要看所有位上的数字。

(1)能被3、9整除的数的特征:即一个数的所有位上的数字相加的和能被3或9整除,这个数就能被3或9整除。

(2)能被11整除的数的特征:即一个数的“奇数位上的数字和”与“偶数位上的数字和”(大数减小数)的差能被11整除,这个数就能被11整除。

练习1:在2012后面补上1个数字,补上这个数字后组成的五位数能被9整除,那么补得数字是多少?2:新学年开学了,同学们要制定新的校服,莉莉收了9位同学的校服费(每人校服费一样多),并把总钱数写在纸上给老师,但老师一不小心把数字283□的最后一位弄模糊了,你能帮助老师算出这个模糊数字吗?3:有一个四位数275□,在方框内填入一个数字,使这个四位数能同时被3和9整除。

问:填入的数字是多少?3、断位法:判断一个数能否被某一个数(0除外)整初时,需要看断开位的数字。

能被4、6、7、8、11、13整除的数的特征

能被4、6、7、8、11、13整除的数的特征

能被4、6、7、8、11、13整除的数的特征一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被6整除的数的特征三、能被6整除的数的特征末尾是0、2、4、6、8且各位上数字的和能被3整除能被6整除的数的特征既要符合能被2整除的数的特征,又要符合能被3整除的数的特征三、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。

此法也适用于判断能否被11或13整除的问题。

如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。

数学阅读

数学阅读

整除的特征一、【能被2或5整除的数的特征】一个数的末位上的数能被2或5整除,这个数就能被2或5整除。

(2×5=10)例如:58的个位上的数是8,8能被2整除,所以58就能被2整除;85的个位上的数是5,5能被5整除,所以85就能被5整除。

二、【能被4或25整除的数的特征】一个数的末两位数字所表示的数能被4或25整除,这个数就能被4或25整除。

(4×25=100)例如:1932的末两位数字是32,32能被4整除,所以1932就能被4整除;650的末两位数字是50,50能被25整除,所以650就能被25整除。

三、【能被8或125整除的数的特征】一个数的末三位数字所表示的数能被8或125整除,这个数就能被8或125整除。

(8×125=1000)例如:1024的末三位数字是024,24能被8整除,所以1024就能被8整除;12375的末三位数字是375,375能被125整除,所以12375就能被125整除。

四、【能被3或9整除的数的特征】一个数的各个数位上的数之和能被3或9整除,这个数就能被3或9整除。

例如:123各个数位上的数之和是1+2+3=6,6能被3整除,所以123就能被3整除;918各个数位上的数之和是9+1+8=18,18能被9整除,所以918就能被9整除。

五、【能被7、11、13整除的数的特征】—割差型一个自然数的末三位数字所表示的数与末三位数字前面所表示的数的差(大减小)能被7、11、13整除,这个数就能被7、11、13整除。

(可进行多次割差判断)例如:98/112的末三位数字所表示的数是112,末三位数字前面所表示的数是98, 112-98=14,14能被7整除,所以98112就能被7整除。

173/052的末三位数字所表示的数是052,末三位数字前面所表示的数是173, 173-52=121,121能被11整除,所以173052就能被11整除。

25/285的末三位数字所表示的数是285,末三位数字前面所表示的数是25, 285-25=260,260能被13整除,所以25285就能被13整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能被4或25整除的数的特征
如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.
例如:4675=46×100+75
由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.
又如: 832=8×100+32
由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.
能被8或125整除的数的特征
如果一个数的末三位数能被8或125整除,那么,这个数就一定能被8或125整除.
例如: 9864=9×1000+864
72375=72×1000+375
由于8与125相乘的积是1000,1000能被8或125整除,那么,1000的倍数也必然能被8或125整除.因此,如果一个数末三位数能被8或125整除,这个数就一定能被8或125整除.
9864的末三位数是864,864能被8整除,9864就一定能被8整除.72375的末三位数是375,375能被125整除,72375就一定能被125整除。

能被7整除的数的特征
一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.
例如:判断6692能不能被7整除.
竖式为:
这种方法叫“割减法”.此法还可简化为:从一个数减去7的10倍、20倍、30倍、……到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就能被7整除.
能被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.
例如:判断491678能不能被11整除.
—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12 23-12=11
因此,491678能被11整除.
这种方法叫“奇偶位差法”.
除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.
又如:判断583能不能被11整除.
用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被13整除的数的特征
一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除.
例如:判断383357能不能被13整除.
这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.
这个方法也同样适用于判断一个数能不能被7或11整除.如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.仍以原数为例,末三位数字与前两数字的差是396,396不能被7整除,因此,283697就一定不能被7整除.。

相关文档
最新文档