线性规划理论及其应用[开题报告]

合集下载

线性规划及其应用研究

线性规划及其应用研究

线性规划及其应用研究线性规划是一种用于解决最优化问题的数学方法,可以在给定的约束条件下,找到一组最优的决策变量值,使目标函数达到最大或最小值。

线性规划经常用于生产计划、货运和库存管理、投资组合、资源分配和成本优化等问题。

在线性规划中,目标函数和约束条件均为线性表达式,最优解通常位于可行域的角点处,因此线性规划也被称为角点方法。

线性规划的最优解可以使用单纯性算法来求解,这是一种通过在可行域中不断寻找更优解的方法,直到找到最优解为止。

线性规划的应用很广泛。

例如,在生产计划中,公司需要在多种产品和工艺的组合中制定最优的生产计划,以最大化利润或最小化成本。

线性规划可以帮助公司确定生产每种产品的数量,以及所需的原材料和生产设备的数量。

在货运和库存管理中,线性规划可以帮助公司确定国际物流的最优路径,以最小化运费和时间成本。

在投资组合中,线性规划可以帮助投资者确定最优的投资组合,以最小化风险和最大化收益。

在资源分配和成本优化中,线性规划可以帮助公司确定最优的资源分配方案,以最小化成本和最大化效益。

线性规划也被广泛地应用于卫生保健领域。

例如,在医疗资源分配中,线性规划可以帮助医院合理地分配人力资源和医疗设备,以最大程度地满足不同患者的需求。

线性规划还可以帮助研究人员确定最优的药品剂量和治疗方案,以最大化治疗效果和最小化不良反应。

除了经济和卫生保健领域,线性规划在交通、能源、环境和教育等领域也有广泛的应用。

例如,在交通运输领域,线性规划可以帮助城市规划师设计最优的交通系统,以最小化拥堵和交通事故。

在能源领域,线性规划可以帮助能源公司确定最优的风电和太阳能发电方案,以最大化清洁能源的利用。

在环境保护领域,线性规划可以帮助政府制定最优的环境保护政策和资源管理方案,以最大化环境效益和生态可持续性。

在教育领域,线性规划可以帮助学校和教育部门确定最优的教学资源分配方案,以最大化学生的学习效果和教育资源的利用效率。

综上所述,线性规划是一种强大的优化工具,可以帮助解决各种复杂的最优化问题。

线性规划理论的研究与应用

线性规划理论的研究与应用

线性规划理论的研究与应用第一章引言线性规划是在现代数学理论中比较重要的分支之一,它广泛应用于计算机科学、数学经济学、管理学、工程学等各个领域。

本文旨在对线性规划理论的研究以及在实际应用中的表现进行探讨。

第二章线性规划模型的建立线性规划模型是指由适当的线性方程组构成的最优化数学模型。

它包括了目标函数、约束条件和决策变量三个要素。

目标函数即优化的目标,约束条件是限制决策变量的取值范围,决策变量则表示需要确定的决策方案。

第三章线性规划模型的求解为了得到最优解,线性规划模型需要进行求解。

通常采用的方法有单纯形法、对偶理论以及内点法等。

其中单纯形法是最常用的方法,它包括了初始化、迭代和结束三个阶段。

该方法通过不断进行线性变换,求出最优解的过程。

第四章线性规划模型在实际应用中的表现线性规划在实际应用中有着广泛的应用。

例如,在制造业中,可以通过线性规划模型来优化工艺流程和资源调度;在物流公司中,可以通过线性规划模型来优化配送路线和降低成本。

同时,在金融领域中,线性规划也能够应用于股票组合优化和风险控制等方面。

第五章线性规划模型存在的问题及未来发展趋势线性规划模型虽然在实际应用中有着广泛的应用,但其仍然存在一些问题。

例如,当遇到非线性问题时,线性规划模型的求解就显得非常困难。

此外,线性规划模型还存在着求解过程非常复杂、时间长等问题。

未来,随着科技的发展,线性规划模型的求解速度会得到极大的提升。

第六章结论综上所述,线性规划作为一种最优化数学模型,在实际应用中发挥了重要的作用。

不断对线性规划进行研究,提高模型的求解速度和精度,是我们今后应该努力追求的目标。

线性规划的应用

线性规划的应用

线性规划的应用引言概述:线性规划是一种优化问题的数学建模方法,可以用于解决许多实际问题。

本文将探讨线性规划在不同领域的应用,包括生产计划、资源分配、运输问题、金融投资和市场营销等。

一、生产计划1.1 产能规划:线性规划可以匡助企业确定最优产能规划,通过最大化产量和最小化成本,实现生产效益的最大化。

1.2 原材料采购:线性规划可以优化原材料的采购计划,确保原材料的供应充足,同时最小化采购成本。

1.3 生产调度:线性规划可以匡助企业制定最佳的生产调度方案,合理安排生产过程,提高生产效率和产品质量。

二、资源分配2.1 人力资源:线性规划可以匡助企业合理分配人力资源,根据不同部门和岗位的需求,确定最佳的人员配置方案。

2.2 设备调度:线性规划可以优化设备的调度计划,确保设备的利用率最大化,减少闲置时间和能源浪费。

2.3 资金分配:线性规划可以匡助企业合理分配资金,根据不同项目的需求,确定最佳的资金分配方案,实现资金的最大效益。

三、运输问题3.1 物流配送:线性规划可以优化物流配送路线,确定最佳的配送方案,减少运输成本和时间。

3.2 仓储管理:线性规划可以匡助企业优化仓储管理,确定最佳的仓储位置和库存量,减少库存成本和仓储空间的浪费。

3.3 运输调度:线性规划可以匡助企业制定最佳的运输调度计划,合理安排运输车辆和货物的装载,提高运输效率和减少运输成本。

四、金融投资4.1 资产配置:线性规划可以匡助投资者确定最佳的资产配置方案,平衡风险和收益,实现投资组合的最优化。

4.2 资金规划:线性规划可以优化资金的规划和运用,确保资金的最大化利用和最小化风险。

4.3 投资决策:线性规划可以匡助企业制定最佳的投资决策方案,根据不同项目的收益和风险,确定最优的投资方向。

五、市场营销5.1 定价策略:线性规划可以匡助企业确定最佳的定价策略,根据市场需求和成本考虑,确定最优的价格水平。

5.2 促销策略:线性规划可以优化促销策略,确定最佳的促销活动方案,提高产品销售量和市场份额。

线性规划的应用

线性规划的应用

线性规划的实际应用指导教师:大连市第八中学数学组崔贺课题组成员:大连市第八中学高二(2)班全体同学课题背景:提高企业的经济效益是现代化管理的根本任务,各个领域中的大量问题都可以归结为线性规划问题。

近几十年来,线性规划在各个行业中都得到了广泛的应用。

根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前茅,有85%的公司频繁地使用线性规划,并取得了提高经济效益的显著效果。

所谓线性规划,是求线性函数在线性(不等式或等式)约束下达最(小或大)值的问题。

线性规划广泛应用于工农业、军事、交通运输、决策管理与规划、科学实验等领域。

线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。

常见的问题在:物资调运问题、产品安排问题、下料问题。

研究过程:一、研究性学习开题报告(一)教师提出总体要求(二)分析课题背景,可行性论证(三)制定总体目标与计划(四)明确具体操作过程(五)划分小组,确定活动地点(六)由组长负责小组成员分工(七)确定成果形式:论文(数学模型与解答)、心得体会二、小组活动(注:各小组数学模型见线性规划模型汇编)第一小组活动时间:2003.4.12活动地点:大连市天津街改造办活动目的:调查了解城市规划、布局与设计中的线性规划问题参加人员:组长:陈燕组员:丁琳许玲见琦任鑫王鑫刘姝言王全智孙颖李舒然冯昱黄漪墨活动过程:来到活动地点,我们见到了有关规划设计的负责人,通过他的讲解,我们对天津街规划有了初步的认识。

这个规划,考虑到了整体市容市貌,提升城市功能,加强布局的合理性,以及保护原有城市风貌,发挥天津街中心商业区的作用等各方面因素,为取得经济效益、社会效益和商业效益的最大化而建设的。

天津街改造工程预计投资10个亿,用五年左右的时间,完善各种服务设施,改善交通和购物环境,打造精品步行街和商业主力店,引入各种经营业态,让人们旅游购物更方便。

线性规划的方法及应用

线性规划的方法及应用

线性规划的方法及应用1 引言运筹学最初是由于第二次世界大战的军事需要而发展起来的,它是一种科学方法,是一种以定量的研究优化问题并寻求其确定解答的方法体系.线性规划(Linear Progromming ,简称LP )是运筹学的一个重要分支,其研究始于20世纪30年代末,许多人把线性规划的发展列为20世纪中期最重要的科学进步之一.1947年美国的数学家丹泽格提出了一般的线性规划数学模型和求解线性规划问题的通用方法――单纯形法,从而使线性规划在理论上趋于成熟.此后随着电子计算机的出现,计算技术发展到一个高阶段,单纯形法步骤可以编成计算机程序,从而使线性规划在实际中的应用日益广泛和深入.目前,从解决工程问题的最优化问题到工业、农业、交通运输、军事国防等部门的计划管理与决策分析,乃至整个国民经济的综合平衡,线性规划都有用武之地,它已成为现代管理科学的重要基础之一.2 线性规划的提出经营管理中如何有效地利用现有人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现.这类问题可以用数学语言表达,即先根据问题要达到的目标选取适当的变量,问题的目标通常用变量的函数形式(称为目标函数),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件).当变量连续取值,且目标函数和约束条件为线性时,称这类模型为线性规划的模型.有关对线性规划问题建模、求解和应用的研究构成了运筹学中的线性规划分支.线性规划实际上是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解.从而线性规划模型的基本结构为: ①变量:变量又叫未知数,它是实际系统的位置因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如n x x x ,,,21 等.②目标函数:将实际系统的目标用数学形式表示出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值,利润极大值)或极小值(如成本极小值,费用极小值等等). ③约束条件:约束条件是指实现系统目标的限制因素.它涉及到企业内部条件和外部环境的各个方面,如原材料供应设备能力、计划指标.产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件.约束条件的数学表示有三种,即≤=≥,,,线性规划的变量应为非负值,因为变量在实际问题中所代表的均为实物,所以不能为负.线性规划问题有多种形式,函数有的要求实现最大化,有的要求最小化;约束条件可以是“≤”,也可以是“≥”,还可以是“=”,这种多样性给讨论带来不便. 为了便于讨论其一般解法,我们通常将线性规划问题的约束条件归结为线性方程和一组非负性限制条件,并且对目标函数统一成求最大值,也就是说,将线性规划问题的数学模型化成如下形式,并称它为线性规划问题的标准形式:),,2,1(..max11m i b x at s x c f ij nj ijjnj j ===∑∑==),,2,1(0n j x j =≥任何非标准形式的线性规划问题都能化成上述标准形式,这是由于不等式约束k j nj ijb x a≤∑=1等价于约束条件0,1≥=+++=∑k n k k n nj j ijx b x x a;不等式约束l j nj ijb x a≥∑=1等价于约束条件;0,1≥=-++=∑l n l l n nj j ijx b x x a这里增添的变量k n x +和l n x +称为松弛变量.还有,求函数f 的最小值解可转化为求函数f -的最 大值解.以下讨论线性规划问题时以标准型为主.3 线性规划的解法3.1 图解法满足约束条件的决策变量的一组值叫做这个线性规划的一个可行解;把所有可行解构成的集合叫做这个线性规划的可行域.因此,求解一个线性规划的问题,使目标函数取得最大值或最小值的可行解称为线性规划的最优解.一般求解线性规划问题是讨论它的最优解.下面介绍只有两个决策变量的线性规划问题的图解法.例1 用图解法求解21m axx x f +-=22..21-≥-x x t s2221≤-x x 521≤+x x12,0x x ≥解 第一步 先画出可行域 以21,x x 为坐标轴作直角坐标系,因为0,021≥≥x x ,所以问题的可行解必在第一象限(含坐标轴);约束条件222-≥-x x 要求问题的可行解必在直线222-=-x x 的右下方的半平面上;约束条件2221≤-x x ,要求问题的可行解必在直线2221=-x x 的左上方的半平面上;约束条件521≤+x x ,要求问题的可行解必在直线521=+x x 的左下方的半平面上.因为所有的约束条件都必须同时满足,所以问题的可行解域必为闭区域4321Q Q Q OQ ,如图3.1.1中的阴影部分. 第二步 从可行域中找出最优解现在分析目标函数21x x f +-=,在坐标平面上,它可以看作是以f 为参数的一族平行线:f x x +=12位于同一条直线上的点,都有相同的目标函数值,因而称它为等值线.当f 由小变大时,直线f x x +=12沿其法线方向向左上方移动.当移动到2Q 点时,f 的取值最大,这就得出了本题的最优解,如图3.1.2 ,此时f 最大,得 3411max =+⨯-=f .显然用图解法求解线性规划问题时,简单直观;但是当决策变量多于两个的时候,用图解法就失效了.3.2 单纯形法这一方法是丹泽格在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划近30年.单纯形法是求解线性规划问题的最重要、最基本的方法,它的解题思路[7](p27)是:将线性规划问题化为标准型后,先找出一个单位可行基,对这个可行基给出可行解,然后用判定定理——称为检验数,判定其是否为最优解.若是,求解过程结束;若不是,在单位可行基的基础上,进行换基迭代,该过程叫做迭代,直到得出最优解或证明无最优解为止.它有很强的程序性,它的具体操作是从一张叫做初始表的表格开始的.初始表由四部分构成[7](p27-28):第一部分A A B =-1(B 是单位可行基) 即约束方程组的系数矩阵.第二部分b b B =-1(B 是单位可行基) 即约束方程组的常数项构成的列向量.第三部分是检验数C A CB --1 (B C 为单位可行基变量所对应的目标函数中的系数列向量;C 是目标函数的系数行向量).第四部分b C B 该数为目标函数值.它的表格形式为:例2 用单纯形法求解 2136m axx x f +=40x 23..21≤+x t s 21421≤+x x12,0x x ≥ .解 第一步 将原问题化为标准型 43210036m ax x x x x f +++=40x 23..321=++x x t s214421=++x x x )4,3,2,1(0=≥j x j .第二步 观察原问题是否存在现成的单位可行基 因为约束方程组的系数矩阵为),,,(101401234321p p p p A =⎪⎪⎭⎫⎝⎛= ,所以原问题存在现成的单位可行基()1341001B p p ⎛⎫== ⎪⎝⎭,第三步 列出初始表,计算⎪⎪⎭⎫⎝⎛==-10140123)111A A B ,⎪⎪⎭⎫⎝⎛==-2140)211b b B , 3)1B C 是目标函数中基变量43,x x 的系数构成的列向量⎪⎪⎭⎫⎝⎛00,)0,0,3,6()4111--=-=--C C A B C B ,15)0B C b = ,1346)B x X x ⎛⎫= ⎪⎝⎭ .由上面计算结果,列出初始表(如下表)表3.2.1第四步 判定由初始表知,检验数中含有负数,故可行解Tx )21,40,0,0(=不是最优解,还需 要进行迭代运算(若检验数均为非负数,则可行解即为最优解) 第五步 迭代运算迭代一:①确定主元在检验数中,找出最小负数。

线性规划理论及其应用[文献综述]

线性规划理论及其应用[文献综述]

毕业论文文献综述信息与计算科学线性规划理论及其应用一、前言部分[1] [2]线性规划是运筹学中研究较早、发展较快、应用广泛、方法成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大化或最小化的问题,最大化问题是要在一个集合上使一个函数达到最大,最小化问题是要在一个集合上使一个函数达到最小。

统称为线性规划问题。

满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。

决策变量、约束条件、目标函数是线性规划的三要素。

随着计算机技术的发展和普及,线性规划的应用越来越广泛。

它已成为人们为合理利用有限资源制定最佳决策的有力工具。

二、主题部分2.1线性规划理论发展过程及方向2.1.1线性规划发展过程[3][4]法国数学家 J.- B.- J.傅里叶和 C.瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。

1939年苏联数学家Л.В.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。

1947年美国数学家G.B.丹奇克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。

1947年美国数学家J.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。

1951年美国经济学家T.C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。

50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。

例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B.丹齐克和P.沃尔夫提出分解算法等。

线性规划的应用

线性规划的应用

线性规划的应用一、引言线性规划是一种数学优化方法,可用于解决各种实际问题。

本文将介绍线性规划的基本概念和应用领域,并通过具体案例展示其在实际问题中的应用。

二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。

目标函数通常表示为各个决策变量的线性组合。

2. 约束条件:线性规划问题必须满足一组线性不等式或等式的约束条件。

这些约束条件限制了决策变量的取值范围。

3. 决策变量:决策变量是问题中需要决策的变量,其取值对问题的解决方案产生影响。

4. 可行解:满足约束条件的决策变量取值称为可行解。

5. 最优解:在满足约束条件的可行解中,使目标函数达到最大或最小值的解称为最优解。

三、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、运输问题、投资组合、市场营销等。

下面将通过一个生产计划的案例来说明线性规划在实际问题中的应用。

案例:生产计划问题某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。

公司有两个生产车间,生产车间1每天可生产产品A 4个单位或产品B 6个单位;生产车间2每天可生产产品A 6个单位或产品B 3个单位。

公司每天的生产时间为8小时。

假设公司希望最大化每天的利润,请问应该如何安排生产计划?解决方案:1. 确定决策变量:- x1:生产车间1生产的产品A的单位数- x2:生产车间1生产的产品B的单位数- x3:生产车间2生产的产品A的单位数- x4:生产车间2生产的产品B的单位数2. 建立目标函数和约束条件:目标函数:最大化利润- 目标函数:maximize 10x1 + 15x2 + 10x3 + 15x4约束条件:生产时间和生产能力的限制- 生产时间约束:4x1 + 6x2 + 6x3 + 3x4 <= 8- 生产能力约束:x1, x2, x3, x4 >= 03. 求解最优解:使用线性规划求解器,可以得到最优解,即每天生产2个单位的产品A和1个单位的产品B,每天的利润为40元。

线性规划模型的分析及应用

线性规划模型的分析及应用
1 2
1
2
1
2
1
2
1
2
满足约束条件
x1 2 x2 8 4 x1 16 4 x2 12 x1 , x2 0
从以上例子可以看出,他们都是属于一类优 化问题,他们的共同特点: (1)每一个问题都用一组决策变量 (x , x x ) 表示某一方案;这组决策变量的值就代表一 个具体方案。一般这些变量取值是非负的。 (2)存在一定的约束条件,这些约束条件 可以用一组线性不等式表示。
xj 0 ,
用向量和矩阵符号表述 时为: Max z=CX
p
i 1 n j
xj b
x j 0, j 1, 2,3,..., n
其中C= c1, c2 ,
x1 x 2 . X= . . xn
a1 j a2 j . Pj . . amj
'
、 、 、
3 1 5
4
1
2
5
1
5
(1)
1
5
T X(1) =(0,3,2,16,0)
从目标函数的表达式(1.18)中可以看到,非基 变量 x 的系数是正的,说明目标函数值还可以增 大, X 不一定是最优解,于是再用上述方法确定
1
(1)
换入,换出变量,继续迭代,再得到另一个基可行 解 X
(2)
T X(2) =(2,3,0,8,0)
b1 b 2 . b . . bm
xj
向量 p 对应的决策变量 用矩阵描述时为:
j
.
Max
z CX
AX b X 0
a11 A a m1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文开题报告
信息与计算科学
线性规划理论及其应用
一、选题的背景、意义[1][2]
1.选题的背景
线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大化或最小化的问题,最大化问题是要在一个集合上使一个函数达到最大,最小化问题是要在一个集合上使一个函数达到最小。

统称为线性规划问题。

满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。

决策变量、约束条件、目标函数是线性规划的三要素。

随着计算机技术的发展和普及,线性规划的应用越来越广泛。

它已成为人们为合理利用有限资源制定最佳决策的有力工具。

2.选题的意义
随着计算机技术的发展和普及,线性规划的应用越来越广泛。

它已成为人们为合理利用有限资源制定最佳决策的有力工具。

随着经济全球化的不断发展,企业面临更加激烈的市场竞争。

企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。

过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。

在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产,销售各个环节进行优化从而降低生产成本,提高企业的效率。

在各类经
济活动中,经常遇到这样的问题:在生产条件不变的情况下,如何通过统筹安排,改进生产组织或计划,合理安排人力、物力资源,组织生产过程,使总的经济效益最好。

这样的问题常常可以化成或近似地化成所谓的“线性规划” (Linear Programming,简记为LP)问题。

线性规划是应用分析、量化的方法,对经济管理系统中的人、财、物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现有效管理。

利用线性规划我们可以解决很多问题。

如:在不违反一定资源限制下,组织安排生产,获得最好的经济效益(产量最多、利润最大、效用最高)。

也可以在满足一定需求条件下,进行合理配置,使成本最小。

同时还可以在任务或目标确定后,统筹兼顾,合理安排,用最少的资源(如资金,设备,原材料、人工、时间等)去完成任务。

二、研究的基本内容与拟解决的主要问题
2.1线性规划理论发展过程及方向
2.1.1线性规划发展过程[3][4]
法国数学家 J.- B.- J.傅里叶和 C.瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。

1939年苏联数学家Л.В.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。

1947年美国数学家G.B.丹奇克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。

1947年美国数学家J.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。

1951年美国经济学家T.C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。

50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。

例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B.丹齐克和P.沃尔夫提出分解算法等。

线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。

由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。

1979年苏联数学家L. G. Khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法。

1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法。

用这种方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50。

现已形成线性规划多项式算法理论。

50年代后线性规划的应用范围不断扩大。

2.1.2线性规划理论的发展方向[5][6][7]
线性规划在军事、工农业、交通和城镇规划等领域中得到广泛的应用。

实际问题有的是很大的,大到具有几万、几十万甚至上百万的变量和成千上万的约束条件。

有的问题虽小些,一般也有几百几千的变量和成百上千的约束条件。

显然解这类问题都离不开计算机。

常用的计算机软件有LINGO,LINDO,MATLAB等。

线性规划理论与大系统分析理论相结合,以解决经济、社会、生态、和政治因素交织在一起的复杂社会系统问题,或者解决设计、工艺、质量、生产计划、大型试验、技术改造、成本价格、市场营销等因素交织在一起的企业管理中的复杂问题,是线性规划理论的主要方向之一。

在大系统理论中,对于一些含有几个层级的系统(系统含有分系统,分系统又含有子系统,子系统又含有更小的子系统等),通常采用递阶分析的方法进行分解和分析。

从系统观点考虑问题的多学科优化理论和方法的研究与应用,已经成为线性规划理论的重要发展方向之一。

我国的现代化建设进程中,众多大系统工程(如三峡工程、载人航天工程)中,也大量的采用了系统工程的一些科学方法,并取得了显著的成效。

反过来,实践的发展又不断地催生新的理论,或者不断地开拓已有应用范围,不断地创新理论和方法,是所有学科发展的生命力源泉之所在,线性规划理论的发展也不例外。

2.2线性规划的具体实现
2.2.1 线性规划问题的基本步骤[8]
(1)提出并抽象问题
(2)建立数学模型
(3)求解
(4)检验解
(5)解得灵敏度分析
(6)解得回归
2.2.2 线性规划方法的运用原则[8]
(1)合作原则
(2)打破常规原则
(3)相互渗透原则
(4)客观独立性原则
(5)包容性原则
(6)平衡性原则
2.2.3 线性规划问题的数学模型的一般形式[2]
(1)列出约束条件及目标函数
(2)画出约束条件所表示的可行域
(3)在可行域内求目标函数的最优解及最优值
2.2.4 线性规划的模型建立[1][2][9] 从实际问题中建立数学模型一般有以下三个步骤;
1.根据影响所要达到目的的因素找到决策变量;
2.由决策变量和所在达到目的之间的函数关系确定目标函数;
3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。

所建立的数学模型具有以下特点:
1、每个模型都有若干个决策变量123(,,,)n x x x x ,其中n 为决策变量个数。

决策变量的一组值表示一种方案,同时决策变量一般是非负的。

2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化()opt 。

3、约束条件也是决策变量的线性函数。

当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

2.2.5线性规划的解法
求解线性规划问题的基本方法是单纯形法,现在已有单纯形法的标准软件,可在
电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。

为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。

对于只有两个变量的简单的线性规划问题,也可采用图解法求解。

这种方法仅适用于只有两个变量的线性规划问题。

它的特点是直观而易于理解,但实用价值不大。

通过图解法求解可以理解线性规划的一些基本概念。

2.2.5.1单纯形法[1][2]
单纯形法是求解线性规划问题的一般方法,原则上它适用于任何线性规划问题。

这是丹齐克在1947年提出来的.它的理论根据是:线性规划问题的可行域是n维向量空间R中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。

顶点所对应的可n
行解称为基本可行解。

大量的实际表明,这是一种行之有效的解法.单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。

因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。

如果问题无最优解也可用此法判别。

单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。

②若基本可行解不存在,即约束条件有矛盾,则问题无解。

③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。

④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。

⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。

下面把单纯形法的计算步骤及迭代过程归结如下图:。

相关文档
最新文档