线性规划理论与模型应用05
线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用一、线性规划的基本概念线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素.二、线性规划模型在实际问题中的应用(1)线性规划在企业管理中的应用范围线性规划在企业管理中的应用广泛,主要有以下八种形式:1。
产品生产计划:合理利用人力、物力、财力等,是获利最大。
2.劳动力安排:用最少的劳动力来满足工作的需要。
3.运输问题:如何制定运输方案,使总运费最少.4.合理利用线材问题:如何下料,使用料最少.5。
配料问题:在原料供应的限制下如何获得最大利润.6。
投资问题:从投资项目中选取方案,是投资回报最大。
7.库存问题 :在市场需求和生产实际之间,如何控制库存量从而获得更高利益.8。
最有经济计划问题 :在投资和生产计划中如何是风险最小.(2)如何实现线性规划在企业管理中的应用在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源。
首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.3.3 线性规划在运输问题中的应用运输是物流活动的核心环节,线性规划是运输问题的常用数学模型,利用数学知识可以得到优化的运输方案.运输问题的提出源于如何物流活动中的运输路线或配送方案是最经济或最低成本的.运输问题解决的是已知产地的供应量,销地的需求量及运输单价,如何寻找总配送成本最低的方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题的条件包括需求假设和成本假设。
线性规划的理论与实例分析

线性规划的理论与实例分析线性规划(Linear Programming,简称LP)是一种重要的运筹学工具,常常被应用于生产、物流、金融等领域中的优化问题。
本文将从理论和实例两个角度,介绍线性规划的基本概念、模型及求解方法。
一、线性规划的基本概念线性规划的基本概念包括决策变量、目标函数、约束条件等。
(一)决策变量决策变量是指影响问题结果的变量,通常用x1、x2、 (x)表示。
例如,生产线上的机器数量、产品的产量等都是决策变量。
(二)目标函数目标函数是指要最大化或最小化的某个指标,通常用z表示。
例如,最小化成本、最大化利润等都是目标函数。
(三)约束条件约束条件是指在问题求解中要满足的条件。
例如,不超过机器限制数量、满足生产需求等都是约束条件。
通常用不等式或等式形式表示。
二、线性规划的模型线性规划的一般形式可表示为:最大化或最小化目标函数:Z = c1x1 + c2x2 + … + cnxn约束条件:a11x1 + a12x2 + … + a1nxn ≤ b1a21x1 + a22x2 + … + a2nxn ≤ b2……am1x1 + am2x2 + … + amnxn ≤bm或x1, x2, … , xn ≥ 0 (非负性约束条件)其中,c1、c2、…、cn为各决策变量的系数,a11、a12、…、amn为各约束条件中各决策变量的系数,b1、b2、…、bm为约束条件的值,x1、x2、…、xn为决策变量,非负性约束条件也称为非负约束。
三、线性规划的求解方法线性规划有多种求解方法,这里主要介绍两种:单纯性法和对偶理论。
(一)单纯性法单纯性法是线性规划的一种基本算法,其实质是在各约束条件限制下寻找目标函数最大或最小值。
单纯性法基于以下两个原则:①某个极值点必定满足目标函数的所有约束条件;②各个变量所形成的可行解区域有限,且该区域的可行解点数有限。
单纯性法的具体过程如下:Step 1 建立初始单纯形表将约束条件转化为标准形式,即将约束条件化为”≤“的形式,并加入人工变量,得到初始单纯形表。
线性规划:建模与应用

什么是线性规划模型
线性规划模型的一般形式
4
线性规划问题的分类
资源分配问题(resource-allocation):资源 约束。伟恩德玻璃制品公司产品组合问题
成本收益平衡问题(cost-benefit-trade-off): 收益约束。利博公司广告组合问题,大沼 泽地金色年代公司的现金流问题
网络配送问题(distribution-network):确 定需求约束。
混合问题(mix):多种约束。
5
主要内容
Super Grain Corp. Advertising-Mix Problem (Section 4.1)(超级食品公司的广告 组合问题)
Resource Allocation Problems & Think-Big Capital Budgeting (Section 4.2)(资源分配问 题和梦大发展公司的资金预算问题)
Question: At what level should they advertise Crunchy Start in each of the three media?
确定各种媒介的广
告力度以获得最有 效的广告组合?
11
Algebraic Formulation (数学模型)
Let (设定) TV = Number of commercials for separate spots on television (电视上的广告时段数目) M = Number of advertisements in magazines. (杂志上的广告数目) SS = Number of advertisements in Sunday supplements. (星期天增刊上的广告数目)
线性规划的数学模型

线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
线性规划

M1 : 目标函数: max z c 1 x 1 c 2 x 2 c n x n a 11 x 1 a 12 x 2 a 1 n x n b1 a x a 22 x 2 a 2 n x n b 2 21 1 约束条件: a x a x a x b m2 2 mn n n m1 1 x 1 , x 2 , , x n 0
24
第2节 应用举例
最终计算表(第3次计算)
c j→ CB 0.1 -0.3 0 XB x2 x4 x1 c j -z j b 10 50 30 0 x1 0 0 1 0 0.1 x2 1 0 0 0 0.2 x3 -1 1 1 0 0.3 x4 0 1 0 0 0.8 x5 -9/10 1/3 13/10 -0.74 -M x6 3/5 0 -1/5 -M + 0.06 -M x7 -3/10 1/3 1/10 -M + 0.12 -M x8 -1/5 0 2/5 -M -0.02 θ
27
第2节 应用举例
表1-7表明这些原材料供应数量的限额。加入到产品A、 B、D的原材料C总量每天不超过100kg,P的总量不超过 100kg,H总量不超过60kg。
表1-7
原材料名称 C P H 每 天 最 多 供 应 量 ( kg) 100 100 60 单 价 /(元 /kg) 65 25 35
29
第2节 应用举例
约束条件可表示为:
1 2 1 4 x1 x1 1 2 3 4 x2 x2 1 2 1 4 x3 x3 x1 x2 x3 x1 , , x 9 0 3 4 1 2 x4 x4 1 4 1 2 x5 x5 1 4 1 2 x6 x6 x7 x5 x6 x8 0 0 0 0 100 100 x 9 60
第1章 线性规划问题

7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23
管
理
运
筹
学
三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉
线性规划理论与模型应用答案

线性规划理论与模型应用答案地图与理论模型的阅读材料①工程师在设计汽车时会按比例制作汽车模型,这种实物模型可以直观地呈现出汽车的构造,而且可以让一些实验更加便捷。
举办一场宴会前,我们会思考应该邀请谁参加、需要准备哪些食物等,这时我们其实也构建了一个模型。
这种模型与汽车模型不同,它不是一种实物,而是一种“理论”。
科学家的工作与此相似,也是构建某种理论模型,只是这类模型的特点理解起来比较困难。
②地图也是一种模型。
地图与理论模型的类比有助于我们了解理论模型的特点。
我们先来做一个练习。
请看一张某大学校园的局部地图:③这张地图的右边画有一个箭头。
请问:箭头指示的东西足什么④人们通常会回答:箭头指示的是一幢建筑。
如果我说这答案不仅是错的,而且根本不着边,你会怎样想你肯定会怀疑这是个把戏。
没错,你的怀疑是正确的,但这个把戏的背后却是最为核心的问题。
⑤正确的答案是,箭头指示的是一个矩形图框。
这就是真正为箭头所指的东西。
人们会回答箭头指向了一幢建筑物,是因为根据地图和与之对应的实际环境,矩形图框显然表示一幢建筑物。
但建筑物只是矩形图框所表示的物体,而不是矩形图框本身。
⑥这个练习的目的是指出地图与其所表示的对象不是一码事。
当然,这只是一个把戏,生活中没有人会混淆地图上的一个矩形图框和现实中的一幢建筑。
毕竟,你可以将一张街道地图折起来放进你的口袋,却不可能把一个街道折起来放进口袋。
而理论模型与客观对象间的差别却容易被人忽略,这需要我们格外注意。
⑧第一,地图与它所表示的对象在结构上具有特定相似性。
就地图而言,结构的特定相似性是空间上的。
例如,地图中的线条的空间关系,与地图所表示的街道的空间关系相对应。
⑨第二,我们拥有一套社会约定来绘制和阅读地图。
没有这些约定,地图只是绘有不同线条的纸。
这套约定十分浅显,并为人们熟知,所以大多数人在看地图时,根本没有意识到自己使用了这些约定。