线性规划模型的应用分析

线性规划模型的应用分析
线性规划模型的应用分析

第3章线性规划模型的应用

1.某企业制造三种仪器,甲种仪器需要17小时加工装配,8小时检测,售价300元。乙种仪器需要10小时加工装配,4小时检测,售价200元。丙种仪器需要2小时加工装配,2小时检测,售价100元。三种仪器所用的元件和材料基本一样,可供利用的加工装配时间为1000小时,检测时间为500小时。又根据市场预测表明,对上述三种仪器的要求不超过50台、80台、150台。试求企业的最优生产计划。

解:首先将问题中的数据表示到如下表格:

i

maxZ=300x1+200x2+100x3

17x1+10x2+2x3≤1000

8x1+4x2+2x3≤500

x1≤50

x2≤80

x3≤150

x1,x2,x3≥0

2. 某铸造厂要生产某种铸件共10吨,其成分要求:锰的含量至少达到0.45%,硅的允许范围是

3.25%~5.5%。目前工厂有数量充足的锰和三种生铁可作为炉料使用。这些炉料的价格是:锰为15元/公斤,生铁A为340元/吨,生铁B为380元/吨,生铁C为280元/吨。这三种生铁含锰和含硅量(%)如表3.22所示,问工厂怎样选择炉料使成本最低。

表3.22

成分锰有部分是纯锰,部分是从生铁中提炼出来的,所以改进表格如下:

设铸件中含有三种生铁和锰的量分别为xi(i=1,2,3,4)吨,则数学模型如下:

maxZ=340x1+380x2+280x3+15000x4

x1+x2+x3+x4=10

0.45%x1+0.5%x2+0.35%x3+x4≥0.45%*10

4%x1+1%x2+0. 5%x3≥3.25%*10

4%x1+1%x2+0. 5%x3≤5.5%*10

xi≥0(i=1,2,3,4)

3. 某工厂要做100套钢架,每套用长为2.9m,2.1m和1.5m的圆钢各一根。已知原料每根长7.4m,问应如何下料,可使所用原料最省。

解:

4. 绿色饲料公司生产雏鸡、蛋鸡、肉鸡三种饲料。这三种饲料是由A、B、C三种原料混合而成。产品的规格要求、产品单价、日销售量、原料单价见表3.23、表3.24。受资金和生产能力的限制,每天只能生产30吨,问如何安排生产计划才能获利最大?

表3.23

产品名称规格要求销售量(吨)售价(百元)

雏鸡饲料原料A不少于50%

5 9 原料B不超过20%

蛋鸡饲料原料A不少于30%

18 7 原料C不超过30%

肉鸡饲料原料C不少于50% 10 8

表3.24

含有第j种原料的数量(吨),即:

则数学模型如下:

MaxZ=9(x11+x12+x13)+7(x21+x22+x23)+8(x31+x32+x33)-5.5(x11+x21+x31)-4(x12+x22 +x32)-5(x13+x23+x33)

x11+x12+x13+x21+x22+x23+x31+x32+x33=30

x11+x12+x13≤5

x21+x22+x23≤18

x31+x32+x3≤10

x11≥50%*(x11+x12+x13)

x12≤20%*(x11+x12+x13)

x21≥30%*(x21+x22+x23)

x23≤30%*(x21+x22+x23)

x33≥50%*(x31+x32+x33)

X11,x12,x13,x21,x22,x23,x31,x32,x33≥0

5. 假定人体每日需要的营养成份:蛋白质、脂肪、糖、维生素的数量至少为b1、b2、b3、b4,而含有上述营养的食品有粮食、肉类、蔬菜,每种食品每单位所含各种营养成份的数量分别为a ij (i =1,2,3;j = 1,2,3,4) ,若已知每种食品的单价分别为c1,c2和c3,试确定在满足营养需要的条件下最便宜的食品购买计划。

解:

设x1 x2 x3分别表示粮食、肉类、素菜的量,则问题的数学模型如下:

minZ=c1x1+c2x2+c3x3

a11x1+a21x2+a31x3≥b1

a12x1+a22x2+a32x3≥b2

a13x1+a23x2+a33x3≥b3

a14x1+a24x2+a34x3≥b4

x1、x2、x3≥0

6. 某超市制订某商品7月至12月进货售货计划。已知超市仓库容量不得超过500件,6月底已存货200件,以后每月初进货一次。假设各月份某商品买进、售出单价如表3.25所示,问各月进货售货各多少,才能使总收入最大?

表3.25

i i

某商品7月至12月售货量,则:

MaxZ=22y7+19y8+20y9+23y10+21y11+19y12-21x7-18x8-20x9-22x10-20x11-19x12

200+x7≤500

200+x7-y7+x8≤500

200+x7-y7+x8-y8+x9≤500

200+x7-y7+x8-y8+x9-y9+x10≤500

200+x7-y7+x8-y8+x9-y9+x10-y10+x11≤500

200+x7-y7+x8-y8+x9-y9+x10-y10+x11-y11+x12≤500

200+x7-y7+x8-y8+x9-y9+x10-y10+x11-y11+x12-y12=0

x i(i=7,…12)≥0

y i(i=7,…12)≥0

7. 某地区有两个煤场A、B,承担供应三个居民区的用煤任务。两个煤场每个月分别供煤60吨、100吨,而三个居民区每月用煤分别为45吨、75吨、40吨。煤场A离三个居民区分别为10公里、5公里、6公里,煤场B离三个居民区分别为4公里、8公里、15公里,两个煤场应如何分配供煤,才能使运输力达到最小。

解:运输费用表如下:

运输力达到最小(表格中间的数字的含义修改为运输单位煤的运输费用)

设i=1,2分别表示煤场A、B;j=1,2,3分别表示三个居民区;xij表示从第i煤场运输到第j 居民区的运输量,

运输量表如下:

maxZ=10x11+5x12+6x13+4x21+8x22+15x23

x21+x22+x23=100

x11+x21=45

x12+x22=75

x13+x23=40

xij≥0(i=1,2;j=1,2,3)

8. 一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如表1所示。现有三种货物待运,已知有关数据见表3.26、表3.27。为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系,具体要求前、后舱分别与中舱之间载重量比例上偏差不超过15%,前、后舱之间不超过10%。问该货轮应装载A,B,C各多少件,运费收入为最大?

表3.26

表3.27

解:分析:

85%≤前舱总重量/中舱总重量≤115%

85%≤后舱总重量/中舱总重量≤115%

90%≤前舱总重量/后舱总重量≤110%

设i=1,2,3分别表示商品A、B、C;

j=1,2,3分别表示前舱、中舱、后舱;

x ij分别表示第i种商品装载到第j种舱位的商品的数量(件)根据题意,该问题的数学模型为:

maxZ=1000(x11+x12+x13)+700(x21+x22+x23)+600(x31+x32+x33)

x11+x12+x13≤600

x21+x22+x23≤1000

x31+x32+x33≤800

8x11+6x21+5x31≤2000

8x12+6x22+5x32≤3000

8x13+6x23+5x33≤1500

10x11+5x21+7x31≤4000

10x12+5x22+7x32≤5400

10x13+5x23+7x33≤1500

8x11+6x21+5x31≤115%(8x12+6x22+5x32)

8x11+6x21+5x31≥85%(8x12+6x22+5x32)

8x13+6x23+5x33≤115%(8x12+6x22+5x32)

8x13+6x23+5x33≥85%(8x12+6x22+5x32)

8x11+6x21+5x31≤110%(8x13+6x23+5x33)

8x11+6x21+5x31≥90%(8x13+6x23+5x33)

x ij≥0(i,j=1,2,3)

9. 一个合资食品企业面临某种食品一至四月的生产计划问题。四个月的需求分别为:4500吨、3000吨、5500吨、4000吨。目前(一月初)该企业有100个熟练工人,正常工作时每人每月可完成40吨,每吨成本为200元。由于市场需求浮动较大,该企业可通过下列方法调节生产:

(1)利用加班增加生产,但加班生产产品每人每月不能超过10吨,加班时每吨成本为300元。

(2) 利用库存来调节生产,库存费用为60元/吨·月,最大库存能力为l000吨。请为该企业构造一个线性规划模型,在满足需求的前提下使四个月的总费用为最小。

j=1,2,3分别表示正常生产、加班生产、库存三种方式;

xij分别表示第i个月第j种方式的产品的数量(吨)

则问题的数学模型为:

MinZ=200(x11+x21+x31+x41)+300(x12+x22+x32+x42)+60(x13+x23+x33)

x11+x12 - x13=4500

x13+x21+x22 - x23=3000

x23+x31+x32 - x33=5500

x33+x41+x42 - x43=4000

x11≤40*100

x21≤40*100

x31≤40*100

x41≤40*100

x12≤10*100

x22≤10*100

x32≤10*100

x42≤10*100

x13≤1000

x23≤1000

x33≤1000

xij≥0(i=1,2,3,4;j=1,2,3)

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。 2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

线性规划模型的应用分析

第3章线性规划模型的应用 1.某企业制造三种仪器,甲种仪器需要17小时加工装配,8小时检测,售价300元。乙种仪器需要10小时加工装配,4小时检测,售价200元。丙种仪器需要2小时加工装配,2小时检测,售价100元。三种仪器所用的元件和材料基本一样,可供利用的加工装配时间为1000小时,检测时间为500小时。又根据市场预测表明,对上述三种仪器的要求不超过50台、80台、150台。试求企业的最优生产计划。 解:首先将问题中的数据表示到如下表格: i maxZ=300x1+200x2+100x3 17x1+10x2+2x3≤1000 8x1+4x2+2x3≤500 x1≤50 x2≤80 x3≤150 x1,x2,x3≥0 2. 某铸造厂要生产某种铸件共10吨,其成分要求:锰的含量至少达到0.45%,硅的允许范围是 3.25%~5.5%。目前工厂有数量充足的锰和三种生铁可作为炉料使用。这些炉料的价格是:锰为15元/公斤,生铁A为340元/吨,生铁B为380元/吨,生铁C为280元/吨。这三种生铁含锰和含硅量(%)如表3.22所示,问工厂怎样选择炉料使成本最低。 表3.22 成分锰有部分是纯锰,部分是从生铁中提炼出来的,所以改进表格如下:

设铸件中含有三种生铁和锰的量分别为xi(i=1,2,3,4)吨,则数学模型如下: maxZ=340x1+380x2+280x3+15000x4 x1+x2+x3+x4=10 0.45%x1+0.5%x2+0.35%x3+x4≥0.45%*10 4%x1+1%x2+0. 5%x3≥3.25%*10 4%x1+1%x2+0. 5%x3≤5.5%*10 xi≥0(i=1,2,3,4) 3. 某工厂要做100套钢架,每套用长为2.9m,2.1m和1.5m的圆钢各一根。已知原料每根长7.4m,问应如何下料,可使所用原料最省。 解: 4. 绿色饲料公司生产雏鸡、蛋鸡、肉鸡三种饲料。这三种饲料是由A、B、C三种原料混合而成。产品的规格要求、产品单价、日销售量、原料单价见表3.23、表3.24。受资金和生产能力的限制,每天只能生产30吨,问如何安排生产计划才能获利最大? 表3.23 产品名称规格要求销售量(吨)售价(百元) 雏鸡饲料原料A不少于50% 5 9 原料B不超过20% 蛋鸡饲料原料A不少于30% 18 7 原料C不超过30% 肉鸡饲料原料C不少于50% 10 8 表3.24

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

线性规划应用案例

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

一般线性规划数学模型

一般线性规划问题 1. 线性规划的条件: ① 决策变量有没有---------------------必须有 ② 目标函数和约束条件是不是决策变量的线性表达式------------------必须是 ③ 决策变量非负条件是否满足-------------必须满足 ④ 目标函数是否表现出极大化或极小化------必须表现 2. 线性规划的表达式 目标函数: x c x c x c n n z Max Min +???++=2211)( 约束条件: b x a x a x a n n 112 12 1 11 )(≤≥+???++ b x a x a x a n n 222 2 21 21 )(≤≥+???++ b x a x a x a n n 332 2 31 31 )(≤≥+???++ ..............

b x a x a x a n n nn n )(2 2 1 n1 ≤≥+???++ 非负性约束: 0,,0,02 1 ≥???≥≥x x x n 问题重述 某储蓄所每天的营业时间是上午9时到下午5时。根据经验,每天不同时间段所需要的服务员数量如表17所示。储蓄所可以雇用全时和半时两类服务员。全时服务员每天报酬100元,从上午9时到下午5时工作,但中午12时到下午2时之间必须安排1h 的午餐时间。储蓄所每天可以雇用不超过3名的半时服务员,每个半小时服务员必须连续工作4h ,报酬40元。(1)问该储蓄所应如何雇用全时和半时两类服务员。(2)如果不能雇用半时服务员,每天至少增加多少费用。(3)如果雇用半时服务员的数量没有限制,每天可以减少多少费用? 表16 每天不同时间段所需要的服务员数量

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决策问题,贴近生活,很好的吧线性规划应用到生活实践中。 1、简单线性问题步骤简单介绍 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际容,要明确目标函数和约束条件,通过表格的形式把问题中的已知

数学建模习题——线性规划

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示.按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税.此 表四 问:(1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? (3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 解:设利润函数为M(x),投资A、B、C、D、E五种类型的证券资金分别为

12345,,,,x x x x x 万元,则由题设条件可知 12345123452341234512345123451234512345()0.0430.0270.0250.0220.0451000400 225 1.4()9154325(),,,,0 M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++≤++≥++++≤++++++++≤++++≥ 利用MATLAB 求解最优解,代码如下: c=[-0.043 -0.027 -0.025 -0.022 -0.045]; A=[1 1 1 1 1;0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3]; b=[1000;-400;0;0]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 运行结果如下:

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的呢?

线性规划1

习题一 1.1 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。 (1) min z =6x1+4x2(2) max z =4x1+8x2 st. 2x1+x2≥1 st. 2x1+2x2≤10 3x1+4x2≥1.5 -x1+x2≥8 x1, x2≥0 x1, x2≥0 (3) max z =x1+x2(4) max z =3x1-2x2 st. 8x1+6x2≥24 st. x1+x2≤1 4x1+6x2≥-12 2x1+2x2≥4 2x2≥4 x1, x2≥0 x1, x2≥0 (5) max z =3x1+9x2(6) max z =3x1+4x2 st. x1+3x2≤22 st. -x1+2x2≤8 -x1+x2≤4 x1+2x2≤12 x2≤6 2x1+x2≤16 2x1-5x2≤0 x1, x2≥0 x1, x2≥0 1.2. 在下列线性规划问题中,找出所有基本解,指出哪些是基本可行解并分别代入目标函数,比较找出最优解。 (1) max z =3x1+5x2(2) min z =4x1+12x2+18x3 st. x1+x3=4 st. x1+3x3-x4=3 2x2+x4=12 2x2+2x3-x5=5 3x1+2x2+x5=18 x j≥0 (j=1, (5) x j≥0 (j=1, (5) 1.3. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。 (1) max z =10x1+5x2 st. 3x1+4x2≤9 5x1+2x2≤8 x1, x2≥0 (2) max z =100x1+200x2 st. x1+x2≤500 x1≤200 2x1+6x2≤1200 x1, x2≥0 9

线性规划模型的应用与灵敏度分析

摘要 线性规划是解决稀缺资源最优分配的有效方法,使付出的费用最少或获得的利益最大。它的研究对象是有一定的人力、财力、资源条件下,如何合理安排使用,效益最高;某项任务确定后,如何安排人、财、物,使之最省。它要解决的问题的目标可以用数值指标反映,对于要实现的目标有多种方案可以选择,有影响决策的若干约束条件。本文主要介绍了线性规划模型在实际生活中的应用,其中包括解线性方程组的各种方法,如图解法、单纯形法、以及对偶单纯形法等等,以及简单介绍了有关灵敏度分析的方法。由于许多问题仅仅利用线性规划的方法还不足以解决,因此用到了对偶理论,也因此引出了对偶单纯形法。对偶规划是线性规划问题从另一个角度进行研究,是线性规划理论的进一步深化,也是线性规划理论整体的一个不可分割的组成部分。灵敏度分析是对线性规划结果的再发掘,是对线性规划理论的充要应用,本文以实例验证灵敏度分析的实际应用。 关键词:线性规划;单纯形法;对偶单纯形法

ABSTRCT Linear programming is an effective method to solve the optimal allocation of scarce resources, make the cost of pay or receive at least the interests of the largest. Its object of study is the human and financial resources, resource conditions, how to reasonably arrange to use, benefit is supreme; A task is determined, how to arrange people, goods, and make it the most provinces. It to the target can be used to solve the problem of the numerical indicators, to achieve a variety of solutions to choose from, have an impact on the decision of some constraint conditions. Through the subject design, can deepen the operations research, optimization method, linear programming, nonlinear programming, to improve the integrated use of knowledge, improve the ability of using the sensitivity analysis to solve various practical problems. This article mainly introduces the application of linear programming model in real life, including the various methods of solving linear equations, as shown in figure method, simplex method and dual simplex method, etc., and simply introduces the method of sensitivity analysis. Due to many problems just by using the method of linear programming is not enough to solve, so use the duality theory, thus raises the dual simplex method. The dual programming is linear programming problem from another Angle, is the further deepening of linear programming theory, linear planning theory as a whole is also an integral part of. Sensitivity analysis is to discover, the result of the linear programming is the charge to application of linear programming theory. Keywords: linear programming;Simplex method;The dual simplex method

线性规划的实际应用模型

目录 摘要 ---------------------------------------------------1 引言 ---------------------------------------------------2 一线性规划的概念 -------------------------------------3 二线性规划的实际应用 ----------------------------------4 ( (四)体育上的应用 1.合理安排比赛问题 -------------13 2.选拔选手问题 -----------------14 (五)旅行上的问题:旅行背包问题 ------------------------15 (六)航空上的问题:航空时间安排问题 --------------------16 (七)城市规划的应用:设施布点问题 ----------------------18 (八)日常生活上的应用 1.食用油的结构优化问题 ---------19 2.饮食问题 ---------------------21 (九)农业上的应用:农业种植问题 ------------------------23 三总结及参考文献 --------------------------------------25 线性规划的实际应用模型 王丽娜 (渤海大学数学系辽宁锦州 121000 中国)

摘要:本文从运筹学的角度分析线性规划的实际应用模型,随着人类社会的进步,科学 技术的发展,经济全球化进程的日益加快,线性规划在实际中的应用越来越广泛,主要应用 于经济与管理,军事,金融,体育,旅行,航空,城市规划,日常生活,农业九大方面,因此,线性 规划作为一门科学已被人们广泛接受,并已日益成为人类社会和经济生活中一种不可或缺的 工具。 关键词:运筹学线性规划分析模型 Zhe model in practical application of linear programming Wang lina (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:This article analyse the practical application of linear programming from the sight of operational research,with the advancement of human society,the development of science and technology and the faster grogramming has wider application in the practical,has been applied to nine aspects,in econemy,management,military,finance,physical education,travelling,airline,city planning,daily life, agriculture.The examples will be given to show the application in the nine aspects given abo。 Key word:operational research ,linaear programming, analy ,model 引言 线性规划是运筹学的一个重要分支。也是研究较早的,发展较快 的,应用较广而比较成熟的一个分支。

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

线性规划基本概念及模型构建

LP (Linear Programming)

Alex 有一个家庭农场。除了农场上的农作物以外,他还饲养了一些猪拿到市场上出售,猪可获得的饲料及其所含成分如下表:Alex如何喂养猪更好? 成分/每公斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150 问题1:科学养猪线性规划建模(猪饲料的配方)饲养成本最小

--- 每天玉米、槽料、苜蓿各喂多少公斤? --- 必须满足要求12--- 追求成本最低 Min. 84x 1+ 72x 2+ 60x 3 3x 1x 2x 3 知识点 建模三要素 决策变量约 束目标 90x 1+ 20x 2+ 40x 3 ≥ 20030x 1+ 80x 2+ 60x 3 ≥ 18010x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 成分/每公 斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150

s.t. 90x 1+ 20x 2+ 40x 3 ≥ 200 30x 1 + 80x 2+ 60x 3 ≥ 180 10x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 Min . 84x 1+ 72x 2+ 60x 3 目标函数约束函数符号中必含等号符号的右侧为常数线性--变量均为1次方 Max. 或 Min.线性--所有变量均为1次方常规约束:变量非负!知识点 模型表示

?线性规划模型能求解出来吗? 能!--- 万能的单纯形法 结合软件 QSB应用

线性规划模型在企业生产计划中的应用

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要:在企业生产过程中,生产资源的分配直接影响到企业的经济效益。因此,企业在制定生产计划时,人力物力和时间等资源的优化配制是首要面对的关键问题,而建立线性规划模型则是目前解决该问题的有效方法之一。本文旨在针对上述有限资源条件的约束下,通过建立相应的线性规划模型来制定生产计划以实现企业资源最优化、利益最大化,同时利用LINGO 11.0软件求解线性规划模型并分析在某些资源变动时对该模型所产生的影响并寻求最优生产方案。 关键词:企业生产计划;线性规划;数学模型;LINGO 11.0

Abstract:In the enterprise production process, the allocation of production resources directly affects the economic efficiency of enterprises. Therefore, enterprises in the development of production plan, formulated to optimize the resources of manpower and time is the key problem of face. And to establish the linear programming model is one of the effective ways to solve the problem. This paper aimed at the limited resource constraints, by establishing linear programming model corresponding to make production plan in order to realize the maximization of enterprise resource optimization, interest, and using LINGO11.0 software to solve the linear programming model and analysis the influence on the model in some resource changes and seek the optimal production plan. Key words:Production plan;Linear programming;Mathematical model; LINGO 11.0 目录

线性规划案例分析(1)

1. 在一个金属板加工车间内,要从尺寸为48分米?96分米的大块矩形金属板上切割下 小块的金属板。此车间接到订单要求生产8块大小为36分米?50分米的矩形金属板,13块大小为24分米?36分米的矩形金属板,以及15块大小为18分米?30分米的矩形金属板。这些金属板都需要从现有的大金属板上切割下来。为了生产出满足订单要求的金属板,最少可以使用多少块大金属板? 列出该问题的线性规划模型。 Zmin = 2. 某县级市正在研究引进公交系统以减轻市内自驾车引起的烟尘污染。这项研究的目标是 寻求满足运输所需要的最少公交车数。在收集了必要的信息之后,市政工程师注意到,每天所需的最少公交车数随一天中的时间不同而变化,而且所需的最少公交车数在若干连续的4小时间隔内可以近似看成一个常数。图1描述了工程师的发现,为了完成公交车所需的日常维护,每辆公交车一天只能连续运行8小时,问该市至少需要多少量公交车?列出该问题的线性规划模型。 0:004:008:0012:0016:0020:0024:004 8 124810712 4 图1 3. 某银行正在制订一项总额可达6000万元的贷款策略,表1提供了各类贷款的相关数据。 表1 贷款类型 利率 坏账比率 个人 0.140 0.10 汽车 0.130 0.07 住房 0.120 0.03 农业 0.125 0.05 商业 0.100 0.02 其中,坏账不可收回且不产生利息收入。 为了与其它金融机构竞争,要求银行把至少40%的资金分配给农业和商业贷款。为扶持当地的住房产业,住房贷款至少要等于个人、汽车和住房贷款总额的50%。银行还有一项明确的政策,不允许坏账的总比例超过全部贷款的4%。试寻求一种最佳贷款策略,使得银行的净收益达到最大。建立此问题的线性规划模型。 4.某种产品在未来4个季度的需求量分别是300,400,450,250件,每件的价格在第1季度以20元开始,其随后的每个季度增加2元。供应商在任一季度最多可以提供产品400件。尽管我们可以利用前面季度的低价优势,但它会导致每季度每件3.5元的储存成本,另外,从一个季度到下一季度的最大件数不能超过100件,试为该产品建立一个最优的采购计划以满足需求且使总成本最低。建立该问题的线性规划模型。

相关文档
最新文档