第二章 有理数的运算复习
2024年七年级数学上册第二章有理数的运算复习题及答案解析微探究小专题4

15
微探究小专题4
【解析】因为 a , b 互为相反数, c , d 互为倒数, m 的绝对值是2,
所以 a + b =0, cd =1, m =±2.
当 m =2时,原式=3×0-1+2=1;
当 m =-2时,原式=3×0-1-2=-3.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
微探究小专题4
第二章
有理数的运算
微探究小专题4微探究小专题4有理数的运算类型1
与相反数、倒数相关的运算
1. 若 a , b 互为相反数, c , d 互为倒数, m 的绝对值为2,则3 a +3 b
- cd + m 的值为(
B
)
A. 1
B. 1或-3
C. -3
D. -1或3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
=-1-12×
−
×
5
6
× .
=-1+75
=74.
1
2
3
4
7
8
9
10
11
12
13
14
15
微探究小专题4
类型5
12.
与运算律有关的运算
计算:(-2)4+
−
− +
×(-24).
解:原式=16+[1×(-24)- ×(-24)- ×(-24)+ ×(-24)]
第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
第二章 有理数的运算小结复习(第3课时知识方法)(课件)七年级数学上册(人教版2024)

∴|x+1|+|x﹣2|的最小值是3.
(3)解决问题:|x+3|+|x﹣1|的最小值是多少?并利用下面所给数轴说明理由;
例 如图,试利用图形所揭示的规律计算:
1
2
(1) +
(2)
1
2
+
1
4
1
4
+
+
1
8
+
1
8
1
16
+
+
1
16
+
1
32
=—
1
32
+
1
64
=—
4.特殊值方法
例当
1
0<x<1时,x、 、x2
解:气温从5℃下降到-1℃所用的时间为
3
4
[5-(-1)]÷ =6× =8(h).
4
3
因为13+8=21,
所以气温下降到-1℃的时间是21:00.
已知:有理数m所表示的点到点3距离4个单位长度,a,b互为相反数,
且都不为零,c,d互为倒数.求:2a+2b+( -3cd)-m的值.
2. 探究规律:
第二章 有理数的运算
第二章 有理数的运算
知
识
方
复 习 小 结 第 2 课 时
法
|
知识结构
自然数
数轴
正
数
形
大于
绝 对 值
小于
数
数
计
算
运算
比较大小
相 反 数
有理数
零
负
表
示
第二章 有理数运算 精品必刷题(综合复习)(原卷版)-2022-2023学年七年级数学上册期中

第二章有理数的运算一、有理数加法→知识点回顾:→要点点拨:有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条。
法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”。
有理数加法的运算律①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)。
根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便。
二、有理数减法→知识点回顾:三、有理数乘法→知识点回顾:→要点点拨:有理数的乘法满足的运算律: ①乘法交换律:ab ba =; ②乘法结合律:()()ab c a bc =; ③乘法分配律:()a b c ab ac +=+有理数乘法运算步骤:先确定积的符号,再求出各因数的绝对值的积。
四、有理数除法→知识点回顾:有理数的减法的意义与小学学过的减法的意义相同。
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
有理数的减法法则:减去一个数等于加上这个数的相反数. 设,则,.因此,.有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,都得零。
几个不等于零的数相乘,积的符号由负因数的个数决定;当负因数的个数为奇数个,积为负;当负因数的个数为偶数个,积为正;几个数相乘,如果有一个因数为零,积为零。
有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,都得零。
五、倒数→知识点回顾:→要点点拨: ①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。
一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
六、有理数的乘方→知识点回顾:→要点点拨:特别地,11n=,00n=(n 为正整数)正数的任何次幂都是正数,负数的奇数次幂是负数和,负数的偶数次幂是正数七、科学记数法→知识点回顾:八、近似数用和实际情况完全相符合的数来表示某一个量,这样的数叫做准确数。
第二章 有理数及其运算 复习

数学·新课标〔BS〕
第二章 |过关测试
数学·新课标〔BS〕
第二章 |过关测试 ►考点十 科学记数法 例11 用科学记数法表示80 000 000×90 000 000的计算结
果.
解:80 000 000×90 000 000=7 200 000 000 000 000=×1015.
+9,-3,-5,+4,-8,+6,-3,-6,-4,+10. (1)最后出租车离开钟楼多远?在钟楼的什么方向? (2)假设每千米的收费价格是元,该出租车周日下午的营业额 是多少?
数学·新课标〔BS〕
第二章 |过关测试 解:(1)+9-3-5+4-8+6-3-6-4+10=0,故该出租
车正好在钟楼; ×(|+9|+|-3|+|-5|+|+4|+|-8|+|+6|+|-3|+|-6|+|
第二章 有理数及其运算 复习
第二章 |过关测试
知识归类
1.有理数
(1)有理数
整数
正整数 零
负整数
分数
正分数 负分数
(2)有理数 正零有理数
正整数 正分数
负有理数Βιβλιοθήκη 负整数 负分数数学·新课标〔BS〕
第二章 |过关测试 2.数轴:(1)数轴的概念:规定了____原__点_、____正__方_、向
所示,则a________b(填“<〞、“>〞或“=〞) .
数学·新课标〔BS〕
第二章 |过关测试 [答案] < [解析] 由图可知,实数a、b都是负数,且表示数a的点在
表示数b的点的左边,所以a<b.
数学·新课标〔BS〕
第二章 |过关测试 例4 有理数a、b在数轴上的位置如图2-2所示,试化简|a
浙教版数学七年级上册第二章《有理数的运算》复习教学设计

浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
第2章 有理数的运算专题复习讲义:有理数加减法(含答案)

专题:有理数加减法重难点易错点解析例1题面:计算:(-40)+(+28)+(-19)24711137⎛⎫+- ⎪⎝⎭有理数的加法: 1、同号两数相加 2、异号两数相加 例2.题面:计算:(+4.7)-(-8.9)-(+7.5)517(10)125--- 有理数的减法:减去一个数等于加上这个数的相反数 有理数计算两步走: 先定号,再定绝对值金题精讲题一题面:计算:-7.5+3.4-6.82651432131313⎛⎫--+- ⎪⎝⎭()()273.732 3.770299⎛⎫-++--+--- ⎪⎝⎭题二题面:某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少? (3)产量最多的一天比产量最少的一天多生产了多少辆? 题三 题面:计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()()()()()6.6 5.2 3.8 2.6 4.8++---+--+ ()()3120.1253310 1.25483⎛⎫⎛⎫⎛⎫+--+----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭题四题面:已知10个连续整数a 1,a 2,a 3,…,a 10,在这10个数中任意选择5个数,每一个数前面添加1个“+”号,另外5个数,每一个前面添加1个“-”号后,求此时10个数和的最大值.思维拓展题面:计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:讲义参考答案重难点易错点解析例1答案:-3138 491 -例2.答案:6.147 2 60金题精讲题一答案:-10.9 -20 99题二答案:(1)297辆(2)减少21辆(3)35辆题三答案:54--2.21106题四答案:25 思维拓展答案:16。
第二章 有理数的运算章末复习(1) 课件(共17张PPT)

因此确定符号是有理数运算不可缺少的一部分,所以我们对有理
数运算要养成先定符号,再求绝对值的好习惯。
——善于计算的高手,
往往是计算出过错的过来人
-(+2)=?
7.有理数加法的法则:
绝对值相加
加数
①同号两数相加,取______的符号,并把__________.
②异号两数相加,取________________的符号,并用
绝对值较大的加数
较大的绝对值减去较小的绝对值
______________________________.
这个数
③互为相反数的两个数相加得_____;一个数同0相加,仍得________.
>.
/m
当前情况
合理选择
“+、-” (1)性质符号:正号、负号
(2)运算符号:加号、减号;
4.计算:
(1)-10+(-8)÷(-4)-(-4)×(-3);
解:原式=-10+8÷4-12=-10+2-12=-20;
(2)4×(-3)×(-3)-5×(-2)×(-2)×(-2)+6;
解:原式=4×9-5×(-8)+6=36+40+6=82;
(1)两数相除,同号得正,异号得负,并把绝对值相除.
(2)0除以任何一个不等于0的数都得0.
(3)除以一个不等于0的数,等于乘以这个数的倒数.
1
a b a b 0 .
b
11.线段AB的长度
−5
−4
AB= 1个单位 =|-2−(-3)|=|−3−(−2)|
代数表达: AB=|a−b|
注意: 相反数是它本身的数是_____
0
2×(-1)=-2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(=5)-((+192-/135))+=(--42/3)=0互为相反数相加和得0.
(6)(-1.08)+0 =-1.08一个数与0相加仍得这个数.
2、减法
快速计算下列各式:
(-11)-7 =(-11)+(-7)=-18
(-7)-(-8) =(-7)+8=1 0-15 =0+(-15)=-15 -9-0 =-9+0=-9
0除以任何不为0的数都得0.
(3)
(-
2 5
)(-
1 4
)
=(3) (- 5)(-4) 2
=-30
除以一个数(不为0),等于乘以这个数的倒数.
二、有理数的运算律 下列各式中用了哪条运算律?如何用字母表示? 1、(-4)×8 = 8 ×(-4)
乘法交换律:a×b=b×a
2、[(-8)+5]+(-4)=(-8)+[5+(-4)]
加法结合律:(a+b)+c=a+(b+c) 3、6×[-23 +(- -12 )]=6×-23 +6×(--12)
分配律:a×(b+c)=a×b+b×c
4、[29×-56 ] ×(-12)=29 ×[-56×(-12)]
乘法结合律(a×b)×c=a×(b×c)
5、(-8)+(-9)=(-9)+(-8)
一、有理数的运算法则
养成先确定符号的好习惯
一是符号,二是绝对值
1、加法
快速计算下列各题:
(1)5 + 3 =8
(2) (-11)+(9)=-(11+9)=-20
(3)(-27)+102 =+(102-27)=75 (4) 15+(-19)
同号两数相加,取相同的 符号,并把绝对值相加。
异号两数相加,取绝对值 较大的加数的符号,并用 较大的绝对值减去较小的 绝对值。
( 3) ( 5) (2)
56
-
3 5
Байду номын сангаас
5 6
2
-1
几个不为0的数相乘, 当负因数有奇数个时, 积为负;当负因数有偶 数个时,积为正。
4、除法
快速计算下列各题:
(-84)÷7 =-12
(-
83)(-3)
1 8
两个有理数相除,同号得 正,异号得负,并把绝对 值相除。
0
(-196)
(-7
2 9
)=0
减去一个数,等于加上这个数的相反数
a-b=a+(-b)
3、乘法
快速计算下列各题:
(-15)×(-4) =15×4=60
(1 2 ) 1
55
-
71 55
-
7 25
两数相乘,同号得正, 异号得负,绝对值相乘
(-38.7) ×0 =0 任何数与0相乘,积为0。
(4) 5 (0.25)=4×5×0.25=5
加法交换律:a+b=b+a
练习
1、计算下列各题:
(1)43+(-77)+27+(-43)
(2)(-7.3)+9.1-(-7)-9.1
(3)1 7
(2.5)
(-
6 7
)
1 2
(4) 8(-1 2)(-0.25)(- 5)
3
6
(5)(1 - 2 + 5)(-18)
23 6
(6)1999
18 19
(-19)