数值分析实验指导2012
数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告一、引言数值分析是一门研究如何利用计算机对数学问题进行数值计算和模拟的学科。
在实际应用中,数值分析广泛应用于工程、物理、金融等领域。
本实验旨在通过实际操作,探索数值分析方法在实际问题中的应用,并通过实验结果对比和分析,验证数值分析方法的有效性和可靠性。
二、实验目的本实验的主要目的是通过数值分析方法,解决一个实际问题,并对比不同方法的结果,评估其准确性和效率。
具体来说,我们将使用牛顿插值法和拉格朗日插值法对一组给定的数据进行插值,并对比两种方法的结果。
三、实验步骤1. 收集实验数据:我们首先需要收集一组实验数据,这些数据可以来自实验测量、调查问卷等方式。
在本实验中,我们假设已经获得了一组数据,包括自变量x和因变量y。
2. 牛顿插值法:牛顿插值法是一种基于差商的插值方法。
我们可以通过给定的数据点,构造一个插值多项式,并利用该多项式对其他点进行插值计算。
具体的计算步骤可以参考数值分析教材。
3. 拉格朗日插值法:拉格朗日插值法是另一种常用的插值方法。
它通过构造一个满足给定数据点的多项式,利用该多项式对其他点进行插值计算。
具体的计算步骤也可以参考数值分析教材。
4. 结果比较与分析:在完成牛顿插值法和拉格朗日插值法的计算后,我们将比较两种方法的结果,并进行分析。
主要考虑的因素包括插值误差、计算效率等。
四、实验结果在本实验中,我们选取了一组数据进行插值计算,并得到了牛顿插值法和拉格朗日插值法的结果。
经过比较和分析,我们得出以下结论:1. 插值误差:通过计算插值点与实际数据点之间的差值,我们可以评估插值方法的准确性。
在本实验中,我们发现牛顿插值法和拉格朗日插值法的插值误差都较小,但是拉格朗日插值法的误差稍大一些。
2. 计算效率:计算效率是衡量数值分析方法的重要指标之一。
在本实验中,我们发现牛顿插值法的计算速度较快,而拉格朗日插值法的计算速度稍慢。
五、实验结论通过本实验,我们对数值分析方法在实际问题中的应用有了更深入的了解。
《数值分析》课程设计实验指导书[1]
![《数值分析》课程设计实验指导书[1]](https://img.taocdn.com/s3/m/19c9909d8762caaedd33d459.png)
数值分析实验指导书考核标准:及格:独立完成12—15题,其中八组实验中每组至少做1题; 中: 独立完成16—23题,其中八组实验中每组至少做1题; 良: 独立完成24—31题,其中八组实验中每组至少做2题; 优: 独立完成32—40题,其中八组实验中每组至少做3题。
结束课程时,抽查上机考核。
实验一1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。
由于旅途的颠簸,大家都很疲惫,很快就入睡了。
第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。
第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题。
1.2 当0,1,2,,100n =时,选择稳定的算法计算积分10d 10nxn xe I x e --=+⎰.1.3 绘制静态和动态的Koch 分形曲线问题描述:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的另两条边代替,形成具有5个结点的新的图形;在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的另两条边代替,再次形成新的图形,这时,图形中共有17个结点。
这种迭代继续进行下去可以形成Koch 分形曲线。
在迭代过程中,图形中的结点将越来越多,而曲线最终显示细节的多少取决于所进行的迭代次数和显示系统的分辨率。
Koch 分形曲线的绘制与算法设计和计算机实现相关。
图1.1 Koch 曲线的形成过程实验二2.1 小行星轨道问题:一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在五个不同的对小行星作了五次观察,测得轨道上五个点的坐标数据(单位:万公里)如下表所示: P 1 P 2 P 3 P 4 P 5 X 坐标 53605 58460 62859 66662 68894 Y 坐标 6026 11179 16954 23492 68894 由开普勒第一定律知,小行星轨道为一椭圆,椭圆的一般方程可表示为:221234522210a x a xy a y a x a y +++++=现需要建立椭圆的方程以供研究。
《数值分析实验》实验

数值分析实验实验1 方程求根一、实验目的:1.掌握常用的求非线性方程近似根的数值方法,用所学方法求非线性方程满足指定精度要求的数值解,比较各种方法的异同点并进行收敛性分析。
2.通过对二分法与牛顿迭代法作编程练习与上机运算,进一步体会二分法与牛顿迭代法的不同特点。
3.编写割线迭代法的程序,求非线性方程的解,并与牛顿迭代法作比较。
二、实验内容:1.用二分法求方程0104)(23=-+=x x x f 在1.5附近的根。
2.用牛顿迭代法求方程033)(23=--+=x x x x f 在1.5附近的根。
3.用简单迭代法求解非线性方程3sin )1(2=-+x x 的根。
取迭代函数)1sin 3(*5.0)(2x x x --+=ϕ,精度取2101-⨯4.(选做)用牛顿法求下列方程的根: (1)02=-x e x ; (2)01=-x xe ; (3)02lg =-+x x 。
5.(选做)编写一个弦截法程序,求解题目4中的方程。
6.(选做)Matlab 函数fzero 可用于求解非线性方程的根。
例如,fzero(@(x) x^3+4*x^2-10, 1.5)可以求解题目1。
尝试用此方法求解实验中的其他题三、实验要求:1.程序要添加适当的注释,程序的书写要采用缩进格式。
2.程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应,如插入删除时指定的位置不对等等。
3.程序要做到界面友好,在程序运行时用户可以根据相应的提示信息进行操作。
四、实验步骤1.按照实验内容和实验要求编写代码 2.编译并运行代码 3.检查是否发生错误五、实验源代码与实验结果实验1源代码:运行结果:实验2源代码:运行结果:实验3源代码:运行结果:4(1)的源代码:运行结果:4(2)的源代码:运行结果:4(3)的源代码:运行结果:5(3)的源代码:运行结果:六、实验心得体会通过本次实验我加深了对二分法、简单迭代法、牛顿迭代法和弦截法算法思想的了解,并对各个不同方法的优劣有了更深的理解。
数值分析实验报告(一)(完整)

Newton插值伪代码:
/*输入参数
*x=(x0,x1….,xn),插值节点
*y=(y0,y1,…,yn);被插函数f(x)在插值节点处的函数值
*t求插值函数Pn(x)在t处的函数值
*返回值插值函数Pn(x)在t处的函数值
*/
procedureNewton
forj=0to n
d1jyj;
fori=j:n
d(i,j)=(d(i,j-1)-d(i-1,j-1))./(x0(i)-x0(i-j+1));%求差商表矩阵中各值
end
end
fork=1:m
z=x(k);
result=d(1,1);
temp=1;
fori=2:n
temp=temp*(z-x0(i-1));
result=result+d(i,i)*temp;
ifi≠j
li(t)li(t)*(t-xi)/(xi-xj);
endif
endfor
resultresult+yi*li(t) ;
endfor
returnresult;
end procedure
Lagrange插值子程序lagr1:
functiony=lagr1(x0,y0,x)%x0为插值点的向量,y0为插值点处的函数值向量,x为未知的点向量
数值分析实验报告
姓名
学号
系别
数学系
班级
09信息(2)班
主讲教师
王丹
指导教师
王丹
实验日期
专业
信息与计算科学
课程名称
数值分析
同组实验者
无
一、实验名称:
实验一、插值多项式的收敛性实验
数值分析上机实验指导书

“数值计算方法”上机实验指导书实验一 误差分析实验1.1(病态问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。
对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。
通过本实验可获得一个初步体会。
数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。
病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。
问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=−=−−−=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。
现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。
这相当于是对(1.1)中19x 的系数作一个小的扰动。
我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个MATLAB 函数:“roots ”和“poly ”。
roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。
设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++−n n n n a x a x a x a的全部根;而函数 poly(v)b =的输出b 是一个n+1维向量,它是以n 维向量v 的各分量为根的多项式的系数(从高到低排列)。
可见“roots ”和“poly ”是两个互逆的运算函数。
))20:1((;)2();21,1(;000000001.0ve poly roots ess ve zeros ve ess +===上述简单的MATLAB 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。
数值分析实验三(解线性方程组)

《数值分析》实验报告实验编号:实验三课题名称:解线性方程组一、算法介绍1、定义四个函数分别为:DieDai(),Newton(),XianWei(),DuiFen()。
在主函数中输入要选用方法所对应的序号后,用switch语句对函数进行调用。
2、迭代法的主要思想为:保留一个变量在等号的左边,其他都移到等号右边。
3、Newton法的主要算法为:把f(x)在x0附近展开成Taylor级数,取其线性部分,选取一点x0,该点所对应的值为f(x0),对于n=1,2,…,Nmax,按Xn+1=Xn-f(Xn)/f’(Xn)求出Xn+1,并计算f(Xn+1),若|Xn+1-Xn|小于容许误差,则停止计算。
4、弦位法:选定初始值x0,x1,并计算f(x0),f(x1);按迭代公式xn+1=xn-f(xn)(xn-xn-1)/(f(xn)-f(xn-1))计算x2,再求f(x2);如果相邻两次迭代值之差在容许的误差范围内则迭代停止,否则用(x2,f(x2)),(x1,f(x1))分别代替(x1,f(x1)),(x0,f(x0)),重复前两个步骤,直至相邻两次迭代值之差在容许的误差范围内。
5、对分区间法:选取方程的根所在的区间(a,b),取其中点c代入方程中得其值为f(c),如果f(c)与f(a)异号说明方程的根在(a,c)区间中,则令b=c,否则令a=c,如果f(c)的绝对值小于0.0001,则停止运算,否则继续计算,直至f(c)的绝对值小于0.0001。
二、程序代码#include <iostream>#include <iomanip>#include <cmath>using namespace std;double f(double x){x=x*x*x-3*x-1;return x;}void DieDai(){cout<<"迭代序列:\n";double x0=2,x1=0;int i=1;while(fabs(x0-x1)>=0.0001){x1=x0;x0=pow((3*x0+1),1.0/3);cout<<"x"<<i<<"="<<setiosflags(ios::fixed)<<setprecision(4)<<x0<<",f(x"<<i<<")="<<f(x0)<<",误差为:"<<x0*x0*x0-3*x0-1<<endl;i++;}cout<<"方程近似解x*="<<x0<<endl;cout<<"共进行"<<i-1<<"次迭代\n" ;}void Newton(){cout<<"迭代序列:\n";double x0=2,x1=0;int i=1;while(fabs(x0-x1)>=0.0001){x1=x0;x0=x0-f(x0)/(3*x0*x0-3);cout<<"x"<<i<<"="<<setiosflags(ios::fixed)<<setprecision(4)<<x0<<",f(x"<<i<<")="<<f(x0)<<",误差为:"<<x0*x0*x0-3*x0-1<<endl;i++;}cout<<"方程近似解x*="<<x0<<endl;cout<<"共进行"<<i-1<<"次迭代\n" ;}void XianWei(){double x0=1,x1=3,x2=2;cout<<"选定曲线y=f(x)上的两个点P0("<<x0<<","<<f(x0)<<")和P1("<<x1<<","<<f(x1)<<")\n";int i=2;while(fabs(f(x2))>=0.0001){x2=x1-f(x1)*(x1-x0)/(f(x1)-f(x0));cout<<setiosflags(ios::fixed)<<setprecision(4)<<"当前区间(";cout<<x0<<","<<x1<<"),与x轴交点("<<x2<<","<<f(x2)<<"),误差为:";if(f(x2)*f(x0)<0){cout<<x2*x2*x2-3*x2-1<<endl;x1=x2;}else{cout<<x2*x2*x2-3*x2-1<<endl;x0=x2;}i++;}cout<<"方程近似解x*="<<x2<<endl;cout<<"共进行"<<i-2<<"次迭代\n" ;}void DuiFen(){double a=1,b=3,c;cout<<"f(x)=0的根的存在区间("<<a<<","<<b<<")\n";cout<<"端点函数值f(a)="<<f(a)<<",f(b)="<<f(b)<<endl;int i=2;while(fabs(f(c))>=0.0001){c=(a+b)/2;cout<<setiosflags(ios::fixed)<<setprecision(4)<<"当前区间("<<a<<","<<b<<"),区间中点x="<<c;cout<<",f(x)="<<f(c)<<",误差为:";if(f(c)*f(a)<0){cout<<c*c*c-3*c-1<<endl;b=c;}else{cout<<c*c*c-3*c-1<<endl;a=c;}i++;}cout<<"方程近似解x*="<<c<<endl;cout<<"共进行"<<i-2<<"次迭代\n" ;}void Menu(){int n;cin>>n;switch(n){case 1:cout<<"*** 迭代法***\n";DieDai();Menu();break;case 2:cout<<"*** Newton法***\n";Newton();Menu();break;case 3:cout<<"*** 弦位法***\n";XianWei();Menu();break;case 4:cout<<"*** 对分区间法***\n";DuiFen();Menu();break;case 5:return;}}int main (){cout<<" *****问题:求f(x)=x*x*x-3x-1=0在x0=2附近的实根。
西北农林科技大学数值分析数值法实验报告

数值法实验报告专业班级:信息与计算科学121 姓名:金辉 学号:20120142801)实验目的本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插值方法:牛顿多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的优劣。
本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并在MATLAB 软件中去实现。
2)实验题目实验一:已知函数在下列各点的值为试用4次牛顿插值多项式P 4(x )及三次样条函数S (x )(自然边界条件)对数据进行插值。
用图给出{(x i ,y i ),x i =0.2+0.08i ,i=0,1, 11, 10},P 4(x )及S (x )。
实验二:在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。
实验三:可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9各点作8次多项式插值L8(x).(2)用三次样条(自然边界条件)程序求S(x)。
从结果看在[0,64]上,那个插值更精确;在区间[0,1]上,两种哪个更精确?3)实验原理与理论基础《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日4)实验内容实验一:已知函数在下列各点的值为试用4次牛顿插值多项式P4(x)及三次样条函数S(x)(自然边界条件)对数据进行插值。
用图给出{(x i,y i),x i=0.2+0.08i,i=0,1, 11, 10},P4(x)及S(x)。
(1)首先我们先求牛顿插值多项式,此处要用4次牛顿插值多项式处理数据。
已知n次牛顿插值多项式如下:P n=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+f[x0,x1,···x n](x-x0) ···(x-x n-1)我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
数值分析实验总结

break;
end
x0=x1; x1=x;
k=k+1;
end
执行程序:
f=@(x)x^3-x-1;
>> [x,k]=mqnewt(f,1.0,2.0,1e-5)
结果:
x =
1.3247
k =
6
各种方法的优缺点的比较分析
首先,三种方法得出的解是一样的,而二分法的迭代次数最多(17次),而牛顿法的迭代次数最少(3次),割线法的迭代次数也较少(6次)。
b=x;
else
a=x;
end
x=(a+b)/2.0; k=k+1;
end
执行程序:
f=@(x)x^3-x-1;
[x,k]=mbisec(f,1,2,1e-5)
结果:
x =
1.3247
k =
17
牛顿法解非线性方程
Matlab程序:
function[x,k]=mnewton(f,df,x0,ep,N)
割线法的优点是无需计算函数导数,但仍具有超线性收敛速度;其缺点是收敛速度没有牛顿法快。
2.使用列主元高斯消去法和LU分解法解同一个线性方程组,并对所得结果进行数值分析。
题目:求下列方程组的近似解
列主元高斯消去法解线性方程组
Matlab程序:
function[x]=mgauss(A,b,flag)
ifnargin<3, flag=0;end
1. 用二分法、牛顿法和割线法求解同一个非线性方程,对各种方法的优缺点进行比较分析;
题目:求解下列方程
二分法解非线性方程
Matlab程序:
function[x,k]=mbisec(f,a,b,ep)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析实验指导2012年8月实验一 误差分析实验1.1(病态问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。
对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。
通过本实验可获得一个初步体会。
数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。
病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。
问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。
现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。
这相当于是对(1.1)中19x 的系数作一个小的扰动。
我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个MATLAB 函数:“roots ”和“poly ”。
roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。
设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数 p o l y (vb = 的输出b 是一个n+1维向量,它是以n 维向量v 的各分量为根的多项式的系数。
可见“roots ”和“poly ”是两个互逆的运算函数。
))20:1((;)2();21,1(;000000001.0ve poly roots ess ve zeros ve ess +===上述简单的MATLAB 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。
实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。
如果扰动项的系数ε很小,我们自然感觉(1.1)和(1.2)的解应当相差很小。
计算中你有什么出乎意料的发现?表明有些解关于如此的扰动敏感性如何? (2)将方程(1.2)中的扰动项改成18x ε或其它形式,实验中又有怎样的现象出现?(3)(选作部分)请从理论上分析产生这一问题的根源。
注意我们可以将方程(1.2)写成展开的形式, )3.1(0),(1920=+-= x x x p αα同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系?为什么?你发现了什么现象,哪些根关于α的变化更敏感?思考题一:(上述实验的改进)在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考MATLAB 的帮助。
思考题二:(二进制产生的误差)用MATLAB 计算1001.010001-∑=i 。
结果居然有误差!因为从十进制数角度分析,这一计算应该是准确的。
实验反映了计算机内部的二进制本质。
思考题三:(一个简单公式中产生巨大舍入误差的例子) 可以用下列式子计算自然对数的底数n n ne e )11(l i m 1+==∞→ 这个极限表明随着n 的增加,计算e 值的精度是不确定的。
现编程计算n nn f )11()(+=与exp(1)值的差。
n 大到什么程度的时候误差最大?你能解释其中的原因吗?实验1.2 误差传播与算法稳定性实验目的:体会稳定性在选择算法中的地位。
误差扩张的算法是不稳定的,是我们所不期望的;误差衰减的算法是稳定的,是我们努力寻求的,这是贯穿本课程的目标。
问题提出:考虑一个简单的由积分定义的序列...2,1,101==⎰-n dx e x I x n n显然,...2,1,0=>n I n 。
当1=n 时,e dx xe I x /11011==⎰-。
而对于2≥n 时,利用分部积分易得,...3,2,1|111110111=-=-==-----⎰⎰n nI dx e nxe x dx e x I n x n x n x n n另一方面,我们有)1/(11101+=≤=⎰⎰-n dx x dx e x I n x n n实验内容:由以上递推关系,我们可得到计算序列{n I }的两种方法。
(I ):,...3,2,1,/111=-==-n nI I e I n n (II ):2,3,...2,1,,1,01--=-==-N N N n n E E E nn N实验要求:(1)分别用算法(I )、(II )并在计算中分别采用5位、6位和7位有效数字,请判断哪种算法能给出更精确的结果。
(2)两种算法的优劣,与你的第一感觉是否吻合。
请从理论上证明你实验得出的结果,解释实验的结果。
算法(I )中的1I 的计算误差为1e ,由1I 递推计算n I 的误差为n e ;算法(II )中N I 的计算误差为N ε,由N I 向前递推计算)(N n I n <的误差为n ε。
如果在上述两算法中都假定后面的计算不再引入其他误差, 试给出n e 与1e 的关系和n ε与N ε的关系。
(3)算法(I )中通常1e 会很小,当n 增大时,n e 的变化趋势如何?算法(II )中N ε通常相对比较大,当n 减小时,误差n ε又是如何传播的?也就是说比较一下上述两个算法,当某一步产生误差后,该误差对后面的影响是衰减还是扩张的。
(4)通过理论分析与计算实验,针对算法(I )和(II )的稳定性,给出你的结论。
实验二 插值法实验2.1(多项式插值的振荡现象)问题提出:考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时,)(x L n 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数22511)(xx f += 实验内容:考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-=则拉格朗日插值多项式为∑=+=ni ijn x l x x L 02)(2511)( 其中的n i x l i ,,2,1,0),( =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2,3….,画出原函数f(x)及插值多项式函数)(x L n 在[-1,1]上的图像,比较并分析实验结果。
(2)选择其他的函数,例如定义在区间[-5,5]上的函数x x g x xx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3)区间[a,b]上切比雪夫点的定义为 1,,2,1,)1(2)12(c o s 22+=⎪⎪⎭⎫⎝⎛+--++=n k n k a b a b x k π 以121,,+n x x x 为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果。
实验2.2(样条插值的收敛性)问题提出:多项式插值是不收敛的,即插值的节点多,效果不一定就好。
对样条函数插值又如何呢?理论上证明样条插值的收敛性是比较困难的,但通过本实验可以验证这一理论结果。
实验内容:请按一定的规则分别选择等距或者非等距的插值节点,并不断增加插值节点的个数。
考虑实验2.1中的函数或选择其他你有兴趣的函数,可以用MATLAB 的函数“spline ”作此函数的三次样条插值。
实验要求:(1)随节点个数增加,比较被逼近函数和样条插值函数误差的变化情况。
分析所得结果并与拉格朗日多项式插值比较。
(2)样条插值的思想是早产生于工业部门。
作为工业应用的例子考虑如下问题:某汽车制造商用三次样条插值设计车门的曲线,其中一段的数据如下:思考题一:(二维插值)在一丘陵地带测量高程,x和y方向每隔100米测一个点,得高程数据如下。
试用MATLAB的二维插值函数“interp2”进行插值,并由此找出最高点和该点实验三曲线拟合实验3.1 钢包问题炼钢厂出钢时所用的盛钢水的钢包,在使用过程中由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大。
经试验,钢包的容积与相应的使用次数的数据列表如下:选用双曲线对数据进行拟合,使用最小二乘法求出拟合函数,作出拟合曲线图。
实验3.2(曲线逼近方法的比较)问题提出:曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的。
实验内容:考虑实验2.1中的著名问题。
下面的MATLAB程序给出了该函数的二次和三次拟合多项式。
x=-1:0.2:1;y=1/(1+25*x.*x);xx=-1:0.02:1;p2=polyfit(x,y,2);yy=polyval(p2,xx);plot(x,y,’o’,xx,yy);xlabel(‘x’);ylabel(‘y’);hold on;p3=polyfit(x,y,3);yy=polyval(p3,xx);plot(x,y,’o’,xx,yy);hold off;适当修改上述MATLAB程序,也可以拟合其他你有兴趣的函数。
实验要求:(1)将拟合的结果与拉格朗日插值及样条插值的结果比较。
(2)归纳总结数值实验结果,试定性地说明函数逼近各种方法的适用范围,及实际应用中选择方法应注意的问题。
思考题一:(病态)考虑将[0,1]30等分节点,用多项式5++= 生成y+1xx数据,再用polyfit求其3次、5次、10次、15次拟合多项式,并分析误差产生的原因。
实验四 数值积分数值实验综述:通过数值积分实验掌握数值积分的实现,理解各种数值积分公式的特性,并能用数值积分求解积分方程和微分方程。
基础实验4.1 Newton-cotes 型求积公式实验目的:学会Newton-cotes 型求积公式,并应用该算法于实际问题. 实验内容:求定积分⎰πcos xdx e x实验要求:选择等分份数n ,用复化Simpson 求积公式求上述定积分的误差不超过810-的近似值,用MATLAB 中的内部函数int 求此定积分的准确值,与利用复化Simpson 求积公式计算的近似值进行比较。
4.2 Romberg 算法实验目的:学会数值求积的Romberg 算法,并应用该算法于实际问题. 实验内容:求定积分 ⎰15.0dx x实验要求:(1)要求程序不断加密对积分区间的等分,自动地控制Romberg 算法中的加速收敛过程,直到定积分近似值的误差不超过610-为止,输出求得的定积分近似值。