第九章电子衍射

合集下载

电子衍射

电子衍射

( )表示平面,*表示倒易, 0表示零层倒易面。
这个倒易平面的法线即正空 间晶带轴[uvw]的方向,倒易平 面上各个倒易点分别代表着正空 间的相应晶面。
0
4. 晶带轴的求法
若已知零层倒易面上任意二个倒易矢量的坐标, 即可求出晶带轴指数.由

u=k1l2-k2l1
v=l1h2-l2h1
简单易记法 h1 k1 l1 h1 k1 l1
Hot- and Cold-Stage TEM
20oC a 220oC b 25oC
c
AFE-1 AFE FE
d -100oC
a and b: PbZrO3 single crystal C and d: Pb(ZrSnTi)O3 ceramic
AFE-2
七、多晶电子衍射成像原理与衍射花样特征
图8-2 多晶电子衍射成像原理
金的原子力显微镜照片
倒易点阵
正点阵:晶体点阵
倒易点阵:与正点阵存在倒易关系
a*•b=a* • c=b* • a=b* • c=c* • a=c* • b=0
a* • a=b* • b=c* • c=1
写成标量形式
a*=1/a×cosφ b*=1/b×cosψ c*=1/c×cosω
ω
与正点阵的关系

反射式高能电子衍射分析(RHEED):以高能
电子照射较厚样品分析其表面结构,电子 束以掠射方式(与样品表面的夹角小于5o) 照射样品,使衍射发生在样品浅表层。
RHEED用荧光屏作结果显示,在超高真空
环境下工作。

低能电子衍射(LEED):电子束能量为10~1000eV (一般为10~500) 。由于电子能量低,衍射结果 只能显示样品表面1~5个电子层的结构信息,因 此是分析晶体表面结构的重要方法,广泛用于 表面吸附、腐蚀、催化、外延生长、表面处理 等材料表面科学与工程领域。 低能电子衍射仪器为低能电子衍射仪,也是在 超高真空环境下工作。

电子衍射

电子衍射

(1)由于电子波波长很短,一般只有千分之几nm, 按布拉格方程2dsin=可知,电子衍射的2角很小(一 般为几度),即入射电子束和衍射电子束都近乎平行 于衍射晶面。
由衍射矢量方程(s-s0)/=r*,设K=s/、K=s0/、 g=r*,则有
K-K=g
(8-1)
此即为电子衍射分析时(一般文献中)常用的衍射矢 量方程表达式。
H3=H1+H2、K3=K1+K2和L3=L1+L3。
单晶电子衍射花样的标定
立方晶系多晶体电子衍射标定时应用的关 系式:R21:R22:…:R2n=N1:N2:…:Nn 在立方晶 系单晶电子衍射标定时仍适用,此时R=R。 单晶电子衍射花样标定的主要方法为: 尝试核算法 标准花样对照法
“180不唯一性”或“偶合不唯一性”现象的产生,根 源在于一幅衍射花样仅仅提供了样品的“二维信息”。
通过样品倾斜(绕衍射斑点某点列转动),可获得另一晶带 电子衍射花样。而两个衍射花样组合可提供样品三维信息。
通过对两个花样的指数标定及两晶带夹角计算值与实测 (倾斜角)值的比较,即可有效消除上述之“不唯一性”。
(8-7)
式中:N——衍射晶面干涉指数平方和,即 N=H2+K2+L2。
多晶电子衍射花样的标定
对于同一物相、同一衍射花样各圆环而言,(C2/a2) 为常数,故按式(8-7),有
R12:R22:…:Rn2=N1:N2:…:Nn
(8-8)
此即指各衍射圆环半径平方(由小到大)顺序比等于
各圆环对应衍射晶面N值顺序比。
一、电子衍射基本公式
电子衍射基本公式的导出
设样品至感光平面的距离为L(可称为 相机长度),O与P的距离为R,
由图可知

电子的衍射原理

电子的衍射原理

电子的衍射原理电子的衍射原理是指当电子束通过一个尺寸与其波长接近的孔或经过晶体时,会发生衍射现象。

这个现象与光波的衍射原理非常相似,但是由于电子的特殊性质,使得电子的衍射具有一些独特的特点。

首先,我们知道根据德布罗意波动方程,物质粒子也具有波动性质。

对于电子来说,它的波长可以由德布罗意公式λ = h/p计算得出,其中h是普朗克常数,p为电子的动量。

电子的衍射主要是通过电子与晶体或孔的相互作用来产生的。

当电子束遇到晶格的时候,晶格的周期性结构会对电子束产生散射,这种散射就是电子的衍射。

晶格常数决定了衍射的微细结构,而晶体的平面则决定了衍射的方向性。

衍射的过程可以通过惠更斯-菲涅尔原理来描述。

根据该原理,每个点上的波前都可以看作是一系列波源发出的次级波的叠加,这些次级波形成了新的波前。

在电子的衍射过程中,散射的电子波可以视为次级波,而晶体或孔则形成了作为波前的电子波传播的界面。

电子的衍射表现出了一些有趣的现象。

首先是衍射图样的特点,类似于光的衍射,电子的衍射图样也会出现干涉条纹。

这些条纹的形状和分布可以提供关于晶体结构的有用信息,因此电子衍射技术在材料科学中有着重要的应用。

另一个有趣的现象是衍射的相对强度。

电子的散射过程中,不同方向的电子波会相互干涉,形成强度不均匀的衍射图样。

这些强度的变化可以通过使用衍射模型和计算方法来解释。

电子衍射原理在很多领域都有重要的应用,特别是在材料科学、凝聚态物理和电子显微镜技术中。

使用电子衍射技术,科学家们可以研究材料的晶体结构、晶格常数、晶格缺陷等重要的性质。

此外,电子衍射还可用于表征纳米材料、薄膜以及生物分子的结构,为相关研究提供了强有力的工具。

总之,电子的衍射原理是基于电子的波动性而实现的一种衍射现象。

通过电子与晶体或孔的相互作用,电子束会发生散射,形成干涉和衍射的图样。

电子衍射原理的理解和应用对于探索材料的微观结构、研究纳米领域以及发展电子显微镜技术都具有重要的意义。

《电子衍射原理》课件

《电子衍射原理》课件

透射电子显微镜技术
透射电子显微镜技术是一种利用透射 电镜观察物质内部微细结构的方法, 具有高分辨率和高放大倍数的特点。 随着科技的不断进步,透射电子显微 镜技术的应用范围越来越广泛,在材 料科学、生物学、医学等领域得到广 泛应用。
VS
例如,在材料科学领域,透射电子显 微镜技术可用于研究材料的晶体结构 和相变行为,为新材料的开发和优化 提供有力支持。在生物学领域,透射 电子显微镜技术可用于研究细胞器和 生物大分子的结构和功能,为生命科 学和医学研究提供新的视角。
电子显微镜的放大倍数较高,能够观察到非常细微的结构细节,是研究物质结构和 形貌的重要工具之一。
电子源
电子源是电子显微镜中的核心部件之一,它能够产生用于观察和成像的 电子束。
电子源通常由加热阴极、栅极和加速电极等部分组成,通过加热阴极使 得电子逸出并经过栅极和加速电极的调制和加速,形成用于成像的电子
电子衍射可以揭示细胞内部的超微 结构,有助于理解细胞的生理和病 理过程。
在表面科学中的应用
表面晶体结构
电子衍射可以用于研究固体表面 的晶体结构和化学组成,对表面 改性和催化等应用具有指导意义

表面应力分析
通过电子衍射可以分析表面应力 状态,有助于理解表面行为的物
理机制。
表面吸附和反应
电子衍射可以研究表面吸附分子 的结构和反应活性,对表面化学 和工业催化等领域有重要意义。
05
电子衍射的发展前景
高能电子衍射技术
高能电子衍射技术是一种利用高能电子束进行物质结构分析的方法,具有高分辨 率和高灵敏度的特点。随着科技的不断进步,高能电子衍射技术的应用范围越来 越广泛,在材料科学、生物学、医学等领域发挥着重要作用。
例如,在材料科学领域,高能电子衍射技术可用于研究材料的微观结构和晶体取 向,为新材料的开发和优化提供有力支持。在生物学领域,高能电子衍射技术可 用于研究生物大分子的结构和功能,为药物设计和疾病治疗提供新的思路。

电子衍射

电子衍射
34
§9.4 单晶体衍射花样的产生及其标定 -----衍射花样的产 生
微区晶体分析往往是单晶或为数不多的几个单晶
R = kg

单晶体衍射花样为满足衍射条件的倒易阵点图 形的放大器像 . 即过 O* 点,且垂直于入射方向的 倒易平面内的阵点( FHKL 0 ) 放大像 ◆大量强度不等的衍射斑点。有些并不精确落在 Ewald 球面上仍能发生衍射,只是斑点强度较弱。 35 倒易杆存在一个强度分布
k
'
- k = g = g' s
s ---偏离矢量
23
§9.2 电子衍射原理---倒易阵点扩展
24
§9.2 电子衍射原理---倒易阵点扩展
各种晶形相应的倒易点宽化的情况
小立方体 小球体 盘状体 针状体 六角形星芒 大球加球壳, 杆 盘
问题
为什么Ewald球与倒易面相 切会有很多斑点?
25
晶形 小立 方体
6

电子衍射与X射线衍射相比的优点
•电子波长短,单晶的电子衍射花样婉如晶体 的倒易点阵的一个二维截面在底片上放大投影, 从底片上的电子衍射花样可以直观地辨认出一 些晶体的结构和有关取向关系,使晶体结构的 研究比X射线简单。 •物质对电子散射主要是核散射,因此散射强, 约为X射线一万倍,曝光时间短。 •电子衍射能在同一试样上将形貌观察与结构 分析结合起来。
过倒易原点O,垂直入射方向 uvw 的倒易平面,记 uvw 晶轴面的倒易阵点组成的平面. 作(. uvw)* 0--为 以晶带轴 uvw 的“零层倒易截面”上 , 0 FHKL 倒 易阵 组成的平面。 标准零层倒易截面( uvw)
* 0

18
晶带及其倒易面
19

电子衍射

电子衍射

电子衍射。

1924年法国年轻的物理学家德布罗意考虑到光波具有波动性与粒子性后,提出微观粒子也应具有波粒二象性后,震惊了全世界。

直到1926年物理学家戴维逊和革末才在实验中观察到低速电子在晶体上的衍射现象。

与此同时,汤姆逊使被加速的高速电子穿过金属箔片而得到圆环形的电子衍射图样,并且测出了电子波长,德布罗意假说终于被确认。

德布罗意及戴维逊、革末分获1929和1937年诺贝尔物理学奖。

本实验为电子透射式衍射。

要求掌握电子衍射的基本原理和方法,进行德布罗意假说的验证,并学会使用与调整电子衍射仪。

一 实验原理:1 电子波的波长1924年,德布洛意提出假说,认为一个自由粒子和空间一列单色平面波相当。

即若自由粒子具有动量p 、能量E ,则它和单色平面波的波长λ和频率ν间的关系为:νh E = (1)λhp =(2)则物质波波长为 λ=p h=ϑm h (3) 下面来计算加速电压U 下电子波的波长若电子经加速场加速电压U 后获得动能,则eU m =221ϑ 则λ=p h =ϑm h =eUmh 2或λ=U 150(Å) (4) 当电子能量较大时,需要考虑相对论修正,则上式变为λ=U m c eum e h )21(22+(5)或λ=U150U610978.011-⨯+≈U150(1-0.498×10-6U )Å 可以利用上是求出各种电压下的电子波波长如表一表一:几种典型电压下的电子波长 2:电子衍射现象的规律 从上表中可看出,对电子波其波长与X 光相当或更短, 因此,晶体X 射线衍射的基本理论可用于分析电子波的衍射。

即电子波入射晶体时其衍射关系满足布拉格方程:λθm d =sin 2 (6)对m=1,sin θ=d2λ 利用各种晶系中点阵常数与晶面间距的关系,有立方晶系sin 2θ=)(422222l k h a ++λ (7)四方晶系 sin 2θ=)(4222222cl a k h ++λ (8) 斜方晶系sin 2θ=)(42222222cl b k a h ++λ (9) 六方晶系 sin 2θ=)34(4222222cl a hkk h +++λ (10) 上式中h,k,l 为晶面指数,a,b,c 为点阵常数。

电子衍射原理

θ为衍射半角
1. 衍射产生的必要条件:反射受λ、 θ 、d的制约。反射线实质是各原 子面反射方向上散射线干涉加强的结果,即衍射。此处“反射”与“衍 射”可不作区别。
2. 干涉指数和干涉面:将布拉格方程改写成 2dHKLsin θ = λ
其中,dHKL=d/n, H=nh,K=nk,L=nl。即把 (hkl)晶面的n级反射看 成是与之平行、面间距为d/n的晶面(HKL)的一级反射。(HKL)不一定是 真实的原子面,通常称为干涉面,而将 (HKL)称为干涉指数。
ghkl
k′
Δk
k
k
=
k′
=
1
λ
r | Δk |
sinθ = 2r
|k |
kr′

r k
=
r Δk
倒易矢量基本性质
grhkl gr hkl
= ⊥
1 d hkl (hkl)晶面

r Δk
=
grhkl
则 2d hkl sinθ = λ
所以
kr′

r k
=
gr
hkl
——衍射矢量方程
衍射几何
四、厄瓦尔德图 -衍射几何关系
cr*
ar*
r b
*
电子衍射几何
再回到透射电镜上,有
ΔOO*G ~ ΔOO′P

1
λ
=
g hkl
LR
即 R = Lλ ⋅ ghkl
考虑
r R
//
grhkl
r R
=



grhkl
所以,单晶体电子衍射花样是倒易截面的放大
结构因子 结构因子:一个晶胞的散射波合成振幅

第9章 电子衍射


由实验证明,衍射可解释为晶面对入射波的反射,如图所示。 下面求几何解 设入射束和反射束的单位矢量分别为 s0和 s 那么,
又可写为


(9-2)
k/,k分别为衍射线与入射线的波数矢量。 (9-1)(9-2)分别为布拉格定律的标量与矢量表达式。
由(9-1)布拉格方程变换可得
一般情况下,金属和合金的面间距大都在0.2~0.4nm范围, 而电子波长≤0.005nm(60kv)。因此,金属和合金极易满足条 件产生衍射。且sinθ值很小,从而有特别小的衍射角。通常 θ<1° 那么,布拉格方程如何在几何上表达呢?这就是下面要讲 的厄瓦尔德球作图法。 9.3.2 厄瓦尔德球作图法 在电子衍射的分析过程中,常常要用到厄瓦尔德球作图法, 利用这种方法可以比较直观地观察衍射晶面、入射束和衍射束 之间的几何关系。它实际上是布拉格方程的几何表示。 厄瓦尔德球是位于倒易空间中的一个球面,球之半径等于 入射电子波波长的倒数1/λ。
束和衍射晶面之间的相对关系。这个方法成为分析衍射的有效工具。
前面的做图分析过程中,取爱瓦尔德球半径为1/λ,且 ghkl=1/dhkl,因此,爱瓦尔德球本身就置于倒空间。 而且倒空间的任一ghkl矢量就是正空间(hkl)晶面的代表, 如果知道了ghkl矢量的排列方式,就可推得正空间对应的衍 射晶面的方位了,这就是电子衍射分析要解决的主要问题。
具体作法如下: 1) 在倒易空间中,画出衍射晶体的倒易点阵; 2) 以倒易原点0*为端点,作入射波的波矢量k(oo*),该矢量 平行于入射束方向,长度等于波长的倒数,即 k=1/λ ; 3) 以o为中心,1/λ 为半径作一个球,这就是厄互尔德球。 4) 若有倒易阵点g(hkl)正好落在 厄瓦尔德球的球面上,则相应的晶面组 (hkl)与入射束的位向必满足布拉格 条件,而衍射束的方向就是og或者衍 射波矢量k’,其长度等于反射球的半径。

第九章 电子衍射

第九章 电子衍射1、 分析电子衍射与 X 射线衍射有何异同?(**)电子衍射原理与X 射线相似相同之处:都是满足布拉格方程作为产生衍射的必要条件,两种衍射技术所得到的衍射花样在几何特征上是大致相似的。

不同之处:1)电子波的波长比X 射线短得多,在同样满足布拉格条件时,它的衍射角θ很小,约为10e -2rad 。

而X 射线产生衍射时其衍射角最大可接近π/2。

(这是电子衍射花样特征不同与x 射线衍射的主要原因)2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易阵点会沿着厚度方向延伸成杆状,因此,增加了倒易点阵与爱瓦德球相交截的机点,结果使略微偏离布拉格条件的电子束可能发生衍射。

3)因为电子波的波长短,采用爱瓦德球图解式,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似的看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内,这个结果使晶体产生的衍射花样能比较直接地反映晶体内各晶面的位向,给分析带来不少方便。

4)原子对电子的散射能力远高于对X 射线的散射能力(约高四个数量级),故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系?(**)答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间(倒易空间)点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相应晶面的衍射结果,可以认为电子衍射斑点就是就是与晶体相对应的倒易点阵中某一倒易面上阵点排列的像。

关系:1)倒易矢量ghkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向Nhkl2)倒易点阵中的一个点代表正点阵中的一组晶面3)倒易矢量的长度等于正点阵中的相应晶面间距的倒数,即ghkl=1/dhkl 。

4)对正交点阵有a*//a,b*//b,c*//c,a*=1/a,b*=1/b,c*=1/c5)只有在立方点阵中,晶面法向和同指数的晶向市重合的,即倒易矢量ghkl 是与相应指数的晶向[hkl]平行6)某一倒易基矢垂直于正交点阵中和自己3、 何为零层倒易截面和晶带定理?说明同一晶带中各晶面及其倒易矢量与晶带轴之间的关系。

电子衍射

电子衍射电子衍射实验对确立电子的波粒二象性和建立量子力学起过重要作用。

历史上在认识电子的波粒二象性之前,已经确立了光的波粒二象性.德布罗意在光的波粒二象性和一些实验现象的启示下,于1924年提出实物粒子如电子、质子等也具有波性的假设。

当时人们已经掌握了X射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素.1927年戴维孙和革末发表他们用低速电子轰击镍单晶产生电子衍射的实验结果。

两个月后,英国的汤姆逊和雷德发表了用高速电子穿透物质薄片的办法直接获得电子花纹的结果。

他们从实验测得电子波的波长与德布罗意波公式计算出的波长相吻合,证明了电子具有波动性,验证了德布罗意假设,成为第一批证实德布罗意假说的实验,所以这是近代物理学发展史上一个重要实验。

利用电子衍射可以研究测定各种物质的结构类型及基本参数.本实验用电子束照射金属银的薄膜,观察研究发生的电子衍射现象。

一 实验目的1 拍摄电子衍射图样,计算电子波波长。

2 验证德布罗意公式。

二 实验原理电子衍射是以电子束直接打在晶体上面而形成的。

在本仪器中我们在示波器的电子枪和荧光屏之间固定一块直径约为2.5cm 的圆形金属膜靶,电子束聚焦在靶面上,并成为定向电子束流。

电子束由13KV 以下的电压加速,通过偏转板时,被引向靶面上任意部位。

玻壳上有足够大的透明部分,可以观察内部结构,电子束采用静电聚焦及偏转。

若一电子束以速度ν通过极薄的晶体膜,这些电子束的德布罗意波的波长为:p h='λ (1)式中普朗克常数,p 为动量。

设电子初速度为零,在电位差为U 的电场中作加速运动。

在电位差不太大时,即非相对论情况下,电子速度c <<ν(光在真空中的速度),故02201/m c m m ≈-=ν,其中0m 为电子的静止质量。

它所达到的速度ν可由电场力所作的功来决定:m p m eU 22122==ν (2)将式(2)代入(1)中,得:U em h 12='λ (3) 式中e 为电子的电荷,m 为电子质量,h 为普朗克常量,然后将0m 、h 、e 代入(3)得U 225.1='λ (4)其中加速电压U 的单位为V ,λ的单位为1010-米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章电子衍射
1、分析电子衍射与 X 射线衍射有何异同(**)
电子衍射原理与X射线相似
相同之处:都是满足布拉格方程作为产生衍射的必要条件,两种衍射技术所得到的衍射花样在几何特征上是大致相似的。

不同之处:
1)电子波的波长比X射线短得多,在同样满足布拉格条件时,它的衍射角θ很小,约为10e-2rad。

而X射线产生衍射时其衍射角最大可接近π/2。

(这是电子衍射花样特征不同与x射线衍射的主要原因)
2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易阵点会沿着厚度方向延伸成杆状,因此,增加了倒易点阵与爱瓦德球相交截的机点,结果使略微偏离布拉格条件的电子束可能发生衍射。

3)因为电子波的波长短,采用爱瓦德球图解式,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似的看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内,这个结果使晶体产生的衍射花样能比较直接地反映晶体内各晶面的位向,给分析带来不少方便。

4)原子对电子的散射能力远高于对X射线的散射能力(约高四个数量级),故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

2、倒易点阵与正点阵之间关系如何倒易点阵与晶体的电子衍射斑点之间有何对应关系(**)
答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间(倒易空间)点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相应晶面的衍射结果,可以认为电子衍射斑点就是就是与晶体相对应的倒易点阵中某一倒易面上阵点排列的像。

关系:
1)倒易矢量ghkl垂直于正点阵中对应的(hkl)晶面,或平行于它的法向Nhkl
2)倒易点阵中的一个点代表正点阵中的一组晶面
3)倒易矢量的长度等于正点阵中的相应晶面间距的倒数,即ghkl=1/dhkl。

4)对正交点阵有
a*θL R tan2⋅=θθθsin 22sin 2tan ≈≈d 1有能产生衍射的斑点都扩展为一个圆环,故为一系列同心圆环。

3)非晶态物质的电子衍射花样只有一个漫散的中心斑
点。

形成机理:非晶没有整齐的晶格结构。

8、 单晶与多晶衍射花样分别如何进行标定(*****)。

详情请看电子衍射3-11-14ppt
(1)晶体结构已知单晶电子衍射花样标定
①标准花样对照法:只适用于简单立方、fcc 、bcc 和hcp 的低指数晶带轴。

因为这些晶系的低指数晶带的标准花样可以在有的书上查到,如果得到的衍射花样跟标准花样完全一致,则基本上可以确定该花样。

不过需要注意的是,标定完了以后,一定要验算它的相机常数,因为标准花样给出的只是花样的比例关系,而对于有的物相,某些较高指数花样在形状上与某些低指数花样十分相似,但是由两者算出来的相机常数会相差很远。

②已知相机常数和样品的晶体结构
·测量R 1、R 2、R 3、R 4
·根据Rd=L λ求出d 1、d 2、d 3、d 4。

查附表可以确定{H1K1L1}、
{H2K2L2}、 …
·因为R//g//N
·R 之间的夹角=衍射面之间的夹角。

测定R 之间的夹角,采用尝试-校核
法确定每一个HKL 面指数
·求晶带轴指数 [uvw]= R 1╳R 2=g 1╳g 2
③已知样品晶体结构、相机常数未知
()()
r r ha kb lc ua vb wc ****⋅=++⋅++=
标定有三种情况,①已知晶体(晶系、点阵类型)的衍射花样指数标定,常用方法有有Rj/R1特征值法、标准衍射花样对照法和d值法;②晶体结构未知;
③晶体点阵完全未知。

d值法标定多晶衍射花样:
圆环的半径可以用下式来计算:R=Lλ/d;
1、测出各衍射环的直径,算出它们的半径;
2、考虑晶体的消光规律,算出能够参与衍射的最大晶面间距,将其与最小的衍射环半径相乘即可得出相机常数和相机长度(如果相机常数已知,则直接到第三步);
3、由衍射环半径和相机常数,可以算出各衍射环对应的晶面间距,将其标定。

如果已知晶体的结构是面心、体心或者简单立方,则可以根据衍射环的分布规律直接写出各衍射环的指数。

9、已知金属钨(W)为体心立方晶体(a=,当采用的透射电子显微镜的相机常数为 nm 时。

画出晶带轴是 001、011、 11 1 、012、 13 1 方向的标准零层倒易面上的衍射斑点,将每一斑点指数化。

其多晶衍射环又是什么形状,并指标化。

(*****)
10、已知金属铝(Al)为面心立方晶体(a=,当采用的透射电子显微镜的相机常数为 nm 时。

画出晶带轴是 001、011、 11 1 、012、 13 1 方向的标准零层倒易面上的衍射斑点,将每一斑点指数化。

其多晶衍射环又是什么形状,并指标化。

(*****)
标准零层倒易面画法遵循晶带定理和消光规律,具体画法:&endPro=true ppt33-36页。

多晶衍射图像是一系列同心圆环,标定见第八题。

相关文档
最新文档