实验三 电子衍射实验
电子衍射实验报告

电子衍射实验报告电子衍射实验报告引言:电子衍射实验是一项重要的实验,通过观察电子在晶体中的衍射现象,我们可以深入了解电子的波粒二象性以及晶体的结构。
本实验旨在通过电子衍射实验,验证电子的波动性,并探究晶体的结构特征。
实验器材:1. 电子衍射仪:包括电子源、准直器、样品台和衍射屏2. 电子束控制装置:用于调节电子源的电压和电流3. 晶体样品:选择具有明显晶格结构的晶体样品实验步骤:1. 准备工作:将电子衍射仪放置在稳定的实验台上,并确保仪器的各部件安装牢固。
调节电子束控制装置,使电子源发射的电子束稳定且具有适当的能量。
2. 样品准备:选择合适的晶体样品,并将其固定在样品台上。
确保样品的表面平整,以保证电子束的入射方向垂直于样品表面。
3. 实验操作:将电子束对准样品,并调节衍射屏的位置,使得衍射图样清晰可见。
记录下衍射图样的形状和位置。
4. 数据处理:根据衍射图样的形状和位置,计算出晶体的晶格常数和晶体结构参数。
可以使用布拉格公式和衍射图样的特征峰位进行计算。
5. 结果分析:将实验得到的数据与理论值进行比较,并讨论实验误差的来源和可能的改进方法。
分析衍射图样的特征,探究晶体的结构特点和晶格对电子衍射的影响。
实验结果与讨论:通过电子衍射实验,我们观察到了明显的衍射图样,并成功计算出晶体的晶格常数和晶体结构参数。
与理论值进行比较后发现,实验结果与理论值基本吻合,证明了电子的波动性以及晶体的结构特征。
然而,在实验过程中也存在一些误差,主要来源于样品的制备和仪器的精度。
为了提高实验结果的准确性,可以采用更精确的测量仪器和更完善的样品制备方法。
结论:通过电子衍射实验,我们验证了电子的波动性,并深入了解了晶体的结构特征。
实验结果与理论值基本吻合,证明了电子衍射实验的可靠性和有效性。
通过这个实验,我们不仅加深了对电子波粒二象性的理解,还对晶体的结构特征有了更深入的认识。
这对于材料科学和凝聚态物理研究具有重要意义。
电子衍射实验报告.doc

电子衍射实验报告1926年,美国物理学家戴维孙Davisson和革末Germer 实现电子衍射实验。
经定量计算,证明了德布罗意波长公式的正确性。
从热灯丝K射出来电子经电势差UKD加速后,通过一组栏缝D以一定角度投射到镍单晶体M上,经晶面反射后用集电器B收集,产生电子流强度I0。
实验结果在某一角度φ下,电子流强度I 不是随UKD 增大而单调增大,而只有当电势差为某些特定值时,电子流才有极大值。
理论分析测量结果不能用粒子运动来说明,但可用X射线(波)对晶体衍射方法来分析。
也就是把加速电子看成波面而不是粒子。
利用德布罗意公式,可得m0为电子静止质量代入X射线晶体衍射布拉格公式,得k 0,1,2, 即电势差UKD满足上式时,电子流强度I 为最大值。
这意味着电子具有波动性。
实验10 电子衍射电子衍射实验对确立电子的波粒二象性和建立量子力学起过重要作用.历史上在认识电子的波粒二象性之前,已经确立了光的波粒二象性.德布罗意在光的波粒二象性和一些实验现象的启示下,于1924年提出实物粒子如电子、质子等也具有波性的假设.当时人们已经掌握了X射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素.1927年戴维孙和革末发表他们用低速电子轰击镍单晶产生电子衍射的实验结果.两个月后,英国的汤姆逊和雷德发表了用高速电子穿透物质薄片的办法直接获得电子花纹的结果.他们从实验测得电子波的波长与德布罗意波公式计算出的波长相吻合,证明了电子具有波动性,验证了德布罗意假设,成为第一批证实德布罗意假说的实验,所以这是近代物理学发展史上一个重要实验.利用电子衍射可以研究测定各种物质的结构类型及基本参数.本实验用电子束照射金属银的薄膜,观察研究发生的电子衍射现象.实验目的1 拍摄电子衍射图样,计算电子波波长;2 验证德布罗意公式.实验原理1 德布罗意波的波长德布罗意认为粒子在某些情况下也呈现出波动的性质,其波长λ与动量p之间的关系与光子相同,即.10.1 式中,h 为普朗克常数,υ为波动频率,λ为电子波波长.设电子在电压为U的电场下加速从初速为零加速运动,得到速度v,则.所以,.10.2 式中,e为电子电荷,m为电子质量.当加速电压U不太高,vc真空中光速时,m可视为电子的静止质量.将h,e和m各值代入式10.2可得.10.3 这就是德布罗意公式.式中,加速电压U的单位为V,电子波波长λ的单位为nm.由式10.3求出的是由德布罗意假设得出的波长的理论值.后来经各种手段测得德布罗意波的波长与理论值完全相同.本实验用电子波在多晶薄膜上的衍射来验证德布罗意假设的正确性.2 电子波在晶体上的衍射电子波在晶体上的衍射规律与X光在晶体上的衍射规律一样,也遵从布拉格公式2dsinθ=nλ,若射到立方晶体上则有.10.4 式中,h,k,l为晶体干涉面指数.对已知结构的晶体,a为定值本实验用面心立方的银,a0.40856nm,求出各相应的干涉面指数和掠射角,即可求得λ.以此值与由德布罗意公式得到的波长相比较,就可以验证德布罗意假设的正确性.图10.1 如图10.1,电子束射到多晶体薄膜上,与某晶面族成θ角,符合布拉格公式而衍射.其衍射圆锥在距晶体为D的荧光屏上形成半径为r的圆.若干不同的晶面族则形成一套半径不等的同心圆.由图知tan2θ=r/D.因电子波波长很短,从式10.4可看出θ很小,故近似有sinθ≈tanθ≈θ=r/2D.于是式10.4变为,即.10.5 3 指数标定及求波长得到衍射图样后,对每一个衍射环,要确定它所对应的晶面的干涉面指数h,k和l.这个工作叫“指数标定”.在一组同心圆环中,D,λ及a 均为定值,由式10.5知即一系列半径平方的比等于各相应干涉面指数平方和的比.又知面心立方体各干涉面指数平方和之比为34811 .将对应的r及h,k,l和a,D代入式10.5即可求出λ.但由于λ值很小,有些面指数平方和相差很少的相邻的圆环分不开,还有些衍射线较弱,致使衍射环未显示出来,所以,依次测得的各环半径的平方值,不能与可能的干涉面指数平方和一一对应.但第一环半径r最小肯定是由111面族衍射的,故可将除以3得常数C,然后求出4C,8C,11C,.若≈4C,则r2是由200晶面族衍射的.如与11C 相差较大,则r4不是由311晶面组产生的.实验装置电子衍射仪.电子衍射仪主要由衍射管、高真空系统和高压电源三部分组成.衍射管部分的结构如图10.2所示.A为发射电子束的电子枪阴极,接地的B为阳极,中间有小孔可让电子束通过.阴极A加有数万伏负高压,经阳极B加速的电子射向薄膜E,衍射图样呈现在F处.C和D起聚焦作用.图10.2 实验方法 1 制样品将配制的火棉胶溶液滴在清水杯中,在水面上形成一很薄的胶膜.用衍射仪所附的样品支架从杯的一侧伸进膜下挑起,让膜附在支架的圆孔上,干后用真空镀膜工艺在胶膜连同支架上镀厚约10100nm的银膜.2 装样品将镀好银膜的样品支架装在衍射仪相应的位置上. 3 抽真空接衍射仪说明书,将仪器抽真空至10.6610-3Pa6.6610-3Pa时,可预热灯丝.4 观察衍射环1 灯丝预热后,加高压至10kv,调节样品支架,可观察到衍射环.2 逐渐加高电压至2.5103kv4.0103kv,可见到清晰的衍射环.当高压改变时,观察衍射环变化情况,说明原因.5 拍摄图像 1 按说明书关灯丝电源、放气、装底片重新抽真空至10.6610-36.6610-3Pa.2 调整衍射环至满意,关闭衍射管上方的快门,将底片盒旋至“照相”位置.3 打开快门约35s,关灯丝电源照相毕. 4 按说明书降高压,放气,取底片冲洗.数据处理 1 在衍射图样上,对各衍射环由小到大顺次测出半径. 2 指数标定,按上面介绍的办法进行.3 计算λ.将各环的半径r和对应的干涉面指数h,k,l及a,D代入式10.5,注意D=410mm,即可求出λ.对各环的结果求平均即得波长λ.4 计算.将照相时的加速电压U代入式10.3可得.5 比较和.注意事项1 本实验需要高真空.真空的获得与测量应严格按仪器说明书的规定进行. 2 实验在高电压下进行,一俟观察或照相结束,应及时降下高压.实验时严禁触碰非操作部分. 3 电子束打在样品上有X射线产生,要注意射线防护.思考题1 如果样品是很薄的单晶片,在荧光屏上将看到什么样衍射图样 2 根据实验时的D、λ和a的值,计算出干涉面指数为311及222的晶面族所形成的衍射环的半径,从所得结果可以看出什么问题 3 什么是干涉面指数干涉面指数222是什么意思电子衍射实验讲义毛杰健,杨建荣一实验目的 1 验证电子具有波动性的假设; 2 了解电子衍射和电子衍射实验对物理学发展的意义; 3 了解电子衍射在研究晶体结构中的应用;二实验仪器电子衍射,真空机组,复合真空计,数码相机,微机三实验原理(一)、电子的波粒二象性波在传播过程中遇到障碍物时会绕过障碍物继续传播,在经典物理学中称为波的衍射,光在传播过程表现出波的衍射性,光还表现出干涉和偏振现象,表明光有波动性;光电效应揭示光与物质相互作用时表现出粒子性,其能量有一个不能连续分割的最小单元,即普朗克1900年首先作为一个基本假设提出来的普朗克关系E为光子的能量,v为光的频率,h 为普朗克常数,光具有波粒二象性。
电子衍射实验

电子衍射实验电子衍射实验是物理教学中的一个重要实验,通过观察电子衍射现象,加深对微观粒子波粒二象性的认识;掌握电子衍射的基本理论,验证德布罗意假设。
本文尝试在实际实验的基础上,通过对实验结果和相关物理参数的处理,利用计算机技术和网络技术,虚拟电子衍射实验现象,并利用于实际教学。
1.电子衍射实验1)德布罗意假设及电子波长公式及电子波长公式:德布罗意认为,对于一个质量为m 的,运动速度为v 的实物粒子,从粒子性方面来看,它具有能量E 和动量P ,而从波动性方面来看,它又具有波长λ和频率h ,这些量之间应满足下列关系:2/E mc hv P mv h λ====式中h 为普朗克常数,c 为真空中的光速,λ为德布罗意波长,自上式可以得到:h h P mvλ==这就是德布罗意公式。
根据狭义相对论理论,电子的质量为:hm mv ==o m 为电子的静止质量,则电子的德布罗意波长可表示为:hm mv ==若电子在加速电压为V 的电场作用下由阴极向阳极运动,则电子的动能增加等于电场对电子所做的功21)k o E m c eV ==由式(5-2-6)可得:V =将式(5-2-7)代入式(5-2-5)得到: λ=当加速电压V 很小,即201e m c 时,可得经典近似公式:v h λ⎧'=⎪⎨'=⎪⎩将346.62610h -=⨯⋅焦秒,319.11010m -=⨯千克,191.60210e -=⨯库仑,82.99810/c =⨯米秒,代入(5-2-8), (5-2-9),得到80.48910)V λ-==-⨯(5-2-10) λ'=加速电压的单位为伏特,电子波长λ的单位为0A ,即0.1um 。
根据式(5-2-10可算出不同加速电压下电子波长的值。
2)布拉格方程(定律)根据晶体学知识,晶体中的粒子是呈规则排列的,具有点阵结构,可以把晶体看作三维衍射光栅,这种光栅的光栅常数要比普通人工刻制的光栅小好几个数量级(810cm -有序结构)。
实验课jade—电子衍射分析

h3k3l3 3
R4 h1k1l1 R1 1
• 5、确定离开中心斑点最近
4 h4k4l4
衍射斑点的指数。
R3
• 6、确定第二斑点的指数。 • 7、根据矢量计算决定其它
斑点的指数。
单晶电子衍射花样的标定
• 8、根据晶带定理求零层倒
易截面法线的方向,即晶 带轴的指数。
(二)相机常数未知、晶体结构已知的衍射 花样标定
骤。
• 如右图所示,某面心立方晶体的电
子衍射花样像,其中R1=9.2,
R2=13.0,
• R3=16.0,R4=27.6(mm),
∠R1R2=90°,
• ∠R1R4=71°,∠R1R3=54°,试标 • 出最近的三个衍射斑点的晶面指数
及相应的晶带轴。
• 解:根据面心立方的消光规律,h、k、l全奇全偶时才有
衍射线,其N值序列为3:4:8:11:12:…
• 根据衍射基本公式
1 R L d
d a h2 k 2 l 2
及晶面间距公式
N h2 k 2 l 2
2 2 N1 : N 2 : N 3 : N 4 : R12 : R2 : R32 : R4 : 9.2 2 : 13.0 2 : 16.0 2 : 27.6 2 :
• 其N值序列为2:4:6:8:…
• 则最近的三个衍射斑点的晶面指数分别为R1(011),R2
(200),R3(211)
• 晶带轴:
022
u k1l 2 k 2 l1 0 v h2 l1 h1l 2 2 w h1 k 2 h2 k1 2
2、标定电子衍射花样,并写出标定步
长度分别是10.2mm、 10.2mm、14.4mm。 R1、 R2之间的夹角为90°,R1、 R3之间的夹角为45°。 2、按本节单晶体电子衍射 花样的标定程序尝试标出 马氏体的衍射斑点 奥氏体的衍射斑点 各个斑点。 查附录14表。
电子衍射_实验报告

一、实验目的1. 了解电子衍射的基本原理和实验方法;2. 通过实验验证德布罗意波粒二象性;3. 掌握电子衍射实验装置的操作及数据分析方法。
二、实验原理电子衍射实验基于德布罗意波粒二象性原理,即粒子(如电子)同时具有波动性和粒子性。
当电子束照射到晶体样品上时,会发生衍射现象,产生一系列衍射斑点,从而可以观察到电子的波动性质。
实验原理公式如下:1. 德布罗意波长公式:λ = h/p,其中λ为电子波长,h为普朗克常数,p为电子动量;2. 布拉格定律:2dsinθ = nλ,其中d为晶面间距,θ为入射角,n为衍射级数。
三、实验仪器与材料1. 实验仪器:电子衍射仪、样品台、电子枪、荧光屏、电源、示波器等;2. 实验材料:银多晶薄膜样品、电子枪灯丝、真空泵、高纯氮气等。
四、实验步骤1. 准备实验仪器,确保电子枪、样品台、荧光屏等设备正常运行;2. 将银多晶薄膜样品固定在样品台上,调整样品台的高度和角度,使电子束垂直照射到样品表面;3. 打开电子枪,调节灯丝电压和电流,使电子枪产生稳定的电子束;4. 将电子束聚焦在样品表面,调整荧光屏与样品的距离,使荧光屏能够清晰地观察到衍射斑点;5. 打开示波器,观察并记录衍射斑点的位置、大小和形状;6. 重复以上步骤,分别改变样品台的角度和电子枪的电压,观察衍射斑点的变化;7. 对比实验数据,分析电子衍射现象,验证德布罗意波粒二象性。
五、实验结果与分析1. 观察到荧光屏上出现一系列衍射斑点,且斑点分布规律符合布拉格定律;2. 当改变样品台的角度和电子枪的电压时,衍射斑点的位置和大小发生变化,但仍然符合布拉格定律;3. 通过实验验证了德布罗意波粒二象性,即电子既具有波动性,又具有粒子性。
六、实验结论1. 电子具有波动性和粒子性,实验结果验证了德布罗意波粒二象性;2. 电子衍射实验是一种重要的实验方法,可以用于研究物质的晶体结构和电子的波动性质;3. 在实验过程中,要注意实验仪器的操作规范,确保实验数据的准确性。
电子衍射实验报告

**第二师范学院学生实验报告1时,可得经典近似公式:m=⨯9.110多晶体是由许多取向不同的微小晶粒组成。
以入射线为中心,顶角为2θ的反射锥面满足布拉格方程, 形成4θ衍射锥(反射线加强),下方放置感光底板或荧光屏, 可观察到衍射环(单晶是衍衍射锥射点阵)。
不同晶面,多晶体有不同的衍射环,形成一组同心园环。
4)系统消光除简立方构造外, 复杂晶胞原子排列不同,会导致*些衍射线满足布拉格方程方向上消失. 对面心立方构造(Au,Al),晶面指数为全奇或全偶才可观察到衍射线h k l=: :1:1:1, 2:0:0, 2:2:0, 3:1:1才能形成衍射线,有2222R :R :R :R =3:4:8:11...12342.电子衍射实验方法及数据处理1〕电子衍射实验仪器电子衍射仪的实验装置如以下列图所示:电子枪A 发射电子束,阳极B 中意带有小孔可以让电子通过,阴极A 加上几万伏的负电压,阳极B 接地,高速电子通过阳极后经会聚系统C 和光阑D 会聚后打在样品E 上产生衍射,F 为荧光屏或底片,用来观察或记录衍射图像。
为了防止阴极、阳极之间的高压击穿,减少空气分子对电子束的散射,保证电子枪的正常工作,衍射仪必须保证在的真空度下工作。
关于该仪器的供电系统:机械泵是用380V 三相电源,扩散泵用市电220V 单相电源;镀膜系统中用灯丝加热电流(即镀膜电流)可调范围从0100A ,它从0.5kW 自耦变压器调节其大小;灯丝最大电流为4A ;电子枪加速电压—高压,由市电220V 经变压器升压,整流滤波后可得到050kV 连续可调直流高压。
2〕数据处理①两种方法测电子波长i) 德布罗意方法: 测加速电压, 用(1)计算波长ii)布拉格方法: 测衍射环的直径, 计算半径的平方的正数比方果满足22221234R :R :R :R =3:4:8:11...可确定为面心立方构造, 用(2)求λ。
②数据处理(回归法) 3、电子衍射实验1) 用德布罗意方法求波长λ:根据式(5-2-10),如用户输入电压数值,调用相关函数即立得波长λ值。
实验三-电子衍射实验

实验三电子衍射实验1924年法国物理学家德布罗意在爱因斯坦光子理论的启示下,提出了一切微观实物粒子都具有波粒二象性的假设。
1927年戴维逊与革末用镍晶体反射电子,成功地完成了电子衍射实验,验证了电子的波动性,并测得了电子的波长。
两个月后,英国的汤姆逊和雷德用高速电子穿透金属薄膜的办法直接获得了电子衍射花纹,进一步证明了德布罗意波的存在。
1928年以后的实验还证实,不仅电子具有波动性,一切实物粒子,如质子、中子、α粒子、原子、分子等都具有波动性。
一、实验目的1、通过拍摄电子穿透晶体薄膜时的衍射图象,验证德布罗意公式,加深对电子的波粒二象性的认识。
2、了解电子衍射仪的结构,掌握其使用方法。
二、实验仪器WDY-V 型电子衍射仪。
三、实验原理1、 德布罗意假设和电子波的波长1924年德布罗意提出物质波或称德布罗意波的假说,即一切微观粒子,也象光子一样, 具有波粒二象性,并把微观实物粒子的动量P 与物质波波长λ之间的关系表示为:mvhP h ==λ (1) 式中h 为普朗克常数,m 、v 分别为粒子的质量和速度,这就是德布罗意公式。
对于一个静止质量为m 0的电子,当加速电压在30kV 时,电子的运动速度很大,已接近光速。
由于电子速度的加大而引起的电子质量的变化就不可忽略。
根据狭义相对论的理论,电子的质量为:cv m m 2210-=(2)式中c 是真空中的光速,将(2)式代入(1)式,即可得到电子波的波长:2201cv v m h mv h -==λ(3)在实验中,只要电子的能量由加速电压所决定,则电子能量的增加就等于电场对电子所作的功,并利用相对论的动能表达式:)111(2220202--=-=cv c m c m mc eU (4) 从(4)式得到2020222cm eU eUc m U e c v ++=(5)及2020221cm eU c m c v +=-(6) 将(5)式和(6)式代入(3)式得)21(2200cm eUeU m h+=λ(7)将e = 1.602⨯10-19C ,h = 6.626⨯10-34J •S, m 0= 9.110⨯10-31kg,c = 2.998⨯108m/s 代入(7)式得)10489.01(26.12)10978.01(26.1266U UU U --⨯-≈⨯+=λ Å (8)2、 电子波的晶体衍射本实验采用汤姆逊方法,让一束电子穿过无规则取向的多晶薄膜。
电子衍射实验报告

电子衍射实验报告电子衍射实验报告一、实验目的1. 熟悉电子衍射实验的实验原理与步骤;2. 了解电子衍射实验中常用的设备与仪器;3. 通过实验观测到摄影底片上的电子衍射图案,了解材料的结构和晶态型式。
二、实验原理1. 电子衍射电子是微观物体,具有波粒二象性,其波动性可以与晶格相互作用,因而可以在晶体中发生衍射现象。
当电子以一定的速度撞击在样品的表面上,部分电子会被散射,其散射所产生的衍射图样可表征样品的晶态。
电子衍射是研究材料结构的重要手段,其散射角度和强度的变化提供了关于晶格的信息。
2. 实验步骤(1)准备样品选取待测材料制成尺寸约为十分之一毫米左右的小棒、片或粉末,用金属夹固定在电子衍射仪的样品夹座上。
(2)准备吸入式电子显微镜开启电子衍射仪的电源,并调整电子枪电流,使电子束稳定。
然后选择适当的加速电压和孔径大小,以获得清晰而稳定的电子束。
(3)极薄样品制备将样品放置在金属网格上,经过高真空的蒸发、溅射、离子刻蚀等方法,制作成极薄样品。
(4)拍摄电子衍射图将制作成的极薄样品置于电子衍射仪中,调整衍射仪的望远镜和准直镜,调整适当的衍射针孔大小和位置,用摄影底片或荧光屏作为接收器材料,拍摄样品的电子衍射图案。
三、实验步骤1. 将选取的硅晶片放在样品夹板上,并夹紧,然后放回电子显微镜中。
2. 将电子束对准样品,然后通过微调拉杆调整显微镜的望远镜和准直镜的位置,使电子束聚焦在样品表面。
3. 拉开样品闪烁屏,并使其与样品垂直,接收电子衍射图。
4. 调整衍射仪的针孔大小和位置,使电子束成为点状,通过针孔把电子束聚焦在样品的不同位置。
5. 调整摄影底片的位置和倾角,将不同晶面的电子衍射图拍摄下来。
四、实验结果与分析1. 实验结果使用电子衍射仪拍摄了硅晶片的电子衍射图案,并观察到了多个衍射斑点,每个衍射斑点代表了晶体中不同晶面的衍射图案。
2. 结果分析硅晶片的衍射图案涉及到了晶体的晶胞、倾角和晶面指数。
理论推导可知,晶面的间距与衍射斑点间距呈正比,故可以测定出晶体中不同晶面的间距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 电子衍射实验1924年法国物理学家德布罗意在爱因斯坦光子理论的启示下,提出了一切微观实物粒子都具有波粒二象性的假设。
1927年戴维逊与革末用镍晶体反射电子,成功地完成了电子衍射实验,验证了电子的波动性,并测得了电子的波长。
两个月后,英国的汤姆逊和雷德用高速电子穿透金属薄膜的办法直接获得了电子衍射花纹,进一步证明了德布罗意波的存在。
1928年以后的实验还证实,不仅电子具有波动性,一切实物粒子,如质子、中子、α粒子、原子、分子等都具有波动性。
一、实验目的1、通过拍摄电子穿透晶体薄膜时的衍射图象,验证德布罗意公式,加深对电子的波粒二象性的认识。
2、了解电子衍射仪的结构,掌握其使用方法。
二、实验仪器WDY-V 型电子衍射仪。
三、实验原理1、 德布罗意假设和电子波的波长1924年德布罗意提出物质波或称德布罗意波的假说,即一切微观粒子,也象光子一样, 具有波粒二象性,并把微观实物粒子的动量P 与物质波波长λ之间的关系表示为: mvhP h ==λ (1) 式中h 为普朗克常数,m 、v 分别为粒子的质量和速度,这就是德布罗意公式。
对于一个静止质量为m 0的电子,当加速电压在30kV 时,电子的运动速度很大,已接近光速。
由于电子速度的加大而引起的电子质量的变化就不可忽略。
根据狭义相对论的理论,电子的质量为:cv m m 2210-= (2)式中c 是真空中的光速,将(2)式代入(1)式,即可得到电子波的波长:2201cv v m h mv h -==λ (3) 在实验中,只要电子的能量由加速电压所决定,则电子能量的增加就等于电场对电子所作的功,并利用相对论的动能表达式:)111(2220202--=-=cv c m c m mc eU (4) 从(4)式得到2020222cm eU eUc m U e c v ++=(5)及 2020221cm eU c m c v +=- (6) 将(5)式和(6)式代入(3)式得)21(2200cm eUeU m h+=λ (7)将e = 1.602⨯10-19C ,h = 6.626⨯10-34J ∙S, m 0 = 9.110⨯10-31 kg ,c = 2.998⨯108m/s 代入(7)式得)10489.01(26.12)10978.01(26.1266U UU U --⨯-≈⨯+=λ Å (8)2、 电子波的晶体衍射本实验采用汤姆逊方法,让一束电子穿过无规则取向的多晶薄膜。
电子入射到晶体上时各个晶粒对入射电子都有散射作用,这些散射波是相干的。
对于给定的一族晶面,当入射角和反射角相等,而且相邻晶面的电子波的波程差为波长的整数倍时,便出现相长干涉,即干涉加强。
从图1可以看出,满足相长干涉的条件由布拉格方程λθn dSin =2(9)决定。
式中d 为相邻晶面之间的距离,θ为 掠射角,n 为整数,称为反射级。
由于多晶金属薄膜是由相当多的任意取向的单晶粒组成的多晶体,当电子束入射到多晶薄膜上时,在晶体薄膜内部各个方向上,均有与电子入射线夹角为θ 的而且符合布拉格公式的反射晶面。
因此,反射电子束是一个以入射线为轴线,其张角为4θ 的衍射圆锥。
衍射圆锥与入射轴线垂直的照相底片或荧光屏相遇时形成衍射圆环,这时衍射的电子方向与入射电子方向夹角为2θ,如图2所示。
在多晶薄膜中,有一些晶面(它们的面间距为d 1,d 2,d 3…)都满足布拉格方程,它们的反射角分别为θ1, θ2, θ3… 因而,在底片或荧光屏上形成许多同心衍射环。
可以证明,对于立方晶系,晶面间距为222l k h a d ++=(10)式中a 为晶格常数,(h k l )为晶面的密勒指数。
每一组密勒指数唯一地确定一族晶面,其图 2 多晶体的衍射圆锥 反射面法线衍射圆锥入射电子束 图1 相邻晶面的电子波的程差图2 多晶体的衍射圆锥面间距由(10)式给出。
图3为电子衍射的示意图。
设样品到底片的距离为D ,某一衍射环的半径为r ,对应的掠射角为θ。
电子的加速电压一般为30kV 左右,与此相应的电子波的波长比x 射线的波长短得多。
因此,由布拉格公式(9)看出,电子衍射的衍射角(2θ)也较小。
由图3近似有D r 2/sin ≈θ (11)将(10)式和(11)式代入(9)式,得M a D r lk h a D r ⨯=++⨯=222λ式中(h k l )为与半径r 的衍射环对应的晶面族的晶面指数,222l k h M ++=。
对于同一底片上的不同衍射环,上式又可写成nn M aD r ⨯=λ (12)式中r n 为第n 个衍射环半径,M n 为与第n 个衍射环对应晶面的密勒指数平方和。
在实验中只要测出r n ,并确定M n 的值,就能测出电子波的波长。
将测量值λ测和用式(8)计算的理论值λ理相比较,即可验证德布罗意公式的正确性。
3、 电子衍射图像的指数标定实验获得电子衍射相片后,必须确认某衍射环是由哪一组晶面指数(h k l )的晶面族的布拉格反射形成的,才能利用(12)式计算波长λ。
根据晶体学知识, 立方晶体结构可分为三类,分别为简单立方,面心立方和体心立方晶体,依次如图4中(a)、 (b)、(c)所示。
由理论分析可知,在立方晶系中,对于简单立方晶体,任何晶面族都可以产生衍射;对于体心立方晶体,只有h+k+l 为偶数的晶面族才能产生衍射;而对于面心立方晶体,只有h+k+l 同为奇数或同为偶数的晶面族,才能产生衍射。
这样可得到表1。
图3 电子衍射示意图图4 三类立方晶体(a)简单立方 (b)面心立方 (c)体心立方表中,空白格表示不存在该晶面族的衍射。
现在我们以面心立方晶体为例说明标定指数的过程。
按照表1的规律,对于面心立方晶体可能出现的反射,我们按照(h 2+k 2+l 2)=M 由小到大的顺序列出表2。
表2 面心立方晶体各衍射环对应的M因为在同一张电子衍射图像中,λ和a 均为定值,由(12)式可以得出121)(M M r r nn =(13) 利用(13)式可将各衍射环对应的晶面指数(h k l )定出,或将M n 定出。
方法是:测得某一衍射环半径r n 和第一衍射环半径r 1, 计算出(r n /r 1) 2值,在表2的最后一行M n /M 1值中, 查出与此值最接近的一列。
则该列中的h k l 和M n 即为此衍射环所对应的晶面指数。
完成标定指数以后,即可用(12)式计算波长了。
四、实验内容及步骤1、样品的制备由于电子束穿透能力很差,作为衍射体的多晶样品必须做得极薄才行。
样品的制备是在预制好的非晶体底膜上蒸镀上几百埃厚的金属薄膜而成。
非晶底膜是金属的载体,但它将对衍射电子起慢射作用而使衍射环的清晰度变差,因此底膜只能极薄才行。
(1)制底膜将一滴用乙酸正戊酯稀释的火棉胶溶液滴到水面上,待乙酸正戊酯挥发后,在水面上悬浮一层火棉胶薄膜(薄膜有皱纹时,其胶液太浓,薄膜为零碎的小块时,则胶液太稀),用样品架将薄膜慢慢捞起并烘干。
将制好底膜的样品架插入镀膜室支架孔内,使底膜表面正好对下方的钼舟,待真空达到10-4mmHg 以后,即可蒸发镀膜。
(2)镀膜将“镀膜-灯丝”转换开关倒向“镀膜”侧(左侧),接通镀膜电流开关(向上)。
转动“灯丝-镀膜”自耦调压器,使电流逐渐增加(镀银时约为20A )。
当从镀膜室的有机玻璃罩上看到一层银膜时,立即将电流降到零,并关镀膜开关。
蒸镀样品的工作即完成。
2、观察电子衍射现象(1)开机前将仪器面板上各开关置于“关”位,“高压调节”和“灯丝-镀膜调节”均调回零,蝶阀处于“关”位。
(2)为了观察到衍射图像后随即进行拍照,应在抽真空前装上底片。
(3)起动真空系统,按照实验室的操作规程将衍射腔内抽至5⨯10-5mmHg 以上的高真空度。
(4)灯丝加热。
首先将面板上的双掷开关倒向“灯丝”一侧(右侧),接通灯丝电流开关(向上),调节“灯丝-镀膜”旋钮,使灯丝电压表指示为120V。
(5)加高压。
接通“高压”开关(向上),缓慢调节“高压调节”旋钮,调至20-30kV,在荧光屏上可以看到一个亮斑。
(6)调节样品架的位置(平移或转动),直到在荧光屏上观察到满意的衍射环。
(7)照相与底片冲洗在荧光屏上观察到清晰的衍射图像后,先记录下加速电压U值,然后用快门挡住电子束,转动“底片转动旋钮”,让指针指示在“1”位。
用快门控制曝光时间为2-4秒。
用相同的方法可拍摄两张照片。
在拍摄电子衍射图像时,要求动作快些,尽量减小加高压的时间。
取出底片后,冲洗底片。
整个拍摄和冲洗过程可在红灯下进行。
五、实验数据及结果(1)仔细观察衍射照片,区分出各衍射环,因有的环强度很弱,特别容易数漏。
然后测量出各环直径,确定其半径r1 ,r2,r3,…r n的值。
(2)计算出r n2 /r12的值,并与表2中M n/M1值对照,标出各衍射环相应的晶面指数。
(3)根据衍射环半径用(12)式计算电子波的波长,并与用(8)式算出的德布罗意波长比较,以此验证德布罗意公式。
本实验中所用的样品银为面心立方结构,晶格常数a = 4.0856Å。
样品至底片的距离D=mm。
六、注意事项1、电子衍射仪为贵重仪器,必须熟悉仪器的性能和使用方法,严格按照操作规程使用。
特别是真空系统的操作不能出错,否则会损坏仪器。
2、阴极加有几万伏的负高压,操作时不要接触高压电源,注意安全。
调高压和样品架旋钮时要缓慢,如果出现放电现象,应立即降低电压,实验中应缩短加高压的时间。
3、调节样品架观察衍射环时,应先将电离规管关掉,以防调节样品架时出现漏气现象而烧坏电离规管。
4、衍射腔的阳极,样品架和观察窗处都有较强的x射线产生,必须注意防护。
七、思考题1、德布罗意假说的内容是什么?2、在本实验中是怎样验证德布罗意公式的?3、本实验证实了电子具有波动性,衍射环是单个电子还是大量电子所具有的行为表现?4、简述衍射腔的结构及各部分作用。
5、根据衍射环半径计算电子波的波长时,为什么首先要指标化?怎样指标化?6、改变高压和灯丝电压时衍射图像有什么变化?为什么?7、叙述样品银多晶薄膜的制备过程。
8、观察电子衍射环和镀金属薄膜时为什么都必须在高真空条件下进行?它们要求真空度各是多少?。
9、加高压时要缓慢,并且尽量缩短加高压的时间,这是为什么?10、拍摄完电子衍射图像取底片时,三通阀和蝶阀应处于什么位置?为什么?八、附件:实验仪器说明本实验采用WDY-V 型电子衍射,该仪器主要由衍射腔、真空系统和电源三部分组成。
图5为电子衍射仪的外型图。
1、 衍射腔图6为衍射腔示意图。
A 为阴极,B 为阳极,C 为光阑,F 为样品,E 为荧光屏或底片。
阴极A 内装有V 型灯丝,通电后发射电子。
灯丝一端加有数万伏的负高压,阳极接地。
电子经高压加速后通过光阑C 时被聚焦。