导数中的求参数取值范围问题
导数的应用——利用单调性求参数的取值范围

导数的应用——利用单调性求参数的取值范围在解题中,我们首先要确定参数的取值范围是有限的,也就是参数不能无限制地取值。
然后我们利用导数的单调性来排除一些不符合要求的取值范围,从而找到参数的合理取值范围。
为了更好地理解这个方法,我们来看一个具体的例子:问题:已知函数f(x) = ax^2 + bx + c,其中a > 0。
如果函数f(x)在定义域内是递增函数,求参数b的取值范围。
解答:首先,我们要明确函数f(x)是递增函数的定义:对于任意的x1<x2,有f(x1)<f(x2)。
我们可以通过求函数f(x)的导函数f'(x)来判断函数f(x)的单调性。
在本例中,函数f(x)的导函数为f'(x) = 2ax + b。
由于函数f(x)为递增函数,所以f'(x)应该大于0。
即对于任意的x,有f'(x)>0。
我们可以把f'(x) > 0看作是一个一次函数y = 2ax + b > 0的解。
这个一次函数的解为x < -b/2a。
也就是说,对于任意的x<-b/2a,有f'(x)>0。
这样一来,我们就可以得出结论,函数f(x)在x<-b/2a的区间上是递增函数。
但是我们并不能马上就得出参数b的取值范围是x<-b/2a。
因为函数f(x)的定义域可能不包含这个区间。
为了求出参数b的取值范围,我们需要进一步考虑函数f(x)的定义域。
对于函数f(x) = ax^2 + bx + c来说,它的定义域是所有实数集合R。
因此,对于任意实数x,函数f(x)都有定义。
由于我们已经确定了函数f(x)在x<-b/2a的区间上是递增函数,所以我们只需要确定使得这个区间包含在定义域内的参数b的取值范围即可。
如果我们假设b/2a为一个实数k,那么我们可以得出-x>k。
即对于任意的x>-k,函数f(x)是递增的。
然而,x的取值范围是所有实数,所以我们可以把任意实数k当作是b/2a。
利用导数求参数的取值范围

利用导数求参数的取值范围在微积分中,导数是用来描述一个函数在其中一点上的变化率的工具。
通过求导,我们可以研究函数的增减性、最值、拐点等性质。
而利用导数求参数的取值范围,我们主要关注函数的单调性和极值点,对于包含参数的函数,我们可以利用导数来研究参数的取值范围。
设函数$f(x)$为包含参数$a$的函数,我们的目标是求出参数$a$的取值范围,使得函数$f(x)$满足其中一特定条件。
下面将分别讨论求函数单调性和极值点的情况。
一、函数的单调性:1.1单调递增:要求函数$f(x)$在其中一区间上单调递增,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)<f(x_2)$。
若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒大于零,则函数$f(x)$在该区间上是单调递增的。
因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递增。
具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。
2)解方程$f'(x)>0$,求出与参数$a$有关的不等式。
3)解不等式,得到参数$a$的取值范围。
1.2单调递减:要求函数$f(x)$在其中一区间上单调递减,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)>f(x_2)$。
若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒小于零,则函数$f(x)$在该区间上是单调递减的。
因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递减。
具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。
2)解方程$f'(x)<0$,求出与参数$a$有关的不等式。
3)解不等式,得到参数$a$的取值范围。
导数中的参数取值范围问题 - 副本

若a 1, 则当x (0,)时,g ( x) 0, g ( x)为增函数
g (0) 0 x 0时g ( x) 0,即f ( x) 0
若a 1时, g ( x) 0, 解得0 x ln a
利用分类讨论法求参数范围 :首先根据题目要求 x (0, ln a)时,g ( x)为减函数, 确定参数的分类标准 然后根据条件建立参数的 g (0) 0, 当x (0, ln,a )时,g ( x) 0,即f ( x) 0 不等式关系 ,从而解不等式得参数范围 . 综合得 a的范围为( - ,1
2
1 2 1 即 2a 3x 在( , )恒成立 利用分离参数法求参数范围 :首先将方程或不 x 3 3 等式中的参数进行分离参数 ,然后构造函数g(x), 1
x (值域),从而得满足条件参数范围. 求g(x)的最值 易知3x 4 2a 4
解得a 2
利用实根分布求参数的取值范围
方程3x 2 6ax 3 0两根积为 1
方程3x 2 6ax 3 0在( 2,3)存在一根 1 即方程 2a x 在(2,3)存在一根 x
1 5 1 10 x 在(2,3)单调递增 易知 x x 2 x 3
5 10 2a 2 3
5 5 解得 a 4 3
3 2
2 1 (Ⅱ)设函数 f ( x) 在区间 , 内是减函数,求 a 的取值范围 3 3
2 1 f ( x ) 在区间( , )单调递减 解析:f ( x) 3x 2ax 1, 3 3 2 1 在区间(- ,- )上f / ( x) 0,即3x 2 +2ax+1 0恒成立 3 3
导数中的求参数取值范围问题

帮你归纳总结(五〕:导数中的求参数取值范围问题 一、常见基此题型:〔1〕函数单调性,求参数的取值范围,如函数()f x 增区间,那么在此区间上 导函数()0f x '≥,如函数()f x 减区间,那么在此区间上导函数()0f x '≤。
〔2〕不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。
例1.a ∈R ,函数2()()e x f x x ax -=-+.〔x ∈R ,e 为自然对数的底数〕〔1〕假设函数()(1,1)f x -在内单调递减,求a 的取值范围;〔2〕函数()f x 是否为R 上的单调函数,假设是,求出a 的取值范围;假设不是,请说明 理由. 解: 〔1〕2-()()e x f x x ax =-+-2-()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e x x a x a ⎡⎤-++⎣⎦.()()f x 要使在-1,1上单调递减, 那么()0f x '≤ 对(1,1)x ∈- 都成立, 2(2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2()(2)g x x a x a =-++,那么(1)0,(1)0.g g -≤⎧⎨≤⎩1(2)01(2)0a a a a +++≤⎧∴⎨-++≤⎩, 32a ∴≤-.〔2〕①假设函数()f x 在R 上单调递减,那么()0f x '≤ 对x ∈R 都成立即2-(2)e 0xx a x a ⎡⎤-++≤⎣⎦对x ∈R 都成立.2e 0,(2)0x x a x a ->∴-++≤ 对x ∈R 都成立令2()(2)g x x a x a =-++,图象开口向上 ∴不可能对x ∈R 都成立②假设函数()f x 在R 上单调递减,那么()0f x '≥ 对x ∈R 都成立,即2-(2)e 0xx a x a ⎡⎤-++≥⎣⎦ 对x ∈R 都成立,e 0,x -> 2(2)0x a x a ∴-++≥ 对x ∈R 都成立. 22(2)440a a a ∆=+-=+>故函数()f x 不可能在R 上单调递增.综上可知,函数()f x 不可能是R 上的单调函数例2:函数()()ln 3f x a x ax a R =--∈,假设函数()y f x =的图像在点(2,(2))f 处的切线的倾斜角为45,对于任意[1,2]t ∈,函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围;解: /(2)1,22af a =-==-由32/2()2ln 23()(2)2, ()3(4)22f x x x mg x x x x g x x m x ∴=-+-∴=++-=++- 令/()0g x =得,2(4)240m ∆=++>故/()0g x =两个根一正一负,即有且只有一个正根函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数 ∴/()0g x =在(,3)t 上有且只有实数根///(0)20,()0,(3)0g g t g =-<∴<>∴237, (4)233m m t t >-+<-故243m t t +<-,而23y t t =-∈在t [1,2]单调减, ∴9m <-,综合得3793m -<<-例3.函数14341ln )(-+-=xx x x f . 〔Ⅰ〕求函数)(x f 的单调区间;〔Ⅱ〕设42)(2-+-=bx x x g ,假设对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥ 恒成立,求实数b 的取值范围. 解:〔I 〕14341ln )(-+-=xx x x f 的定义域是(0,)+∞22243443411)(x x x x x x f --=--=' 由0>x 及0)(>'x f 得31<<x ;由0>x 及0)(<'x f 得310><<x x 或, 故函数)(x f 的单调递增区间是)3,1(;单调递减区间是),3(,)1,0(∞+ 〔II 〕假设对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立, 问题等价于max min )()(x g x f ≥,由〔I 〕可知,在(0,2)上,1x =是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min 1()(1)2f x f ==-; []2()24,1,2g x x bx x =-+-∈当1b <时,max ()(1)25g x g b ==-; 当12b ≤≤时,2max ()()4g x g b b ==-; 当2b >时,max ()(2)48g x g b ==-;问题等价于11252b b <⎧⎪⎨-≥-⎪⎩ 或212142b b ≤≤⎧⎪⎨-≥-⎪⎩ 或21482b b >⎧⎪⎨-≥-⎪⎩解得1b <或12b ≤≤或 b ∈∅即2b ≤,所以实数b的取值范围是,⎛-∞ ⎝⎦。
高考热点利用导数求函数参数的范围问题

难点一 利用导数探求参数的范围问题1. 与函数零点有关的参数范围问题函数的零点,即的根,亦即函数的图象与轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题),进而确定参数的取值范围. 例1(2020·全国高三专题练习)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】()()()()22331x x x x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根, 且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,或者两个根都在()2,0e -内.()f x ()0f x =()f x xx因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D2. 与曲线的切线有关的参数取值范围问题函数在点处的导数就是相应曲线在点处切线的斜率,即,此类试题能与切斜角的范围,切线斜率范围,以及与其他知识综合,往往先求导数,然后转化为关于自变量的函数,通过求值域,从而得到切线斜率的取值范围,或者切斜角范围问题.例2. (2020·全国高三专题练习(理))已知函数21()2,()f x x ax g x x=+=-,若存在点()()()()1122,,,A x f x B x g x ,使得直线AB 与两曲线()y f x =和()y g x =都相切,当实数a 取最小值时,12x x +=( )A.B.2CD.4-【答案】A 【解析】2()2,f x x ax =+Q ∴ ()22f x x a '=+,∴()1122f x x a '=+,又()21112f x x ax =+,过A 点切线方程为:()21122y x a x x =+-,①又1()g x x =-Q ,∴21()g x x'=,即()2221g x x '=,又()221g x x =-,因此过B 点的切线方程为:22212y x x x =-,② 由题意知①②都为直线AB , 1222121222x a x x x ⎧+=⎪⎪⎨⎪-=-⎪⎩,4118x a x =-, 令4()8x h x x =-,332()122x x h x '-=-=, ()y f x =0x x ='0()f x 00(,())x f x '0()k f x =0x k令()0h x '=,x =(,0)x ∈-∞和时,()h x 单调递减,且(,0)x ∈-∞时()()00h x h >=,恒成立,)x ∈+∞时,()h x单调递增,x ∴=时,()min h x,1x ∴=,则2212x x==12x x ∴+=故选:A . 3.与不等式恒成立问题有关的参数范围问题含参数的不等式恒成立的处理方法:①的图象永远落在图象的上方;②构造函数法,一般构造,;③参变分离法,将不等式等价变形为,或,进而转化为求函数的最值. 3.1 参变分离法将已知恒成立的不等式由等价原理把参数和变量分离开,转化为一个已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则. 例3.【河南省实验中学2019届模拟三】已知函数f (x )=e x −x −1(e 是自然对数的底数). (1)求证:e x ≥x +1;(2)若不等式f (x )>ax −1在x ∈[12,2]上恒成立,求正数a 的取值范围.思路分析:(1)要证e x ≥x +1,只需证f (x )=e x ﹣x ﹣1≥0,求导得f ′(x )=e x ﹣1,利用导数性质能证明e x ≥x +1.(2)不等式f (x )>ax ﹣1在x ∈[12,2]上恒成立,即a <e x −x x在x ∈[12,2]上恒成立,令g (x )=e x −x x,x ∈[12,2],利用导数性质求g (x )=e x −x x在x ∈[12,2]上的最小值,由此能求出正数a 的取值范围.【详解】(1)由题意知,要证e x ≥x +1,只需证f (x )=e x −x −1≥0,求导得f ′(x )=e x −1,当x ∈(0,+∞)时,f ′(x )=e x −1>0,当x ∈(−∞,0)时,f ′(x )=e x −1<0,∴f (x )在x ∈(0,+∞)是增函数,在x ∈(−∞,0)时是减函数,即f (x )在x =0时取最小值f (0)=0,∴f (x )≥f (0)=0,即f (x )=e x −x −1≥0,∴e x ≥x +1.(2)不等式f (x )>ax −1在x ∈[12,2]上恒成立,即e x −x −1>ax −1在x ∈[12,2]上恒成立,亦即a <e x −x x在x ∈[12,2]上恒成立,令g (x )=e x −x x,x ∈[12,2],以下求g (x )=e x −x x 在x ∈[12,2]上的最小值,g ′(x )=e x (x−1)x 2,当x ∈[12,1]时,g ′(x )≤0,当x ∈[1,2]]时,g ′(x )≥0,∴当x ∈[12,1]]时,g (x )单调递减,当x ∈[1,2]]时,g (x )单调递增,∴g (x )在x =1处取得最小值为g (1)=e −1,∴正数a 的取值范围是(0,e −1).()()f x g x >()y f x =()y g x =()()()F x f x g x =-min ()0F x >()a h x >()a h x <()h x3.2 构造函数法参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.例4.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e 是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e=-+;无极大值 (2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,函数()g x 是递增函数,所以函数()g x 的最大值为: max 1111()()ln ln 1g x g a a a a a==-⋅=-, 因为10a e <<,所以11ln 1e a a>⇒>,因此有max ()0g x >, 因为1e a >,所以(1)0g a =-<,因此当10x a<<时,函数()g x 有唯一零点;因为10a e <<,所以211a a >,22211111()ln 0g a a a a a =-<-<,故函数()g x 在1x a>时,必有唯一的零点,因此函数()g x 有2个不同的零点;(3)设()()()ln ln h x f x g x x x a x ax =+=++-,(1)0h =,'1()ln 1h x x a x =++-,因为211()0h x x x''=->,所以函数()h x '在1x >时单调递增,即'((2)1)h h a x '>=-当20a -≥时,即2a ≤,1x >时,'()0h x >,函数()h x 在1x >时单调递增,因此有()(1)0h x h >=,即当1x >时,()()0f x g x +>恒成立;当2a >时,''1(1)20,()10,aa h a h e e=-<=+>所以存在0(1,)a x e ∈,使得'0()0h x =,即当0(1,)x x ∈时,函数()h x 单调递减,所以此时0()()(1)0h x h x h <<=,显然对于当1x >时,()()0f x g x +>不恒成立,综上所述,2a ≤,所以实数a 的最大值为2. 4.与函数单调区间有关的参数范围问题若函数在某一个区间可导,函数在区间单调递增;函数在区间单调递减.若函数在某一个区间可导,且函数在区间单调递增恒成立;函数在区间单调递减恒成立.4.1 参数在函数解析式中转化为恒成立和恒成立问题后,利用恒成立问题的解题方法处理 例5. (2020·陕西高三月考)已知函数()sin ln f x a x b x x =+-. (1)当0,1a b ==时,证明:()1f x -„. (2)当6b π=时,若()f x 在0,3π⎛⎫⎪⎝⎭上为增函数,求a 的取值范围. (1)证明:当0,1a b ==时,()ln f x x x =-,所以1()xf x x-'=. 令()0f x '>,得01x <<;令()0f x '<,得1x >. 所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以max ()(1)1f x f ==-, 故()1f x -„. (2)解:当6b π=时,()cos 16f x a x xπ'=+-,由题可知()0f x '≥ 所以cos 106a x xπ+-…在0,3π⎛⎫ ⎪⎝⎭上恒成立,即66cos x a x x π-…在0,3π⎛⎫⎪⎝⎭上恒成立.令6(),0,6cos 3x h x x x x ππ-⎛⎫=∈ ⎪⎝⎭,显然当0,6x π⎛⎫∈ ⎪⎝⎭时,()0h x <; ()f x D '()0f x >⇒()f x D '()0f x <⇒()f x D ()f x D ()f x D ⇒'()0f x ≥()f x D ⇒'()0f x ≤'()0f x ≥'()0f x ≤当,63x ππ⎛⎫∈⎪⎝⎭时,()0h x >. 而当,63x ππ⎛⎫∈⎪⎝⎭时,22cos (6)sin ()06cos x x x x h x x x ππ+-'=>, 所以()h x 在,63ππ⎛⎫⎪⎝⎭上单调递增, 所以()13h x h π⎛⎫<=⎪⎝⎭, 所以1a …,即a 的取值范围是[1,)+∞. 点评:导数与函数的单调性(1)函数单调性的判定方法:设函数y =f(x)在某个区间内可导,如果f′(x)>0,则y =f(x)在该区间为增函数;如果f′(x)<0,则y =f(x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法. 4.2 参数在定义域中函数解析式确定,故可先确定其单调区间,然后让所给定义域区间包含在单调区间中. 例6.已知函数ln ()a x f x x +=,曲线ln ()a x f x x+=在点(,())e f e 处的切线与直线20e x y e -+=垂直.注:e 为自然对数的底数.(1)若函数()f x 在区间(,1)m m +上存在极值,求实数m 的取值范围;(2)求证:当1x >时,1()21(1)(1)x xf x e e x xe ->+++. 思路分析:(1)求函数ln ()a x f x x +=的导数()f x ',由曲线ln ()a xf x x +=在点(,())e f e 处的切线与直线20e x y e -+=垂直可得21()f e e '=-,可求出a 的值,这时2ln '()(0)xf x x x=->,讨论导数的符号知函数()f x 仅当1x =时,取得极值,由1(,1)m m ∈+即可求实数m 的取值范围;(2)当1x >时,1()21(1)(1)x x f x e e x xe ->⇔+++11(1)(ln 1)211x x x x e e x xe -++>++g 令(1)(ln 1)()x x g x x++=,令12()1x x e h x xe -=+,由max min()()1g x h x e ⎛⎫>⎪+⎝⎭证之即可.试题解析: (1)因为ln ()a x f x x +=,所以21ln '()a x f x x --=.又据题意,得21'()f e e =-,所以221a e e -=-,所以1a =.所以1ln ()x f x x +=.所以2ln '()(0)xf x x x=->.当(0,1)x ∈时,'()0f x >,()f x 为增函数;当(1,)x ∈+∞时,'()0f x <,()f x 为减函数.所以函数()f x 仅当1x =时,取得极值.又函数()f x 在区间(,1)m m +上存在极值,所以11m m <<+,所以01m <<.故实数m 的取值范围是(0,1).(2)当1x >时,1()21(1)(1)x x f x e e x xe ->+++,即为11(1)(ln 1)211x xx x e e x xe -++>++g .令(1)(ln 1)()x x g x x++=,则22[(1)(ln 1)]'(1)(ln 1)ln '()x x x x x x x g x x x ++-++-==.再令()ln x x x ϕ=-,则11'()1x x x xϕ-=-=. 又因为1x >,所以'()0x ϕ>.所以()x ϕ在(1,)+∞上是增函数.又因为(1)1ϕ=,所以当1x >时,'()0g x >. 所以()g x 在区间(1,)+∞上是增函数.所以当1x >时,()(1)g x g >,又(1)2g =,故()211g x e e >++.令12()1x x e h x xe -=+,则11122(1)(1)'2(1)'()2(1)(1)x x x x x x x x e xe xe e e e h x xe xe ---+-+-==++g .因为1x >,所以122(1)0(1)x x x e e xe --<+.所以当1x >时,'()0h x <,故函数()h x 在区间(1,)+∞上是减函数.又2(1)1h e =+, 所以当1x >时,2()1h x e <+,所以()()1g x h x e >+,即1()21(1)(1)x x f x e e x xe ->+++. 点评:本题考查了利用导数判断函数单调性等基础知识,理解单调性的概念是解题关键. 5.与逻辑有关的参数范围问题新课程增加了全称量词和特称量词应用这一知识点,并且在考试卷中屡屡出现,使得恒成立问题花样推陈出新,别有一番风味,解决的关键是弄懂量词的特定含义.例7.已知函数()()22 01 0x x ax e x f x x x b⎧->⎪=⎨≤⎪⎩,,在2x =处的切线斜率为272e .(1)求实数a 的值;(2)若0x >时,()y f x m =-有两个零点,求实数m 的取值范围. (3)设()()ln x g x b f x =+-,若对于130 2x ⎛⎤∀∈ ⎥⎝⎦,,总有()21 2.71828x e e e ⎡⎤∈=⎢⎥⎣⎦,…,使得()()12f x g x ≥,求实数b 的取值范围.思路分析:(1)根据导数几何意义得()27'22e f =,所以求导数()()2'222x f x e x a x a ⎡⎤=+--⎣⎦列出等量关系,求解得34a =(2)利用导数研究函数()()22xf x x ax e =-单调变化趋势:在()0 1,单调递减,在()1 +∞,单调递增,再考虑端点值:()300,()2f f f ⎛⎫==+∞→+∞ ⎪⎝⎭,所以要有两个零点,需 02e m ⎛⎫∈- ⎪⎝⎭,(3)不等式恒成立问题,一般方法为转化为对应函数最值:()()min f x g x ≥,由前面讨论可知()()min 12ef x f ==-,所以()()ln ln 12x x e g x b b f x x ⎛⎫=+=-≤- ⎪-⎝⎭在1 x e e ⎡⎤∈⎢⎥⎣⎦,有解,即1ln 21e b x x ≤-⋅-的最大值,先求ln 1x y x =-,1 x e e ⎡⎤∈⎢⎥⎣⎦,最大值,而=利用导数易得1x e =时ln 1x y x =-取最大值1e +,即()21e b e ≤-+ 试题解析:(1)0x >时,()()()()222 '222x x f x x ax e f x e x a x a ⎡⎤=-=+--⎣⎦,,由条件知()27'22e f =,∴34a =. (2)0x >时,()()22xf x x ax e =-,∴()()()1'1232x f x e x x =-+,()f x 在()0 1,单调递减,在()1 +∞,单调递增,()3002f f ⎛⎫== ⎪⎝⎭,则()min 12e f f ==-,∴ 02e m ⎛⎫∈- ⎪⎝⎭,时,()y f x m =-有两个零点. (3)由题意,即要()()min min f x g x ≥ (*)当0x >时,()232xf x x x e ⎛⎫=- ⎪⎝⎭,由(2)知()()min 12e f x f ==-,当0x >时,0x -<,∴()()ln ln 1x x g x b b f x x ⎛⎫=+=- ⎪-⎝⎭,()2ln 1'x g x b x -=⋅,∵21 x e e ⎡⎤∈⎢⎥⎣⎦,,∴2ln 10x x -≤.①若0b >,()g x 在1 e e ⎡⎤⎢⎥⎣⎦,上是减函数,()()min 11g x g e b e ⎛⎫==- ⎪⎝⎭.∵()()min min f x g x <,∴(*)不成立.②若0b <,()g x 在1 e e ⎡⎤⎢⎥⎣⎦,上是增函数,()()min 11g x g b e e ⎛⎫==+ ⎪⎝⎭.要使()()min min f x g x ≥,只要()12e b e -≥+,则()21e b e ≤-+. (3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 综合上述五种类型,利用导数求解含参问题时,首先具备必要的基础知识(导数的几何意义、导数在单调性上的应用、函数的极值求法、最值求法等),其次要灵活掌握各种解题方法和运算技巧,比如参变分离法,分类讨论思想和数形结合思想等,涉及极值和最值问题时,一般情况下先求导函数,然后观察能否分解因式,若能则比较根的大小,并与定义域比较位置关系、分段考虑导函数符号,划分单调区间,判断函数大致图像;若不能分解因式,则考虑二次求导,研究函数是否具有单调性.利用导数处理参数范围问题并不可怕,关键在于通过解题不断摸索解题思路,形成一种解题格式和套路.。
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
导数专题(一)参数的取值范围

太原市新希望双语学校 钱大平
(一)、概述:求参数的取值范围是数学 中普遍存在的问题(如函数、解析几何、 向量等)。宏观地讲,求参数的取值范围, 就是通过寻求参数所满足的不等量关系 (特殊地也可以是等量关系,一般地是不 等式或不等式组)而得到参数的取值范围 (特殊地范围可以夹挤为一个常数,也可 以无解)。应用导数求参数的取值范围就 是在求范围的过程中,采用了导数的方法 和手段。这类问题有一定的特定数学背景 (首先是函数问题的大背景)。
(二)、预备知识:
一、恒成立、能成立问题的化归(参考《成功密 码》9月刊P14)
1、利用分离参数确定不等式 f ( x, a ) 0 ( x D, a为实参数) 恒成立中参数a的取值范围的基本步骤: (1)将参数与变量分离,即化为 g ( a ) 恒成立的形式
f ( x) (或g (a) f ( x))
(2)求 f ( x)在x D 上的最大(或最小)值 (3)解不等式 g (a) f ( x) max (或g (a) f ( x) min ) ,得到a的取值范 围
例:已知两函数 f ( x) 8 x 2 16 x k , g ( x) 2 x 3 5 x 2 4 x , 其中k为实数。 (1)对任意 x 3, 3 ,都有 f ( x) g ( x) 成立,求k的取 值范围; (2)存在 x 3, 3 ,使 f ( x) g ( x) 成立,求k的取值范围 (3)对 x1 , x2 3, 3 ,都有 f ( x1 ) g ( x2 ) ,求k的取值范 围;
二、参数满足的条件与参数取值范围的逻辑关系 (集合观点理解:即用充分条件得到的参数范围是 用充要条件得到的范围的子集,用必要条件得到的 参数范围含盖用充要条件得到的范围)
导数含参数取值范围分类讨论题型总结与方法归纳

一.含参数导数问题的分类讨论问题求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★例1已知函数ax x a x x f 2)2(2131)(23++-=(a>0),求函数的单调区间 ★★例2已知函数x a x a x x f ln )2(2)(+--=(a>0)求函数的单调区间★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
。
练习:已知函数当时,讨论的单调性.二.已知函数的单调性求参数范围可以转化为不等式恒成立问题;.例4.已知函数f (x )=ln a +ln x x在[1,+∞)上为减函数,则实数a 的取值范围为__________.练习:已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎪⎫23. (1)求a 的值;(2)设函数g (x )=(f (x )-x 3)·e x,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.恒成立分参例1:设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.练习: 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2] D .[-4,-3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
帮你归纳总结(五):导数中的求参数取值范围问题 一、常见基本题型:(1)已知函数单调性,求参数的取值范围,如已知函数()f x 增区间,则在此区间上 导函数()0f x '≥,如已知函数()f x 减区间,则在此区间上导函数()0f x '≤。
(2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。
例1.已知a ∈R ,函数2()()exf x x ax -=-+.(x ∈R ,e 为自然对数的底数)(1)若函数()(1,1)f x -在内单调递减,求a 的取值范围;(2)函数()f x 是否为R 上的单调函数,若是,求出a 的取值范围;若不是,请说明 理由.解: (1)2-()()e xf x x ax =-+Q-2-()(2)e ()(e )xxf x x a x ax '∴=-++-+-=2-(2)e xx a x a ⎡⎤-++⎣⎦.()()f x 要使在-1,1上单调递减, 则()0f x '≤ 对(1,1)x ∈- 都成立,2(2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2()(2)g x x a x a =-++,则(1)0,(1)0.g g -≤⎧⎨≤⎩1(2)01(2)0a a a a +++≤⎧∴⎨-++≤⎩, 32a ∴≤-.(2)①若函数()f x 在R 上单调递减,则()0f x '≤ 对x ∈R 都成立即2-(2)e 0xx a x a ⎡⎤-++≤⎣⎦ 对x ∈R 都成立.2e0,(2)0xx a x a ->∴-++≤Q 对x ∈R 都成立令2()(2)g x x a x a =-++,Q 图象开口向上 ∴不可能对x ∈R 都成立②若函数()f x 在R 上单调递减,则()0f x '≥ 对x ∈R 都成立,即2-(2)e 0xx a x a ⎡⎤-++≥⎣⎦ 对x ∈R 都成立,e 0,x ->Q 2(2)0x a x a ∴-++≥ 对x ∈R 都成立.22(2)440a a a ∆=+-=+>Q故函数()f x 不可能在R 上单调递增.综上可知,函数()f x 不可能是R 上的单调函数例2:已知函数()()ln 3f x a x ax a R =--∈,若函数()y f x =的图像在点(2,(2))f 处的切线的倾斜角为45o ,对于任意[1,2]t ∈,函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围; 解: /(2)1,22af a =-==-由32/2()2ln 23()(2)2, ()3(4)22f x x x mg x x x x g x x m x ∴=-+-∴=++-=++- 令/()0g x =得,2(4)240m ∆=++>故/()0g x =两个根一正一负,即有且只有一个正根 Q 函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数 ∴/()0g x =在(,3)t 上有且只有实数根Q ///(0)20,()0,(3)0g g t g =-<∴<>∴237, (4)233m m t t >-+<-故243m t t +<-,而23y t t =-∈在t [1,2]单调减, ∴9m <-,综合得3793m -<<-例3.已知函数14341ln )(-+-=xx x x f . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)设42)(2-+-=bx x x g ,若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥ 恒成立,求实数b 的取值范围. 解:(I )14341ln )(-+-=xx x x f 的定义域是(0,)+∞22243443411)(x x x x x x f --=--=' 由0>x 及0)(>'x f 得31<<x ;由0>x 及0)(<'x f 得310><<x x 或, 故函数)(x f 的单调递增区间是)3,1(;单调递减区间是),3(,)1,0(∞+ (II )若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立, 问题等价于max min )()(x g x f ≥,由(I )可知,在(0,2)上,1x =是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min 1()(1)2f x f ==-; []2()24,1,2g x x bx x =-+-∈当1b <时,max ()(1)25g x g b ==-;当12b ≤≤时,2max ()()4g x g b b ==-;当2b >时,max ()(2)48g x g b ==-;问题等价于11252b b <⎧⎪⎨-≥-⎪⎩ 或212142b b ≤≤⎧⎪⎨-≥-⎪⎩ 或21482b b >⎧⎪⎨-≥-⎪⎩解得1b <或12b ≤≤或 b ∈∅即2b ≤,所以实数b的取值范围是,⎛-∞ ⎝⎦。
例4.设函数22()ln ,()f x x m x h x x x a =-=-+,(1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在[1,3]上恰有两个不同零点,求实数a 的 取值范围.解:(1)由a =0,f (x )≥h (x ),可得-m ln x ≥-x ,x ∈(1,+∞),即m ≤xln x.记φ(x )=xln x,则f (x )≥h (x )在(1,+∞)上恒成立等价于m ≤φ(x )min .求得φ′(x )=ln x -1ln 2x 当x ∈(1,e),φ′(x )<0; 当x ∈(e ,+∞)时,φ′(x )>0. 故φ(x )在x =e 处取得极小值,也是最小值,即φ(x )min =φ(e)=e ,故m ≤e.(2)函数k (x )=f (x )-h (x )在[1,3]上恰有两个不同的零点等价于方程x -2ln x =a ,在[1,3]上恰有两个相异实根. 令g (x )=x -2ln ,则g ′(x )<1-2x.当x ∈[1,2)时,g ′(x )<0;当x ∈(2,3]时,g ′(x )>0.∴g (x )在(1,2)上是单调递减函数,在(2,3]上是单调递增函数.故g (x )min =g (2)=2-2ln2. 又g (1)=1,g (3)=3-2ln3, ∵g (1)>g (3),∴只需g (2)<a ≤g (3). 故a 的取值范围是(2-ln2,3-2ln3].二、针对性练习1.已知函数2()ln .f x x a x =+若函数()()2g x f x x =+在[1,4]上是减函数,求实数a 的取值范围。
解:由x x a x x g 2ln )(2++=,得222)(xx a x x g -+='.又函数xx a x x g 2ln )(2++=为[1,4]上的单调减函数。
则0)(≤'x g 在[1,4]上恒成立,.所以不等式0222≤-+x x a x 在[1,4]上恒成立.即222x xa -≤在[1,4]上恒成立。
设222)(x xx -=ϕ,显然)(x ϕ在[1,4]上为减函数,所以)(x ϕ的最小值为.263)4(-=ϕa ∴的取值范围是.263-≤a 2.已知函数()1xf x e x =--(1)若存在4[1,ln ]3x ∈-,使10xa e x -++<成立,求a 的取值范围; (2)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.解:(1)1,xa e x <--即().a f x <令'()10,0.x f x e x =-==0x >Q 时,'()0,0f x x ><时,'()0.f x <()f x ∴在(,0)-∞上减,在(0,)+∞上增.又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时,()f x ∴的最大值在区间端点处取到.11444(1)11,ln ,1ln333f e f e -⎛⎫-=-+==-- ⎪⎝⎭, 4144114(1)ln 1ln ln 0,33333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭∴ 4(1)ln ,()3f f f x ⎛⎫->∴ ⎪⎝⎭在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1,e故a 的取值范围是1a e <,(3)由已知得0x ≥时,210xe x tx ---≥恒成立,设2()1.x g x e x tx =---'()12.x g x e tx ∴=--由(2)知1,xe x ≥+当且仅当0x =时等号成立,故'()2(12)g x x tx t x≥-=-,从而当120,t -≥即12t ≤时,'()0(0),()g x x g x ≥≥∴为增函数,又(0)0,g =于是当0x ≥时,()0,g x ≥即2()f x tx ≥,12t ∴≤时符合题意.由1(0)xe x x >+≠可得1(0),xex x ->-≠从而当12t >时,'()12(1)(1)(2),x x x x x g x e t e e e e t --<-+-=--故当(0,ln 2)x t ∈时,'()0,()g x g x <∴为减函数,又(0)0,g =于是当(0,ln 2)x t ∈时,()0,g x <即2(),f x tx ≤故1,2t >不符合题意.综上可得t 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦3.已知函数ln(1x f (x)x+=),设3h(x)xf (x)x ax =--在(0,2)上有极值,求a 的取值范围. 解:由3h(x)x f (x)x ax =⋅--可得,。