利用导数求参数取值范围的几种类型(1)
专题12 利用导数解决函数的单调性-学会解题之高三数学万能解题模板【2022版】(原卷版)

专题12 导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一 求无参函数的单调区间万能模板 内 容使用场景 知函数()f x 的解析式判断函数的单调性 解题模板第一步 计算函数()f x 的定义域; 第二步 求出函数()f x 的导函数'()f x ;第三步 若'()0f x >,则()f x 为增函数;若'()0f x <,则()f x 为减函数.例1 【河北省衡水市枣强中学2020届高三下学期3月调研】已知函数()ln xx af x e+=. (1)当1a =时,判断()f x 的单调性;【变式演练1】函数,的单调递增区间为__________.【来源】福建省三明第一中学2021届高三5月校模拟考数学试题【变式演练2】已知函数,则不等式的解集为___________.【来源】全国卷地区“超级全能生”2021届高三5月联考数学(文)试题(丙卷)【变式演练3】【黑龙江省哈尔滨六中2020届高三高考数学(文科)二模】已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .a c b <<【变式演练4】【湖南省湘潭市2020届高三下学期第四次模拟考试】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211x f x f x e -+=--,则下列命题中一定成立的是( )A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->类型二 判定含参数的函数的单调性万能模板 内 容使用场景 函数()f x 的解析式中含有参数解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例2 【黑龙江省大庆市第四中学2020届高三下学期第四次检测】已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【变式演练5】(主导函数是一次型函数)【福建省三明市2020届高三(6月份)高考数学(文科)模拟】已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;()2sin sin 2f x x x =⋅0,2x π⎡⎤∈⎢⎥⎣⎦()()2ln 1x xf x x e e -=+++()()2210f x f x --+≤【变式演练6】(主导函数为类一次型)【山东省威海荣成市2020届高三上学期期中考试】已知函数()x f x e ax -=+.(I )讨论()f x 的单调性;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥. (1)讨论()f x 的单调性;【变式演练8】(主导函数是类二次型)【山西省太原五中2020届高三高考数学(理科)二模】已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【变式演练9】已知函数,若在区间上单调递增,则的取值范围是( )A .B .C .D .【来源】江西省南昌市新建区第一中学2020-2021学年高三上学期期末考试数学(文)试题类型三 由函数单调性求参数取值范围万能模板 内 容使用场景 由函数单调性求参数取值范围解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 根据题意转化为相应的恒成立问题; 第三步 得出结论.例3.【江苏省南通市2019-2020学年高三下学期期末】若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是( ) A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为( )A .4B .16C .20D .18()22ln f x x x =-()f x ()2,1m m +m 1,14⎡⎫⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭1,12⎡⎫⎪⎢⎣⎭[)0,1【变式演练12】(转化为变号零点)【山西省运城市2019-2020学年高三期末】已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( ) A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【变式演练13】(直接给给定单调区间)【辽宁省六校协作体2019-2020学年高三下学期期中考试】已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为( ) A .-4B .-2C .2D .4【变式演练14】(转化为存在型恒成立)【四川省仁寿第一中学北校区2019-2020学年高三月考】若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【高考再现】1.(2021·全国高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =-.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<2.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a 的取值范围. 3.已知函数. (1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【来源】2021年全国新高考Ⅰ卷数学试题 4.【2017山东文,10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,0a >1a ≠()(0)a x x f x x a=>2a =()f x ()y f x =1y =()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<则实数a 的取值范围是 ▲ .6.【2020年高考全国Ⅰ卷文数20】已知函数()()e 2xf x a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.7.【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 8.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.9.(2018年新课标I 卷文)已知函数f (x )=ae x −lnx −1∈ (1)设x =2是f (x )的极值点.求a ,并求f (x )的单调区间; (2)证明:当a ≥1e 时,f (x )≥0∈10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知函数f(x)=1x −x +alnx ∈ (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x 1,x 2,证明:f (x 1)−f (x 2)x 1−x 2<a −2.【反馈练习】1.【2020届广东省梅州市高三总复习质检(5月)】已知0x >,a x =,22xb x =-,()ln 1c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.【2020届山东省威海市高三下学期质量检测】若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为( )A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.【河南省十所名校2019—2020学年高三毕业班阶段性测试】若函数()sin24sin f x x x m x =--在[0,2π]上单调递减,则实数m 的取值范围为( ) A .(2,2)-B .[2,2]-C .(1,1)-D .[1,1]-4.【黑龙江哈尔滨市第九中学2019-2020学年高三阶段验收】函数()3f x x ax =+,若对任意两个不等的实数()1212,x x x x >,都有()()121233f x f x x x ->-恒成立,则实数a 的取值范围是( ) A .()2,-+∞B .[)3,+∞C .(],2-∞-D .(),3-∞5.【湖北省武汉市新高考五校联合体2019-2020学年高三期中检测】若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______. 6.【四川省宜宾市2020届高三调研】若对(]0,1t ∀∈,函数2()(4)2ln g x x a x a x =-++在(,2)t 内总不是单调函数,则实数a 的取值范围是______7.【河南省南阳市第一中学校2019-2020学年高三月考】若函数()22ln f x x x =-在定义域内的一个子区间()1,1k k -+上不是单调函数,则实数k 的取值范围______.8.若函数在区间是增函数,则的取值范围是_________.【来源】陕西省宝鸡市眉县2021届高三下学期高考模拟文科数学试题 9.已知函数,若对任意两个不同的,,都有成立,则实数的取值范围是________________【来源】江西省景德镇市2021届高三上学期期末数学(理)试题10.【黑龙江省哈尔滨师范大学附属中学2020-2021学年高三上学期开学考试】(1)求函数()sin cos (02)f x x x x x π=+<<的单调递增区间;()cos 2sin f x x a x =+,62ππ⎛⎫⎪⎝⎭a ()()1ln 1xf x x x+=>1x 2x ()()1212ln ln f x f x k x x -≤-k(2)已知函数2()ln 43f x a x x x =-++在1,22⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的范围.11.【黑龙江省哈尔滨三中2020届高三高考数学(文科)三模】函数()()21ln 1x f x x x -=-+. (1)求证:函数()f x 在()0,∞+上单调递增; (2)若m ,n 为两个不等的正数,求证ln ln 2m n m n m n->-+. 12.【湖北省黄冈中学2020届高三下学期适应性考试】已知函数()()ln 1ln f x ax x a x =-+,()f x 的导数为()f x '.(1)当1a >-时,讨论()f x '的单调性; (2)设0a >,方程()3f x x e =-有两个不同的零点()1212,x x x x <,求证121x e x e+>+. 13.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论()f x 的单调性;(2)当0x ≥时,()1xf x e ≥-,求实数a 的取值范围.14.【2020届山西省高三高考考前适应性测试(二)】已知函数()xf x ae ex =-,()()ln 1xg x x b x e =--,其中,a b ∈R .(1)讨论()f x 在区间()0,∞+上的单调性; (2)当1a =时,()()0f x g x ≤,求b 的值.15.【河南省2020届高三(6月份)高考数学(文科)质检】已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 16.【山东省2020年普通高等学校招生统一考试数学必刷卷】已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围.17.【福建省2020届高三(6月份)高考数学(理科)模拟】已知函数()()()2ln 222f x x a x x =++++,0a >.(1)讨论函数()f x 的单调性; (2)求证:函数()f x 有唯一的零点.18.【山东省潍坊市五县2020届高三高考热身训练考前押题】已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R . (1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x e x e a x x--<+-.19.【陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练】已知函数3()ln ()f x x a x a R =-∈.∈1)讨论函数()f x 的单调性∈∈2)若函数()y f x =在区间(1,]e 上存在两个不同零点∈求实数a 的取值范围.20.【2020年普通高等学校招生全国统一考试伯乐马模拟考试】已知函数()()22xxf x ax a e e =-++.(1)讨论函数()f x 的单调性; (2)若函数()()()2212x x g x f x ax x a e e =-++-存在3个零点,求实数a 的取值范围. 21.【金科大联考2020届高三5月质量检测】已知函数()()()()()22224ln 2144f x x ax x a x a a x a =--+++∈R .(∈)讨论函数()f x 的单调性;(∈)若0a ≤,证明:函数()f x 在区间)1,a e -⎡+∞⎣有且仅有一个零点.22.已知函数.(1)若,求函数的单调区间; (2)求证:对任意的,只有一个零点.【来源】全国Ⅱ卷2021届高三高考数学(理)仿真模拟试题 23.已知函数. (1)当时,判断的单调性;(2)若有两个极值点,求实数的取值范围.【来源】安徽省合肥六中2021届高三6月份高考数学(文)模拟试题 24.已知函数. (1)求的单调性;(2)设函数,讨论的零点个数. 【来源】重庆市高考康德卷2021届高三模拟调研卷数学试题(三) 25.已知函数, (1)讨论的单调性;(2)若,,,用表示,的最小值,记函数,,讨论函数的零点个数.【来源】山东省泰安肥城市2021届高三高考适应性训练数学试题(二) 26.已知() (1)讨论的单调性;(2)当时,若在上恒成立,证明:的最小值为. 【来源】贵州省瓮安中学高三2021届6月关门考试数学(理)试题27.已知函数.(1)讨论的单调性;()321()13f x x a x x =--+2a =-()f x a ∈R ()f x ()21ln 2f x x ax x ax =-+1a =()f x ()f x a ()()cos sin ,0,2f x x x x x π=-∈()f x ()()(01)g x f x ax a =-<<()g x ()ln()xf x x a x a=+-+a R ∈()f x 4a =()1cos (2sin )2g x x x mx x =++0m >}{min ,m n m n }{()min ()()h x f x g x =,[],x ππ∈-()h x ()ln f x x ax =+a R ∈()f x 1a =()()1f x k x b ≤++()0,∞+221k b k +--1e -+2()2ln ,()f x x ax x a R =+++∈()f x(2)若恒成立,求的最大值.【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题 28.已知函数. (1)若,证明:在单调递增; (2)若恒成立,求实数的取值范围.【来源】黑龙江省哈尔滨市第三中学2021届高三五模数学(理)试题 29.已知函数. (1)若在上为增函数,求实数a 的取值范围;(2)设,若存在两条相互垂直的切线,求函数在区间上的最小值.【来源】四川省达州市2021 届高三二模数学(文)试题 30.已知函数. (1)如果函数在上单调递减,求的取值范围; (2)当时,讨论函数零点的个数.【来源】内蒙古赤峰市2021届高三模拟考试数学(文)试题 31.已知函数. (1)若在R 上是减函数,求m 的取值范围;(2)如果有一个极小值点和一个极大值点,求证 有三个零点. 【来源】安徽省淮南市2021届高三下学期一模理科数学试题32.已知函数.(1)若函数在上为增函数,求实数的取值范围; (2)当时,证明:函数有且仅有3个零点. 【来源】重庆市第二十九中学校2021届高三下学期开学测试数学试题()xf x e ≤a ()ln x f x xe ax a x =--0a ≤()f x ()0,∞+()0f x ≥a 21()cos 2f x x ax x =++()f x [0,)+∞21()()2g x f x x =-()g x sin ()1()x g x F x x -+=,2ππ⎡⎤⎢⎥⎣⎦1()ln(1)1f x a x x =-+-()()22g x f x x =-+(1,)+∞a 0a >()y f x =21()e 1()2x f x x mx m =+-+∈R ()f x ()f x 1x 2x ()f x ()e sin 1xf x ax x =-+-()f x ()0,∞+a 12a ≤<()()()2g x x f x =-11/ 11。
导数在数学含参问题中的应用

导数在数学含参问题中的应用新课程利用导数解决含参问题或恒成立问题,导数是分析和解决问题的有效工具。
但学生在运用导数解决含参的问题时,往往会束手无措,特别是对其中的分离参数无法纯粹的分离出来感到苦恼。
其实这一部分主要就是根据函数的单调性求出函数在一定条件下的最值,进而解决恒成立问题,含参数问题既是高中教学的重点和难点,又是历年高考的热点。
本文从常见题型对含参函数问题进行了分析与研究,着重介绍常见题型利用导数解决这些问题的基本策略。
标签:导数函数的单调性参数的取值范围恒成立导数的思想最初是由法国的数学家费马(Fermat)为研究极值问题而引入的,但随着人们对导数概念和性质的进一步认识和研究便发现它的引出和定义始终贯穿着函数思想。
新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强它在解决函数的含参问题上带来了很大的便利。
以函数为载体,以导数为工具,运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。
解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。
解决的主要途径是将含参数不等式的存在性或恒成立问题根据其不等式的结构特征,恰当地构造函数,等价转化为含参函数的最值讨论。
这也是最近几年高考在命题是在函数与导数交汇试题的显著特点和命题趋向。
由于这类题目涉及的知识面广,综合性强,不少考生在处理这类问题时,不知道确定参数范围的函数关系或不等关系从何而来,以至于处于无从下手的盲区,希望下面一些拙见能对一些考生的备考有所作用。
一、含参函数的单调性的问题导数的运算,导数与函数单调性的关系,利用导数的性质对参数进行分类讨论综合运用化归与转化的思想。
【例1】已知函数f(x)=lnx-a2x2+ax(a∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.解析:(1)当a=1时,f(x)=lnx-x2+x,其定义域是(0,+∞),f′(x)= -2x+1=令f′(x)=0,即- =0,解得x=- 或x=1∵x>0,∴x=1.当00;当x>1时,f′(x)0,∴f(x)在区间(1,+∞)上为增函数,不合题意.②当a>0时,f′(x)≤0(x>0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥,此时f(x)的单调递减区间为.③当a0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥- ,此时f(x)的单调递减区间为得a≤- .综上,实数a的取值范围是∪[1,+∞).【例2】已知函数f(x)= -2x2+lnx,其中a为常数.(1)若a=1,求函数f(x)的单调区间;(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.解析:(1)若a=1,则f(x)=3x-2x2+lnx的定义域为(0,+∞),f′(x)= -4x+3= = (x>0).当x∈(0,1),f′(x)>0时,函数f(x)=3x-2x2+lnx单调递增.当x∈(1,+∞),f′(x)<0时,函数f(x)=3x-2x2+lnx单调递减.故函数f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)f′(x)= -4x+ ,若函数f(x)在区间[1,2]上为单调函数,即在[1,2]上,f′(x)= -4x+ ≥0或f′(x)= -4x+ ≤0,即-4x+ ≥0或-4x+ ≤0在[1,2]上恒成立.即≥4x- 或≤4x- .令h(x)=4x- ,因为函数h(x)在[1,2]上单调递增,所以≥h(2)或≤h(1),即≥ 或≤3,解得a<0或0<a≤ 或a≥1.二、含参函数中的恒成立问题可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离或半分离(无法纯粹的分离),得到函数关系,从而使这种具有函数背景的范围问题迎刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。
利用函数的单调性求参数的取值范围(使用)

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:
、
如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。
导数解答题:求取值范围(1)基础(题目含详细答案)

《导数解答题:求取值范围》1、已知三次函数)(x f =b x ax x +-+623,a 、b 为实数,1)0(=f ,曲线=y )(x f 在点(1,)1(f )处切线的斜率为-6。
(1)求函数)(x f 的解析式;(2)若)(x f |12|-≤m 对任意的2(-∈x ,2)恒成立,求实数m 的取值范围。
【解】(1)623)(2-+='ax x x f 由导数的几何意义,6)1(-='f ∴ 23-=a ∵ 1)0(=f ∴ 1=b ∴ )(x f =162323+--x x x (2))2)(1(3633)(2-+=--='x x x x x f , 令)(x f '=0得11-=x ,22=x当∈x (-2,-1)时,0)(>'x f ,)(x f 递增; 当∈x (-1,2)时,0)(<'x f ,)(x f 递减。
∴ 在区间(-2,2)内,函数)(x f 的最大值为29)1(=-f ∵ )(x f |12|-≤m 对任意的2(-∈x ,2)恒成立∴ 29|12|≥-m ∴ 2912≥-m 或2912-≤-m ∴ 411≥m 或47-≤m2、已知()()R c b a c bx x ax x f ∈++-=,,23在()0,∞-上是增函数,在[0,3]上是减函数,且方程()0=x f 有三个实根.(Ⅰ)求b 的值;(Ⅱ) 求实数a 的取值范围。
【解】 (Ⅰ)∵()b x ax x f +-='232()x f 在()0,∞-上是增函数,在[0,3]上是减函数.∴ 当x=0时()x f 取得极小值.∴()00='f . ∴b=0∵方程()0=x f 有三个实根, ∴a≠0∴()b x ax x f +-='232=0的两根分别为.32,021ax x == 又()x f 在()0,∞-上是增函数,在[0,3]上是减函数.∴()0>'x f 在()0,∞-∈x 时恒成立,()0≤'x f 在[]3,0∈x 时恒成立 由二次函数的性质可知3320≥>a a 且∴920≤<a . 故实数a 的取值范围为2(0,]9. 3、已知函数x e x f =)(,曲线)(x f y =在点),(00y x 处的切线方程为)(x g y = (1)证明:对R x ∈∀,)()(x g x f ≥;(2)当0≥x 时,xaxx f ++≥11)(恒成立,求实数a 的取值范围 【解】(1)由x e x f =)(得x e x f =')(由题意知00)()(0x x e x x e x g +-=令)1()()()()(00000+--=---=-=x x e e e x x e e x g x f x h x x x x x 则0)(x x e e x h -=' 当0x x <时,0)(<'x h ,故)(x h 在),(0x -∞单调递减当0x x >时,0)(>'x h ,故)(x h 在),(0+∞x 单调递增 所以0)()(0=≥x h x h ,即)()(x g x f ≥ (2)ⅰ)当1≤a 时,由(1)知,当00=x 得1+≥x e x 故01)1(11111)(≥+-+=+-≥+--=+--xa x x x ax x x ax e x ax x f x ⅱ)当1>a 时,令ax x e ax x x f x H x -+-=-+-=)1)(1()1)(1)(()( 则a x e x H x --+='1)2()( 令a x e x H x M x --+='=1)2()()(,则0)3()(>+='x e x M x , 故)(x H '在),0[+∞上单调递增,而011)02()0(0<-=--+='a a e H 故存在区间),0(0x 使得0)(<'x H ,即存在区间),0(0x 使)(x H 单调递减,所以存在区间),0(0x 使得0)0()(=<H x H ,即xaxx f ++<11)( 这与xaxx f ++≥11)(在),0[+∞上恒成立矛盾 综上可得1≤a4、已知f (x )=ln ()ax x x a R +∈。
导数专题(一)参数的取值范围

太原市新希望双语学校 钱大平
(一)、概述:求参数的取值范围是数学 中普遍存在的问题(如函数、解析几何、 向量等)。宏观地讲,求参数的取值范围, 就是通过寻求参数所满足的不等量关系 (特殊地也可以是等量关系,一般地是不 等式或不等式组)而得到参数的取值范围 (特殊地范围可以夹挤为一个常数,也可 以无解)。应用导数求参数的取值范围就 是在求范围的过程中,采用了导数的方法 和手段。这类问题有一定的特定数学背景 (首先是函数问题的大背景)。
(二)、预备知识:
一、恒成立、能成立问题的化归(参考《成功密 码》9月刊P14)
1、利用分离参数确定不等式 f ( x, a ) 0 ( x D, a为实参数) 恒成立中参数a的取值范围的基本步骤: (1)将参数与变量分离,即化为 g ( a ) 恒成立的形式
f ( x) (或g (a) f ( x))
(2)求 f ( x)在x D 上的最大(或最小)值 (3)解不等式 g (a) f ( x) max (或g (a) f ( x) min ) ,得到a的取值范 围
例:已知两函数 f ( x) 8 x 2 16 x k , g ( x) 2 x 3 5 x 2 4 x , 其中k为实数。 (1)对任意 x 3, 3 ,都有 f ( x) g ( x) 成立,求k的取 值范围; (2)存在 x 3, 3 ,使 f ( x) g ( x) 成立,求k的取值范围 (3)对 x1 , x2 3, 3 ,都有 f ( x1 ) g ( x2 ) ,求k的取值范 围;
二、参数满足的条件与参数取值范围的逻辑关系 (集合观点理解:即用充分条件得到的参数范围是 用充要条件得到的范围的子集,用必要条件得到的 参数范围含盖用充要条件得到的范围)
高中数学求参数取值范围题型与方法总结归纳

参数取值问题的题型与方法一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。
例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。
解:原不等式即:4sinx+cos2x<45-a -a+5,要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。
f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3,∴45-a -a+5>3即45-a >a+2,上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a<8. 另解:a+cos2x<5-4sinx+45-a 即a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1],整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。
设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1,∴f(x)在[-1,1]内单调递减。
∴只需f(1)>0,即45-a >a -2.(下同)例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求APPB的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB =BAx x -,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.思路1: 从第一条想法入手,AP PB =BA x x -已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.解1:当直线l 垂直于x 轴时,可求得51-=PB AP ;当l与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l的方程为:3+=kx y ,代入椭圆方程,消去y得()045544922=+++kx x k,解之得 .4959627222,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x ,所以21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得952≥k ,所以51592918112-<-+-≤-k ,综上 511-≤≤-PB AP . 思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式。
利用函数的单调性求参数的取值范围

利用函数的单调性求参数的取值范围函数的单调性是指在一定范围内,函数的增减性质的统一性。
对于有单调性的函数,可以通过研究函数的导数来判断参数的取值范围。
首先,我们来回顾一下导数的定义和性质。
对于函数f(x),其导数可以表示为f'(x),导数表示函数在其中一点的变化率。
导数的正负号可以告诉我们函数的单调性。
1.若在[a,b]上f'(x)≥0,则函数在[a,b]上为单调递增函数。
2.若在[a,b]上f'(x)≤0,则函数在[a,b]上为单调递减函数。
3.若在[a,b]上f'(x)>0,则函数在[a,b]上为严格递增函数。
4.若在[a,b]上f'(x)<0,则函数在[a,b]上为严格递减函数。
步骤1:确定函数的定义域,即参数的取值范围。
步骤2:求出函数的导函数。
步骤3:利用导函数的性质来判断函数的单调性。
步骤4:结合定义域和单调性判断,确定参数的取值范围。
步骤5:验证参数的取值范围是否符合要求。
下面我们通过具体例子来说明求解参数取值范围的方法。
例子:求函数f(x) = ax^2 + bx + c 在定义域上的参数a、b、c的取值范围。
步骤1:确定函数的定义域。
对于二次函数,其定义域是整个实数集R。
步骤2:求出函数的导函数。
对f(x)求导得到f'(x) = 2ax + b。
步骤3:利用f'(x)的性质来判断函数的单调性。
-若2a>0,则函数在整个定义域上递增。
-若2a<0,则函数在整个定义域上递减。
步骤4:结合定义域和单调性判断,确定参数的取值范围。
-若2a>0,则函数在整个定义域上递增,所以a>0。
-若2a<0,则函数在整个定义域上递减,所以a<0。
然后,我们可以根据b和c的取值范围来进一步限定a的取值范围。
当a>0时:根据二次函数的几何性质,对于抛物线开口朝上的情况,函数的最小值出现在顶点处,顶点的x坐标为 -b/2a,对应的y坐标为 c - b^2/4a。
(2021年整理)利用导数求参数的取值范围

利用导数求参数的取值范围(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(利用导数求参数的取值范围(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为利用导数求参数的取值范围(推荐完整)的全部内容。
利用导数求参数的取值范围(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望利用导数求参数的取值范围(推荐完整)这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <利用导数求参数的取值范围(推荐完整)〉这篇文档的全部内容。
利用导数求参数的取值范围摘要:在讨论方程根的个数,研究两个函数图像的交点个数,以及不等式恒成立问题时,常常要求参数的取值范围,而这类问题的本质就是通过导函数来研究函数的单调性和极(最)值,画出函数图像的大致走势,数形结合分析问题。
例1.已知函数321()3f x x ax b =-+在2x =-处有极值。
(1) 求函数()f x 的单调区间;(2) 求函数()f x 在[]3,3-上有且仅有一个零点,求b 的取值范围。
解:(1) 由321()3f x x ax b =-+,得22'()32f x x ax a =-- 令222a '()320,=-,(0)3f x x ax a x a a =--==>1得x 当(),'()x f x f x 变化时,的变化情况如下表:由上述表格可知,3223()=()()()()11333327f x f a a a -=-----+=+极大值 3333()()11f x f a a a a a ==--+=-极大值(2)由(1)可知()(,)(,)3a f x a -∞-+∞在和上单调递增,在-a (,a )3上单调递减, 当33501,()=()10,()=f(a)=1-a 0327a a f x f a f x <≤-=+>≥极大值极小值 a ()-y f x ∴=∞在(,+)3上最多只有一个实数根,且此零点仅在1a =时取得 又()y f x =在(,)3a -∞-上单调递增,且2(1)(1)0f a a a a -=-=-≤ ()--y f x ∴=∞a 在(,)3上最多有一个实数根 于是,当01a <≤时,函数()y f x =有1个或2个零点,即函数()y f x =至多有两个实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数求参数取值范围的几种类型
学习目标:(1)学会利用导数的方法求参数的取值范围
(2)通过学习培养善于思考,善于总结的思维习惯
学习重点:学会利用函数的单调性求参数的取值范围;学会利用不等式求参数的取值范围 学习难点:在求参数的取值范围中构造关于x 的函数
学习过程:
类型1. 与函数单调性有关的类型
例1. 已知0a >,函数3()f x x ax =-在[)1,x ∈+∞是一个单调函数。
(1) 试问函数()f x 在[)1,+∞上是否为单调减函数?请说明理由;
(2) 若函数()y f x =在[)1,+∞上是单调增函数,试求a 的取值范围。
解:(1)'2()3f x x a =-,若函数()f x 在区间[)1,+∞上单调递减,则'2()30f x x a =-≤在[)1,x ∈+∞上恒成立,即23x a ≤对[)1,x ∈+∞恒成立,这样的a 值不存在。
所以函数()f x 在区间[)1,+∞上不是单调减函数。
(2)函数()y f x =在区间[)1,+∞上是单调增函数,则'2()3f x x a =-0≥,即23a x ≤在[)1,x ∈+∞上恒成立,在此区间上233y x =≥,从而得03a <≤
规律小结:函数在区间(a ,b)上递增'()0f x ⇔≥,递减'()f x ⇔0≤在此基础上再
研究参数的取值范围(一般可用不等式恒成立理论求解)注意:解出的参数的值要是使'()f x 恒等于0,则参数的这个值应舍去,否则保留。
类型2. 与不等式有关的类型
例2. 设函数1()(01)ln f x x x x x
=>≠且 (1) 求函数()f x 的单调区间;
(2) 已知12a
x x >对任意(0,1)x ∈成立,求实数a 的取值范围
解:(1)'22ln 1()x f x +=-,'1()0,f x x ==若则,列表如下:
所以的单调增区间为,单调减区间为
(3) 在1
2a x x >两边取对数,得1ln 2ln a x x >由于01x <<所以1ln 2ln a x x
>① 由(1)的结果知,当(0,1)x ∈时,1
()()f x f e e ≤=-。
为使①式对所
有(0,1)x ∈成立,当且仅当ln 2
a e >-即ln 2a e >- 规律小结:在利用不等式求参数取值范围时,通常要构造一个新的函数()g x ,若类似于
()a g x ≥,则只要研究max ()a g x ≥;若类似于()a g x ≤,则只要研究min ()a g x ≤ 类型3:与极值有关的类型
例3:若函数2()(1)x f x e x ax a =+++没有极值点,求a 的取值范围。
解:由已知可得'2()(1)(2)x x f x e x ax a e x a =+++++= 22)21x e x a x a ⎡⎤++++⎣⎦(,若
函数不存在极值点,则在方程'()0f x =即22)210x a x a ++++=(中,有22(2)4(21)40a a a a ∆=+-+=-≤,解之得04a ≤≤
规律小结:极值点的个数,一般是使'()0f x =方程根的个数,一般情况下导函数若可以化
成二次函数,我们可以利用判别式研究,若不是,我们可以借助图形研究。
类型4:与方程有关的类型
例4:试确定a 的取值范围,讨论x xe a =解的个数(解略)
练习:
1. 已知321(2)33
y x bx b x =
++++是R 上的单调增函数,则b 的取值范围是___
2. 设3()f x ax x =+恰有三个单调区间,则a 的范围是______
3. 已知321()22
f x x x x c =-
-+,若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围
4. 已知函数32()(6)1f x x ax a x =++++同时有极大值和极小值,求a 的取值范围。
归纳总结:。