大物作业答案
大物课后习题 答案

1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) j t t i t r)4321()53(2-+++=m (4) 1s m )3(3d d -⋅++==j t i tr v则 j i v734+= 1s m -⋅(6) 2s m 1d d -⋅==j tv a这说明该点只有y 方向的加速度,且为恒量。
1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s)的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得ts stl ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v tl v d d ,d d 0-==-=船绳即 θcos d d d d 00v v sl tl s l ts v ==-=-=船或 sv s h slv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置. 解:∵ t tv a 34d d +==分离变量,得 t t v d )34(d += 积分,得12234c t t v ++=由题知,0=t ,00=v ,∴01=c 故 2234t t v += 又因为 2234d d t t tx v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x所以s 10=t 时m70551021102sm 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-8 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b . 解:(1) bt v ts v -==0d dRbt v Rva b t v a n 202)(d d -==-==τ则 240222)(Rbt v b aa a n-+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n--==τϕ(2)由题意应有2402)(Rbt v b b a -+==即 0)(,)(4024022=-⇒-+=bt v Rbt v b b∴当bv t 0=时,b a =1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o0160cos v v v x == 21sm 10-⋅==g a n又∵ 1211ρv a n =∴m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1sm -⋅,而 o60cos 2⨯=g a n ∴ m 8060cos 10)20(22222=︒⨯==n a v ρ2-3 283166-⋅===sm m f a x x2167-⋅-==s m mf a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=2101200872167452832sm dt a v v s m dt a v v y y y x x x于是质点在2s 时的速度18745-⋅--=sm ji v(2) mji j i jt a i t a t v r y x 874134)167(21)4832122(21)21(220--=⨯-+⨯⨯+⨯-=++= 2-4 (1)∵dtdv mkv a =-=分离变量,得m kdt v dv -=即⎰⎰-=vv tmkdt v dv 0mkt ev v -=ln ln∴ tmk e v v -=0(2)⎰⎰---===tttmk mk ekmv dt ev vdtx 000)1((3)质点停止运动时速度为零,即t →∞, 故有⎰∞-=='000kmv dt ev x tmk(4)当t=km 时,其速度为ev ev ev v km m k 0100===-⋅-即速度减至v 0的e1.2-7由题知,小球落地时间为0.5s .因小球为平抛运动,故小球落地的瞬时向下的速度大小为v 1=gt=0.5g ,小球上跳速度的大小亦为v 2=0.5g .设向上为y 轴正向,则动量的增量 Δp=mv 2-mv 1 方向竖直向上,大小 |Δp |=mv 2-(-mv 1)=mg碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-12 (1)由题知,F 合为恒力,∴ A 合=F ·r=(7i-6j)·(-3i+4j+16k)=-21-24=-45 J (2)w tA N 756.045==∆=(3)由动能定理,ΔE k =A=-45 J2-15 弹簧A 、B 及重物C 受力如题2-15图所示平衡时,有题2-15图 F A =F B =Mg 又 F A =k 1Δx 1 F B =k 2Δx 2所以静止时两弹簧伸长量之比为 1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p=∆∆=2-20 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv +=即 222120v v v += ①3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离.解: 甲测得0,s 4==x t ∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv tx cv t t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv解出 c c t t c v 53)54(1)(122=-='∆∆-=8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x tt t v x x γγ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 2220153,1513βββ-=-=-=='则l l∴ c c v 542591=-=3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少?解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆∴ t cv t c t v t t ∆+'∆=∆+∆=∆γγ11′)1(cv t +'=∆γ6.01)8.0(112=-=c c γ则 γλτ)8.01(5.0)1(0c c cv t t +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+=3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何? 解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c ccc c c v cu u v v xx x143.05.06.016.05.0122-=⨯--=--='c ccc c v cu v cu v xyy 990.05.06.01866.06.011122222=⨯-⨯-=--='光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x='+'='22 正是光速不变. 3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功?解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==cv c m c m cm mcE E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆)1111(221222202122cv cv c m cm c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k F x +==串所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k m T +===ππωπ串(2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21k k k +=并 同上理,其振动周期为212k k m T +='π4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2A x =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t TA x)452cos(454πππφ+==t TA x4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10scm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知 12311mN 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT mk 即m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v∴ m )455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A (2)∵ ,334πππφ=-=∆∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大物习题答案1

习 题 一1—1 一质点在平面xOy 内运动,运动方程为x =2t ,2219t y -= (SI)。
(1)求质点的运动轨道;(2)求t =1s 和t =2s 时刻质点的位置矢量;(3)求t =1s 和t =2s 时刻质点的瞬时速度和瞬时加速度;(4)在什么时刻,质点的位置矢量和速度矢量垂直?这时x 、y 分量各为多少?(5)在什么时刻,质点离原点最近?最近距离为多大?[解] 质点的运动方程:t x 2=,2219t y -= (1)消去参数t ,得轨道方程为: 22119x y -= (2)把t=1s 代入运动方程,得j i j i r 172)219(22+=-+=t t 把t =2s 代入运动方程,可得j i j i r 114)2219(222+=⨯-+⨯= (3)由速度、加速度定义式,有4/,0/4/,2/-====-====dt dv a dt dv a t dt dy v dt dx v y y x x y x所以,t 时刻质点的速度和加速度为 j i j i t v v v y x 42-=+= j j i a 4-=+=y x a a所以,t=1s 时,j i v 42-=,j a 4-= t=2s 时,j i v 82-=,j a 4-= (4)当质点的位置矢量和速度矢量垂直时,有 0=⋅v r即 0]42[])219(2[2=-⋅-+j i j i t t t 整理,得 093=-t t解得 3,3;0321-===t t t (舍去) m 19,0,s 011===y x t 时 m 1,m 6,s 322===y x t 时 (5)任一时刻t 质点离原点的距离 222)219()2()(t t t r -+= 令d r/d t =0 可得 t =3所以,t =3s 时,质点离原点最近 r1—2 一粒子按规律59323+--=t t t x 沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动,减速运动的时间间隔。
大物解答题及其答案

热学部分:1.等(定)压摩尔热容和等(定)容摩尔热容的物理含义是什么?它们分别取决于哪些因素?答:1mol物质在等压过程中温度升高1K时所吸收的热量称为等压摩尔热容,同理,1mol物质在等容过程中温度升高1K时所吸收的热量称为等容摩尔热容。
理想气体的等压摩尔热容和等容摩尔热容只与气体分子的自由度有关。
2.理想气体等压过程的特征是什么?在此过程中热量、作功和内能如何表示?答:理想气体的等压过程的特征是压强为恒量,改变温度;热量、内能和功都在变化。
且热量:内能增量:气体对外作的功:3.理想气体等容过程的特征是什么?在此过程中热量、作功和内能如何表示?答:理想气体等容过程的特征是,体积为恒量,改变温度;对外作功为零,热量等于内能的增量。
热量和内能增量:气体对外作的功:4.理想气体等温过程的特征是什么?在此过程中热量、作功和内能如何表示?答:理想气体等温过程的特征是温度是恒量,改变压强;内能变化为0.系统吸收的热量等于对外做的功。
吸收热量和对外作功:内能增量:5.简述卡诺循环过程;提高热机效率的途径有哪些?答:卡诺循环是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程,它是由两个等温和两个绝热的平衡过程组成。
按照循环方向的不同,分为卡诺正循环和卡诺负循环,分别对应热机和制冷机。
以卡诺正循环为例,第一过程是等温膨胀,从高温热库吸入热量,第二过程是绝热膨胀,第三过程是等温压缩过程,系统向低温热库放出热量,第四过程是绝热压缩过程。
提高热机效率的方式主要有两种,提高高温热库温度,降低低温热库温度。
6.给出热力学第二定律的两种以上叙述方式。
证明能否用一个等温过程和一个绝热过程构成一个循环过程。
答:开尔文表述:不可能制成一种循环动作的热机,只从单一热源吸收热量,使之完全变为有用的功,而不引起其他变化。
(或者,第二类永动机是不可能实现的。
)克劳修斯描述:热量不能自动的从低温物体传到高温物体。
由一个等温过程和绝热过程不能构成一个循环过程,理由如下:假设有一热机等温过程中吸收热量并在绝热膨胀过程中将吸收的热量完全转化为功,这显然与热力学第二定律的开氏表述矛盾,同理,再假设有一制冷机,经历一次绝热压缩后向低温热库吸热并在等温过程完全用于制冷,将这两个过程做成一个复合热机,一次循环后,外界没有作功,二热量却自动的从低温热源传到高温热源,与热力学第二定律的克氏表述矛盾。
大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。
1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。
试求圆筒内部的磁感应强度。
解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.i ω σc deab f67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。
今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。
解:)(22r R IJ -=π10121r k J B ⨯=μ 20221r k J B ⨯-=μj Ja O O k J r r k J B B B 021********21)(21μμμ=⨯=-⨯=+=j r R IaB )(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。
解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr rL R I Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。
大物参考答案

©物理系_2015_09《大学物理AII 》作业 No.01 机械振动一、 判断题:(用“T ”表示正确和“F ”表示错误) [ F ] 1.只有受弹性力作用的物体才能做简谐振动。
解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。
[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。
解:根据简谐振子频率mk=ω,可知角频率由系统本身性质决定,与初始条件无关。
[ F ] 3.单摆的运动就是简谐振动。
解:单摆小角度的摆动才可看做是简谐振动。
[ T ] 4.孤立简谐振动系统的动能与势能反相变化。
解:孤立的谐振系统机械能守恒,动能势能反相变化。
[ F ] 5.两个简谐振动的合成振动一定是简谐振动。
解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。
二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。
解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为: ()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m ,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。
3. 水平弹簧振子,动能和势能相等的位置在:[ C ] (A)4A x =(B) 2A x = (C) 2A x = (D)3Ax =解:对于孤立的谐振系统,机械能守恒,动能势能反相变化。
那么动能势能相等时,有:221412122Ax kx kA E E E p k =⇒====,所以选C 。
大物静电场作业解答

一半径为R的无限长带电圆柱,其体电荷密度为 = 0 r ( r R ), 0为常数,求其圆柱体内的场强(r R),圆柱体外的场强为(r > R)。
R
解:取同轴高斯面r R,由高斯定理得
h
解:取同轴高斯面r > R,由高斯定理得
三.计算题:
真空中一高 h 等于 20 cm ,底面半径 R = 10cm 的圆锥体, 在其顶点与底面中心连线的中点上置一 q = 10-5 C 的点电荷,求通过该圆锥体侧面的电场强度通量.( 0 = 8.85×10-12 N -1 • m -2 )
8
4.在静电场中,下列说法中哪一个是正确的? [ D ]
5. 有四个等量点电荷在OXY平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零,则原点O处电场强度和电势为零的组态是: [ D ]
-q
-q
+q
+q
O
-q
+q
-q
+q
O
+q
-q
+q
-q
O
+q
-q
-q
+q
O
则通过圆锥侧面的电场强度通量就等于对整个球面的通量减去通过圆锥底面所截球冠的通量 .
以为圆心、为 半径作球面。
r 由几何关系 h
2. 图示一厚度为d 的"无限大"均匀带电平面,电荷密度为,试求板内外的场强分布.并画出场强在x轴的投影值随坐标变化的图线,即Ex-x图线.(设原点在带电平板的中央平面上,ox轴垂直于平板)
,不是 y!
设在均匀电场中,场强E与半径为R的半球面的轴相平行,通过此半球面的电场强度通量为 [ ] 解:利用高斯定理,穿过圆平面的电力线必通过半球面,因此在圆平面上 所以通过此半球面的电通量为
面向新世纪课程教材大学物理大作业答案——刚体力学作业

L2
−
L1
=
J 2ω2
−
J1ω1
质点的动量定理
dpr
=
r F
⋅
dt
∫ r
I
=
tr F ⋅ dt =
t0
pr − pr0 = mvr − mvr0
三、刚体的角动量守恒定律
1. 角动量守恒定律
∫ 由角动量定理
r M
当
r M外
=
0
时,
外
d
t r
ΔL
= =
Δ 0
r L
r L
=
恒矢量
P.6
1
区分两类冲击摆
(1)
大作业题解
刚体力学
第3章 刚体力学基础
一、对转轴的力矩
r M
=
rr
×
r F
单位:N·m
r M
=
rr
×
r F⊥
r M
=
rr
×
r F
大小: 方向:
M = Frsinϕ
rr
→
r F
右旋前进方向
二、定轴转动定律
M z = Jβ
P.2
转动惯量(moment of inertia)
∑ 1. 定义 J = iri2mi 单位: kg ⋅ m 2
l/4 O
[ A]
mg l = 1 Jω 2 J = 7 ml 2
22
48
⇒ ω = 4 3g 7l
P.11
9.如图所示,一人造卫星到地球中心C的最大距离和
最小距离分别为RA和RB。设人造卫星对应的角动量分
别为LA和LB,动能分别为EkA和EkB,则有
(A) LB > LA,EkB > EkA
大物实验答案e

2.在砝码盘上加载时为什么采用正反向测量取平均值的方法?答:因为金属丝弹性形变有滞后效应,从而带来系统误差。
【思考题】1.光杠杆有什么优点?怎样提高光杠杆测量微小长度变化的灵敏度?答:〔1〕直观 、简便、精度高。
〔2〕因为D x b L 2∆=∆,即bD L x 2=∆∆,所以要提高光杠杆测量微小长度变化的灵敏度L x ∆∆,应尽可能减小光杠杆长度b 〔光杠杆后支点到两个前支点连线的垂直距离〕,或适当增大D 〔光杠杆小镜子到标尺的距离为D 〕。
2.如果实验中操作无误,得到的数据前一两个偏大,这可能是什么原因,如何防止?答:可能是因为金属丝有弯曲。
防止的方法是先加一两个发码将金属丝的弯曲拉直。
3.如何防止测量过程中标尺读数超出望远镜范围?答:开始实验时,应调节标尺的上下,使标尺的下端大致与望远镜光轴等高,这样未加砝码时从望远镜当中看到的标尺读数接近标尺的下端,逐渐加砝码的过程中看到标尺读数向上端变化。
这样就防止了测量过程中标尺读数超出望远镜范围。
实验十六 示波器的使用【预习题】1.示波器为什么能把看不见的变化电压显示成看得见的图象?简述其原理。
答:〔1〕示波管内高速电子束使荧光屏上产生光亮点,而电子束的偏转角度〔光点在荧光屏上的位移〕是受X 轴和Y 轴偏转板上所加电压的控制。
〔2〕假设只在X 轴偏转板上加一个锯齿波电压〔该电压随时间从-U 按一定比例增大到+U 〕,那么光点就会从荧光屏左端水平地移动到右端〔称为扫描〕,由于荧光屏上的发光物质的特性使光迹有一定保存时间,因而在屏幕水平方向形成一条亮迹〔称为扫描线〕。
〔3〕假设只在Y 轴偏转板上加信号电压,那么随着信号幅度的变化光点就会在荧光屏竖直方向作上下移动形成一条竖直亮迹。
〔4〕如在Y 轴偏转板加上电压信号,同时又在X 轴偏转板加上锯齿波扫描电压,那么电子束受到水平和竖直电场的共同作用,光点的轨迹呈现二维图形〔光点在X 方向均匀地从左向右水平移动的同时又在Y 方向随信号幅度的变化在竖直方向作上下移动〕,即将Y 轴偏转板上电压信号幅度随时间变化的规律在屏幕上展开成为函数曲线〔即信号波形〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
©物理系_2014_09《大学物理AII 》作业 No.7 光场的量子性班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)[ F ] 1.黑体辐射的经典理论解释------维恩公式会出现“紫外灾难”现象。
解:教材155页。
[ F ] 2.光电效应中,光子与电子的相互作用形式是弹性碰撞;而在康普顿效应中,光子与电子的相互作用形式是完全非弹性碰撞。
解:就光子与电子的相互作用形式而言,光电效应中,二者是完全非弹性碰撞;康普顿效应中,二者是弹性碰撞。
[ T ] 3.光电效应中饱和光电流大小与入射光的频率成正比。
解:教材157页。
当入射光频率一定时,饱和光电流与入射光强成正比。
[ F ] 4.康普顿散射的散射光中只有比入射光波长更长的波长出现。
解:教材160页。
散射光中既有原来波长的成分,也有波长增长的成分。
[ F ] 5.氢原子光谱线的巴尔末系是氢原子所有激发态向基态跃迁而形成。
解:里德伯公式中,)11(1~22nk R -==λλ,巴耳末系: k = 2, 而基态是k = 1.二、选择题:1.激光全息照相技术主要是利用激光的哪一种优良特性? [ C ] (A) 亮度性 (B) 方向性好(C) 相干性好 (D) 抗电磁干扰能力强解:教材183.2.以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示。
然后保持光的频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示,则满足题意的图是 [ B解:光的强度I=Nhv , 其中N 为单位时间内通过垂直于光线的单位面积的光子数。
保持光(A)(B)(C)(D)的频率v 不变,增大照射光强I ,则光子数N 增加,光电子数也随之增加,电流i 也增加。
给定光材料,截止电压只与频率有关,因此本问截止电压不变。
故选B3. 根据黑体辐射实验规律,若物体的温度增加一倍,其总辐射能变为原来的[ D ](A) 1倍 (B) 2倍 (C) 4倍 (D) 16倍 解: 根据斯特潘-玻尔兹曼定律:()4T T E σ=, 知如果物体的温度增加一倍,即1212162E E T T =⇒=4. 在X 射线散射实验中,若散射光波长是入射光波长的1.2倍,则入射光光子能量0ε与散射光光子能量ε之比为[ B ] (A) 0.8(B) 1.2 (C) 1.6(D) 2.0解: λεhc=,00λλεε==1.2 00λεhc =,02.1λλ=,所以2.100==λλεε5.假定氢原子原来是静止的,则氢原子从n =3的激发态直接通过辐射跃迁到基态的反冲速度大约为[ C ] (A) 10m ⋅s -1 (B) 100 m ⋅s -1 (C) 4 m ⋅s -1 (D) 400 m ⋅s -1 (已知:氢原子的质量m =1.67×10-27kg)解:从 n = 3 到n = 1辐射光子的能量为13E E h -=ν,动量大小为ch hp νλ==光, 氢原子辐射光子前后动量守恒,有 氢光p p -=0, 光氢p p =, 所以,反冲速度为86.31031067.1106.11316.13 827192=⨯⨯⨯⨯⨯-⨯-===--)(氢氢氢m c h m p v ν(m ⋅s 1-)三、填空题:1.设用频率为ν 1和ν 2的两种单色光,先后照射同一种金属均能产生光电效应。
已知金属的红限频率为ν 0,测得两次照射时的遏止电压|U a 2| = 3 |U a 1|,则这两种单色光的频率关系为 ____01223ννν-=__ 。
解:由光电效应方程| U |0e h h +=νν,得用频率为ν 1的单色光,照射金属时其遏止电压为eh h a 011| U |νν-=(V)用频率为ν 2的单色光,照射金属时其遏止电压为eh h a 022| U |νν-= 题意两次照射时的遏止电压 |U a 2| = 3 |U a 1|故这两种单色光的频率关系满足 eh h e h h 01023νννν-⨯=-即有01223ννν-=2.按照原子的量子理论,原子可以通过_____自发辐射_、__受激辐射______两种辐射方式发光,而激光是由____受激辐射____方式产生的。
3.在康普顿效应实验中,若散射光波长是入射光波长的 1.4倍,则散射光光子能量ε 与反冲电子动能E K 之比为______2.5________。
解:设入射光子能量为 0E ,则散射光光子能量00754.1E hc hch ====λλνε由能量守恒定律和题意有反冲电子动能为0072E E E K =-=ε故散射光光子能量ε 与反冲电子动能E K 之比为5.272750==EE E K ε4.光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射。
若反冲电子的能量为 0.1 MeV ,则散射光波长的改变量∆λ与入射光波长λ0之比值为____0.25____。
解:入射X 射线光子能量为 Mev 5.00=λch由能量守恒定律和题意有出射X 射线光子能量为 Mev 4.01.05.0=-=λch故由康普顿散射理论知散射光波长的改变量∆λ与入射光波长λ0之比值为:25.015.04.0000=-=-=∆hc hcλλλλλ5.处于基态的氢原子吸收了13.06eV 的能量后,可激发到n = ______5_____ 的能级。
当它跃迁回到各低能级态时,可能辐射的光谱线中属于巴尔末系的共有____3_____条。
解:由波尔氢原子理论的跃迁公式)11(221nm E h -=ν可得处于基态的氢原子吸收了13.06eV 的能量后,能激发到的最高能级的量子数为 50182.5)06.13(6.136.1311≈=----=-=νh E E n画出能级跃迁图如右,由此知跃迁回到基态时, 可能辐射的光谱线中属于巴尔末系的共有 3 条。
n =2n =3n =4n =5n=1赖曼系四、计算题: 1. 图中所示为在一次光电效应实验中得出的曲线 (1) 求证:对不同材料的金属,AB 线的斜率相同。
(2) 由图上数据求出普朗克恒量h 。
(基本电荷e =1.60×10-19 C)解:(1) 由爱因斯坦光电效应方程 A h U e a -=ν得遏止电压 e A e h U a //-=ν即e h U a /d /d =ν (恒量)由此可知,对不同金属,曲线的斜率相同。
(2) 由图知普朗克恒量sJ 1040.610)0.50.10(00.21060.1tg 341419⋅⨯=⨯--⨯⨯==--θe h2. 设康普顿效应中入射X 射线(伦琴射线)的波长λ =0.800 Å,散射的X 射线与入射的X 射线垂直,求:(1) 散射角90=ϕ的康普顿散射波长是多少? (2) 反冲电子的动能E K 。
(3) 反冲电子运动的方向与入射的X 射线之间的夹角θ。
(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)解:令p 、ν 和p ' 、ν'分别为入射与散射光子的动量和频率,v m 为反冲电子的动量(如图)。
因散射线与入射线垂直,散射角φ =π / 2,因此由康普顿公式可求得散射X 射线的波长 (1))A 0.824( 21024.02800.02in 22=⨯⨯+=+=∆+='ϕλλλλλs c(2) 根据能量守恒定律22mc h h c m e +'=+νν且 22c m mc E e K -=得反冲电子的动能J 1024.7)/()(-17⨯='-'='-=λλλλννhc h h E K(2) 根据动量守恒定律vm p p +'=|U a | (V) ν (×1014 Hz) A B0 1.0 2.05.0 10..0θ ppθv mφ则由图知 2222)/()/(λλ'+='+=h h p p mv 22)/()/(/cos λλλθ'+==h h h mv p 2)/(11λλ'+=='+=-21)/(11cos λλθ44.15°3. 氢原子光谱的巴耳末线系中,有一光谱线的波长为4340 Å,试求: (1) 与这一谱线相应的光子能量为多少电子伏特? (2) 该谱线是氢原子由能级E n 跃迁到能级E k 产生的,n 和k 各为多少? (3) 最高能级为E 5的大量氢原子,最多可以发射几个线系,共几条谱线? 请在氢原子能级跃迁图中表示出来,并说明波长最短的是哪一条谱线。
解:(1) 与这一谱线相应的光子能量为:eV 2.861043401000.31063.6/10834≈⨯⨯⨯⨯==--λνhc h(2) 由于此谱线是巴耳末线系,必有 k =24.32/21-==E E K e V (E 1 =-13.6 e V) νh E n E E K n +==21/51=+=νh E E n K(3) 由右图氢原子能级跃迁图可知可发射四个线系,共有10条谱线 波长最短的是由n =5跃迁到n =1的谱线,波长为A 15.9521060.1)]6.13()25/6.13[(1000.31063.61983415=⨯⨯---⨯⨯⨯=-=--E E hc λ n =2n =3n =4n =5 n =1赖曼系。