(完整版)有限元第二章课后题答案
机械有限元习题答案——哈工大

机械有限元习题答案——哈⼯⼤第⼆章习题2.1 解释如下的概念:应⼒、应变,⼏何⽅程、物理⽅程、虚位移原理。
解○1应⼒是某截⾯上的应⼒在该处的集度。
○2 应变是指单元体在某⼀个⽅向上有⼀个ΔU 的伸长量,其相对变化量就是应变。
X U Xx ??=ε表⽰在x 轴的⽅向上的正应变,其包括正应变和剪应变。
○3⼏何⽅程是表⽰弹性体内节点的应变分量与位移分量之间的关系,其完整表⽰如下:Txz yz xy z y x x w z u zv y w y u x v z w y vx u x w z u z v y w y u x v z w y v x u ??+++=+????+????+?=??????=γγγεεεε○4物理⽅程:表⽰应⼒和应变关系的⽅程某⼀点应⼒分量与应变分量之间的关系如下:=???????????????????=666564636261565554535251464545434241363534333231262524232221161514131211αααααααααααααααααααααααααααααααααααατττσσσσxz yz xy z y xxz yz xy zz yy xx γγγεεε○5虚位移原理:在弹性有⼀虚位移情况下,由于作⽤在每个质点上的⼒系,在相应的虚位移上虚功总和为零,即为:若弹性体在已知的⾯⼒和体⼒的作⽤下处于平衡状态,那么使弹性体产⽣虚位移,所有作⽤在弹性体上的体⼒在虚位移上所做的⼯就等于弹性体所具有的虚位能。
2.2说明弹性体⼒学中的⼏个基本假设。
○1 连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。
○2 完全弹性假设:就是假定物体服从虎克定律。
○3 各向同性假设:就是假定整个物体是由同意材料组成的。
○4 ⼩变形和⼩位移假设:就是指物体各点的位移都远远⼩于物体原来的尺⼨,并且其应变和转⾓都⼩于1。
2.3简述线应变与剪应变的⼏何含义。
高等有限元课后题答案

⾼等有限元课后题答案2 弹性⼒学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应⼒变化复杂的地⽅采⽤较密⽹格,⽽在其他地⽅采⽤较稀疏⽹格?答:在应⼒变化复杂的地⽅每⼀结点与相邻结点的应⼒都变化较⼤,若⽹格划分较稀疏,则在应⼒突变处没有设置结点,⽽使得所求解的误差很⼤,若⽹格划分较密时,则应⼒变化复杂的地⽅可以设置更多的结点,从⽽使得所求解的精度更⾼⼀些。
2.2 因为应⼒边界条件就是边界上的平衡⽅程,所以引⽤虚功原理必然满⾜应⼒边界条件,对吗?答:对。
2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性⼒学中受内压和外压作⽤的圆环能⽤有限元⽅法求解吗?为什么?答:有限元法是⼀种位移解法,故只能求解位移边值问题和混合边值问题。
⽽应⼒边值问题没有确定的位移约束,不能⽤位移法求解,所以也不能⽤有限元法求解。
2.4 矩形单元旋转⼀个⾓度后还能够保持在单元边界上的位移协调吗?答:能。
矩形单元的插值函数满⾜单元内部和单元边界上的连续性要求,是⼀个协调元。
矩形的插值函数只与坐标差有关,旋转⼀个⾓度后各个结点的坐标差保持不变,所以插值函数保持不变。
因此矩形单元旋转⼀个⾓度后还能够保持在单元边界上的位移协调。
2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽?答:因素:总体刚度矩阵呈带状分布与单元内最⼤结点号与最⼩结点号的差有关。
计算:设半带宽为B ,每个结点的⾃由度为n ,各单元中结点整体码的最⼤差值为D ,则B=n(D+1),在平⾯问题中n=2。
2.6为什么单元尺⼨不要相差太⼤,如果这样,会导致什么结果?答:由于实际⼯程是⼀个⼆维或三维的连续体,将其分为具有简单⽽规则的⼏何单元,这样便于⽹格计算,还可以通过增加结点数提⾼单元精度。
在⼏何形状上等于或近似与原来形状,减⼩由于形状差异过⼤带来的误差。
若形状相差过⼤,使结构应⼒分析困难加⼤,误差同时也加⼤。
2.7 剖分⽹格时,在边界出现突变和有集中⼒作⽤的地⽅要设置结点或单元边界,试说明理由。
有限单元法课后习题全部答案_王勖成

∫
∂ 2φ ∂ 2φ ∂φ ∂φ k − ∫ k 2 + k 2 + Q δφ d Ω + ∫ δφ d Ω − ∫ αφ − q − k δφ d Γ Ω Γ − Γ Γ q q ∂y ∂n ∂n ∂x
欧拉方程: k
∂ 2φ ∂ 2φ + +Q = k 0 ∂x 2 ∂y 2
习题 1.2: 在用有限元法求解时,边界条件总是满足的,控制方程的不完全匹配,会产生误差。题中所 ,代入边 给出的近似函数: φ =a0 + a1 x + a2 x + a3 x ,应该满足边界条件,对于情况(1)
2 3
界条件可得 = a0 0, = a3
1 − a1 L − a2 L2 ,从而 L3 x3 x3 x3 2 ) + a ( x − ) + 2 L2 L L3
∫
= =
∑{ A
m k =1 m
T
( N j ( xk )) [ A( N i ( xk )ai ) − f ( xk )]
m
}
( N j )A( N i )ai − ∑ AT ( N j ) f = k 1= k 1
T
∑A
= Ka-P
(写成矩阵形式)
因此, kij =
d 2 w dw d 3 w 0 dx 2 δ dx − dx3 δ w = 0
L
1.5 如有一问题的泛函为 = Π ( w)
∫
L
0
EI d 2 w 2 kw2 + qwdx ,其中 E, I, k 是常数,q 2 + 2 dx 2
最新有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元Z间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩.5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。
7、在弹性和小变形下,节点力和节点位移关系是线性关系。
8、弹性力学问题的方程个数有15个,未知量个数有15个。
9、弹性力学平面问题方程个数有8,未知数8个。
10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值,具有本点为JL_•它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是—三角形一单元内部坐标的—线性一函数,他反映了单元的—位移—状态16、在进行节点编号时,同一单元的相邻节点的号码差尽量小.17、三角形单元的位移模式为—线性位移模式」18、矩形单元的位移模式为—双线性位移模式_19、在选择多项式位移模式的阶次时,要求—所选的位移模式应该与局部坐标系的方位无关的性质为几何一各向同性20、单元刚度矩阵描述了—节点力_和_节点位移之间的关系21、矩形单元边界上位移是连续变化的1.诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2.有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
3.有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约朿条件,求解线性方程组,得出节点位移。
机械结构有限元分析第二章课后答案 哈工大

εz =
∂w =0 ∂z
γ xy =
∂u ∂v + =0 ∂y ∂x
γ yz =
∂v ∂w + =0 ∂z ∂y
γ zx =
∂u ∂w + = 12 × 10 2 ∂z ∂x
2.9 一具有平面应力场的物体,材料参数为 E、v。有如下位移场
u (x, y ) = ax 3 − bxy 2
v(x, y ) = cx 2 y − dy 3
εz
γ xy
γ yz
γ zx ]
T
式中, D —弹性矩阵,是一个常数矩阵。 虚位移原理:一个弹性体在外力和内力作用下处于平衡状态,则对于任何约束允许的虚位移来 说,外力所做的虚功等于内力的虚功。
2.2 说明弹性力学中的几个基本假设。
答:弹性力学中的几个基本假设有:
(1)连续性假定,指假定整个物体的体积都被组成该物体的介质所填满,不存在任何空隙。 (2)完全弹性假定,指假定物体服从胡克定律,即应变与引起该应变的应力成正比。 (3)均匀性假定,指假定整个物体是由同一材料组成的。
2 ∂ 2ε x ∂ ε y ∂ 3u ∂ 3v + = + = 2c − 2b ∂y 2 ∂x 2 ∂x∂y 2 ∂y∂x 2
∂ 2 γ xy ∂x∂y
= 2c − 2b
2 2 ∂ 2 ε x ∂ ε y ∂ γ xy 所以满足 的相容方程 + = ∂x∂y ∂y 2 ∂x 2
2.10 一具有平面应力场的物体,材料参数为 E、v。有如下位移场
σy =
⎛ ∂v ∂u ⎞ 4v ⎡⎛ 3aE Eb ⎞ 2 ⎛ ⎞ 2⎤ ⎜ ⎜ ∂y + µ ∂x ⎟ ⎟ = 4v − E ⎢⎜ c + 2v − 3a ⎟ x − ⎜ 3d + 2v − b ⎟ y ⎥ ⎠ ⎝ ⎠ ⎦ ⎣⎝ ⎝ ⎠
有限元习题及答案ppt课件

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
有限元习题及答案

有限元习题及答案有限元习题及答案有限元方法是一种常用的数值计算方法,用于求解各种工程和科学问题。
在学习有限元方法的过程中,练习习题是非常重要的,可以帮助学生巩固所学的知识,并提高解决实际问题的能力。
本文将介绍一些有限元习题及其答案,希望对学习有限元方法的同学有所帮助。
习题一:一维热传导问题考虑一个长度为L的一维杆,其两端固定,杆上的温度满足以下热传导方程:∂²T/∂x² = 0,其中T为温度,x为位置。
已知杆的两端温度分别为T1和T2,求解杆上的温度分布。
解答一:根据热传导方程,可以得到温度分布的一般解为T(x) = Ax + B,其中A和B为常数。
根据边界条件,可以得到方程组:T(0) = B = T1T(L) = AL + B = T2解方程组可得A = (T2 - T1) / L,B = T1。
因此,温度分布为T(x) = ((T2 - T1) / L) * x + T1。
习题二:二维弹性问题考虑一个矩形薄板,其长为L,宽为W,材料的弹性模量为E,泊松比为ν。
已知薄板的边界上施加了一定的边界条件,求解薄板上的位移场。
解答二:对于二维弹性问题,可以使用平面应力假设,即假设薄板内部的应力只有两个分量σx和σy,并且与z轴无关。
根据平面应力假设和胡克定律,可以得到位移场的偏微分方程:∂²u/∂x² + ν * (∂²u/∂y²) + (1 - ν) * (∂²v/∂x∂y) = 0∂²v/∂y² + ν * (∂²v/∂x²) + (1 - ν) * (∂²u/∂x∂y) = 0其中u和v分别为位移场在x和y方向上的分量。
边界条件根据具体情况给定。
通过数值方法,如有限元方法,可以求解位移场的近似解。
习题三:三维流体力学问题考虑一个三维流体力学问题,流体在一个封闭容器内流动,容器的形状为一个长方体,已知流体的速度场和压力场的初始条件,求解流体的运动状态。
有限元分析基础课后习题答案ppt课件

2
0
2(1
1
)
1 2 1
0
0
0
1
E 8
4 2 0
2 4 0
0 0 1
4
3
24
4 2 0
D
E 8
2
4
0
0 0 1
1 0 0 0 1 0
B 0 0 0 1 0 1
0 1 1 0 1 1
K e BT DBtA
1 0 0 0 1
0
T
4
2
01
0
0
0
1
0
E 8
0
0
0
1
0
1 1 4 00 0 0 1
ppt精选版19etppt精选版20ppt精选版21ppt精选版22ppt精选版23ppt精选版24ppt精选版25ppt精选版26ppt精选版27ppt精选版28ppt精选版29ppt精选版30
三角形单元i,j,m的j m边作用有 如图所示线形分布面载荷,求 结点载荷向量。 解:面力移置公式:
Re NT ptds
0
v1
0
3
Et
1
20 1 1
0
0
1 1 1 3 0 0
4 0 0 2 1 1
0 4 2 0 1 3
0 2 4 0 3 1
2 0 0 4 1 1
1 1 3 1 4 2
421113uuuvvv432432
0
0
0
P
0
0
Et 4 20 0
0 4
uv33
a
am a * a 0*0 a2,bm 0 a a, cm 0 a a
N
Ni 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 弹性力学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格?答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。
2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗?答:对。
2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。
而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。
2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗?答:能。
矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。
矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。
因此矩形单元旋转一个角度后还能够保持在单元边界上的位移协调。
2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。
计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。
2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。
在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。
若形状相差过大,使结构应力分析困难加大,误差同时也加大。
2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。
答:有限元处于弹性力学问题的方法是离散法。
它将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上相互联系,即只有结点才能传递力。
所以在边界出现突变和有集中力作用的地方要设置结点和单元边界。
2.8 为什么说三角形三结点单元是常应变单元,如果在每边中点增加一个结点,那么单元内应力如何分布?答:(1)应变矩阵[B]中的参数m j i m j i c c c b b b 、、、、、由坐标变量x 、y 之差确定。
当单元的坐标差确定之后,这些参数与坐标变量x 、y 无关,因此[B]为常量阵。
当单元的结点位移{a}确定后,由[B]转换求得的单元应变都是常量,也就是说在荷载作用下单元中各点具有统一的xy y x γεε、、值。
因此三结点三角形单元称为常应变单元。
(2)如果在每边中点增加一个结点,单元内的应力为线性分布。
习 题2.1试证明x 、y 与面积坐标的关系 证明:设P 点坐标为(x,y )j jpijy x yxy x A ii11121=()()()()[]()y c x b a y x x x y y y x y x xy y x y x y x x y y x m m m i j j i i j j i j i j i j i j i ++=-+-+-=---++=212121同理可求得:由面积坐标定义得:()y c x b a AA A L i i i ijmPjm i ++==21()()y c x b a y x y x y x A y c x b a y x y x yxA j j j iim m pmii i i mm j jpjm++==++==21111212111121()y c x b a AA A L j j j ijm Pmi j ++==21()y c x b a AA A L m m m ijmPij m ++==21由此推出坐标y x 、与面积坐标的函数关系:()()22j i i j j i i j i j j i m j j m m j m j m j j m A c L c L a c a c x b c b c A b L b L a b b a y b c b c ⎧-+-=⎪-⎪⎨-+-⎪=⎪-⎩式(2.1)面积:m i i m j m m j i j j i m j i c b c b c b c b c b c b a a a A -=-=-=++=2代入式(2.1)有:mj j m m j j m j m m j i j j i j i i j j i i j c b c b b a b a L b L b y c b c b c a c a L c L c x --+-=--+-=其中形状参数由下式确定:mj mji m j mji j m m j mm jji x x x x c y y y y b y x y x y x y x a +-==-=-=-==1111代入上式(2.1)可转化为:m m j j i i m m j j i i L y L y L y y L x L x L x x ++=++=再加上 m j i L L L ++=1 所以用面积坐标表示直角坐标矩阵形式如下:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i L L L y y y x x x y x 1111 2.2 试证明两相似三角形的单元刚度矩阵相同。
证明:由于两个三角形相似,故设h A A =21, h 为一常数。
三角形:()111121i j ji i c b c b A -=111111i m j m j i y y b y y b -=-=111111i m j m j i x x c x x c +-=+-=参数Λj i j i c c b b 、、、,只与坐标差有关,所以hb b i i 121=hc c i i 121=单元刚度矩阵通式为:hb b b b s r s r 12211=h A A 121= 故[][]21rs rs K K =所以[][][][][][][][][][][][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==mm mjmijm jjjiimij ii Te K K K K K K K K K tA B D B K [][]eeK K 21=因此两相似三角形的单元刚度矩阵相同。
2.3 直角三角形固定在刚性基础上,受齐顶的水压力和自重作用,如图2.14所示。
若按一个单元计算,水的容重g γ,三角形平面构件容重g ρ,取泊松比v =1/6,试求顶点位移和固定面上的反力。
解:按逆时针编码,局部编码与整体编码相同:1-2-3建立坐标())0,0(3)3,0(20,21:a a xoy(1) 求形函数矩阵:[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-+-+=-=s r s r s r s r s r s r s r s r rsb bc c c b b c b c c b c c b b A Et K 21212121142νννννννa a a a 600321===a b b a b 303321-===a c a c c 220321-===图(2.14) 形函数:)(21y c x b a A N i i i i ++=233221a a a A =⨯⨯=所以:ay a x N a yN a xN 32132321--===形函数的矩阵为:[][][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==a y a x a y a x a y a x a y a x N N N N m ji3210302003210302(2) 刚度矩阵[][][][][][][][][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211K K K K K K K K K K e[]()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+=-=s r s r s r sr s r s r s r s r rsb bc c c b b c b c c b c c b b A Et K 21212121142ννννννν()125213531416122=-=-==νννa EA Et t可得:[][]⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=400353534150093532211EK E K [][]⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0251035343127273323531233E K E K[]⎥⎥⎦⎤⎢⎢⎣⎡----=215251935313E K []⎥⎥⎦⎤⎢⎢⎣⎡----=41253535323E K(3)位移列向量和右端项由边界条件可确定:{}{}Te u a 000022υ=水压力和构件厚分别为:10==t ghp γ[]⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=43127425215127332135259414001253503525021525025415019109353E K e{}T Te t l q h q h q R ⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=03203100203600001自重为W 与支座反力:{}Ty x y x eW R R W WR R R ⎭⎬⎫⎩⎨⎧---=330333112所以:{}Ty x y x eW R h q R W h q W R R R ⎭⎬⎫⎩⎨⎧-+--=33363303011由[]{}{}eeeR a K =得到下列矩阵方程组:⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧-+--=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧33363000030301122W R h q R W h q W R R u y x y x υ 化简得:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎭⎬⎫⎩⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡3640035353022W h q u E υ]⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=431274252151273321352594140012535035250215250254150191009353E K e可得:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎭⎬⎫⎩⎨⎧E W E h q u 363567022υ将⎭⎬⎫⎩⎨⎧22υu 代入下式: ⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=⎭⎬⎫⎩⎨⎧⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----333425135025103533031122W R h q R W R R u E y x y x υ 固定面上的反力:a h ga gh q 330===γγ从而可得支座反力为:4322123412033011h q W R h q W R W h q R WR y x y x -=-=+=-=2.4 试从式(2.69)说明对角线元素改1法只能用于给定零位移的情形,而对角元素充大数法可以适用任意指定位移的情形。