高中数学选修2-1(人教A版)第二章圆锥曲线与方程2.4知识点总结含同步练习及答案
高中数学选修1-1(人教A版)第二章圆锥曲线与方程2.4知识点总结含同步练习及答案

y2 x2 + = 1. 3 2 4 (2)当直线 AB 与 x 轴垂直时,|AB| = ,不符合题意舍去; √3 当直线 AB 与 x 轴不垂直时,设直线 AB 的方程为 y = k(x + 1),代入椭圆方程,消去 y
所以椭圆方程为 得
(2 + 3k2 )x2 + 6k2 x + (3k2 − 6) = 0.
已知椭圆 G :
⎧ y = x + m, ⎨ x2 y2 ⎩ + = 1, 12 4
整理得
4x2 + 6mx + 3m 2 − 12 = 0.
设
⋯⋯①
A ,B 的坐标分别为 (x1 , y 1 ) , (x2 , y 2 ) (x1 < x2 ) , AB 中点为 E (x0 , y 0 ) ,则 x0 = 3m x1 + x2 =− , 2 4 m . y 0 = x0 + m = 4
因为 AB 是等腰 △P AB 的底边,所以 P E ⊥ AB . 所以 P E 的斜率
m 4 k= = −1. 3m −3 + 4 2−
解得 m = 2 .此时方程① 为 4x2 + 12x = 0 .解得
x1 = −3, x2 = 0.
所以
x1 + x2 = −3, x1 ⋅ x2 = 0
所以
− − − −− − − − − − − − − − − − − − − |AB| = √(x1 − x2 )2 + (y 1 − y 2 )2 − − − − − − − − − − − − − − − − − − − − − = √1 + k2 √(x1 + x2 )2 − 4x1 x2 = 3√2 .
人教版A版高中数学选修2-1:小结

基础训练
x2
(7)已知椭圆
y2
1上一点 P 到椭圆左焦点的距离为 3,
25 9
35
则点 P 到椭圆右准线的距离为 4
x2 y2
(8)以椭圆 1的中心为顶点,以椭圆的左准线为准线
25 16
100
的抛物线与椭圆的右准线交于 A、B 两点,则 AB= 3
小结:要熟练掌握圆锥曲线的基础知识,以解决基 本问题。
基础训练
x2 y2
(1)一个焦点为 0, 7 , 短轴长为 6 的椭圆的标准方程为 9 __1_6___1_ (2)已知方程 x 2 y 2 1表示椭圆,则 k 的
3k 2k
取值范围为 _3_ k 2 (3)若双曲线的实半轴长为 2,焦距为 6,那么双曲线
e 3
的离心率为 ___2
2a 3 2b
则此:时所a92 求 b的42 椭1,圆解方此程方为程x组2 , y得2
a 2 b 2
1
45 5
45 5
(2)当焦点在y轴上时,同理得,椭圆方程为
x2 y2 5 85
1
小结:本题用待定系数法求椭圆的标准方程, 9
但在无法判断焦点所在的坐标轴时,要分情况讨论
基础训练
(4)经过点 Ax(2 -3y,2 1),且对称轴是坐标轴的等轴双曲线 方程是 8 8 1
(5)抛物线 y 1 x 2 的焦点坐标是 (0,-1) 4
(6)已知 M 为抛物线 y 2 4x 上一动点, F 为抛物线的
焦点,定点 P3 , 1,则 MP MF 的最小值为 4
【例1】 过点P(2,4)作两条互相垂直的直线l1、 l2,若l1交x轴于A点,l2交y轴于B点,求线段 AB的中点M的轨迹方程. 解 法一 设点M的坐标为(x,y). ∵M为线段AB的中点, ∴A的坐标为(2x,0),B坐标为(0,2y). ∵l1⊥l2,且l1、l2过点P(2,4),
人教新课标A版选修2-1第二章圆锥曲线与方程2.4.1 抛物线及其标准方程

题型一 抛物线定义的应用
【例 1】 (12 分)已知点 A(3,2),点 M 到 F( 1 ,0)的距离比它到 y 轴的距离大 1 .
2
2
(1)求点 M 的轨迹方程;
规范解答:(1)由于点 M 到 F( 1 ,0)的距离比它到 y 轴的距离大 1 ,所以点 M 到
2
2
F( 1 ,0)的距离与它到直线 l:x=- 1 的距离相等.…………………………2 分
2
3
(2)以坐标轴为对称轴,焦点到准线的距离为 5 .
2
解:(2)由焦点到准线的距离为 5 ,为 y2=5x 或 y2=-5x 或 x2=5y 或 x2=-5y.
方法技能 求抛物线的标准方程的关键与方法 (1)关键:确定焦点在哪个坐标轴上,进而求方程的有关参数. (2)方法:①直接法:建立恰当坐标系,利用抛物线的定义列出动点满足的条 件,列出对应方程,化简方程; ②直接根据定义求p,最后写标准方程; ③利用待定系数法设标准方程,找有关的方程(组)求系数.
规范解答:(2)如图,由于点M在抛物线上, 所以|MF|等于点M到其准线l的距离|MN|,于是 |MA|+|MF|=|MA|+|MN|, …………………………………………………………………8分 所以当A,M,N三点共线时,|MA|+|MN|取最小值,亦即|MA|+|MF|取 最小值,这时M的纵坐标为2,…………………………………………10分 分可设M(x0,2),代入抛物线方程得x0=2,即M(2,2).………… ………………………………………………………………12分
即时训练2-1:根据下列条件,求抛物线的标准方程. (1)准线为y=-1; (2)焦点到准线的距离是4;
解:(1)焦点在y轴正半轴上, =p 1,即p=2,
2014年人教A版选修2-1课件 第二章小结(圆锥曲线与方程)

4. 当 a 从 0º到 180º变化时, 曲线 x2 y2cosa 1 表示的曲线的形状怎样变化? 2 y 1. 解: 原方程变为 x 2 1 cosa (1) 当a0º 时, 方程为 x2y21, 曲线是个圆. 1 1, (2) 当 0º <a<90º 时, cosa 曲线是焦点在 y 轴上的椭圆. (3) 当 a90º 时, 方程为 x±1, 曲线是两条直线. 1 0, 曲线是焦点在 (4) 当 90º <a<180º 时, cosa x 轴上的双曲线. (5) 当 a180º 时, 方程为 x2-y21, 曲线是等轴 双曲线. (看下面的动感变化图)
y l
p
oF
·
x
四、三种圆锥曲线的光学性质
椭圆: 光源从椭圆的一个焦点发出, 经过椭圆 反射后, 反射光线交于椭圆的另一个焦点上.
四、三种圆锥曲线的光学性质
双曲线: 光源从双曲线的一个焦点发出, 经 过双曲线反射后, 反射光线是散开的, 好象是从 另一个焦点发出的光线.
四、三种圆锥曲线的光学性质 抛物线: 光源从抛物线的焦点发出, 经过抛物 线反射后, 形成一束平行光线.
2384
y
439
o F F1 2
ቤተ መጻሕፍቲ ባይዱ
Ax
2. 人造地球卫星的运行轨道是以地心为一个焦点 的椭圆. 设地球半径为 R, 卫星近地点, 远地点离地 面的距离分别为 r1, r2, 求卫星轨道的离心率. y 解: 以椭圆的长轴所在直 r1 线为 x 轴, 短轴所在直线为 y 轴, 建立直角坐标系, r2 R 2a r22Rr1, x F1 o F2 c a-R-r1 1 (r2 2R r1 ) - R - r1 a 2 1 (r2 - r1 ), 2 1 (r - r ) 2 1 r2 - r1 c 2 . e a 1 (r 2 R r ) 2R r2 r1 1 2 2
高中数学人教A版选修2-1 第二章 圆锥曲线与方程 2.4.2 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于( )A .2B .1C .4D .8【解析】 抛物线y 2=2px (p >0)的准线为x =-p2,因为P (6,y )为抛物线上的点,所以点P 到焦点F 的距离等于它到准线的距离,所以6+p2=8,所以p =4,即焦点F 到抛物线的距离等于4,故选C.【答案】 C2.抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( )A .2 3B .4C .6D .4 3【解析】 据题意知,△FPM 为等边三角形,|PF |=|PM |=|FM |,∴PM ⊥抛物线的准线.设P ⎝ ⎛⎭⎪⎫m 24,m ,则M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM |=|FM |,得1+m 24=(1+1)2+m 2,得m =23,∴等边三角形的边长为4,其面积为43,故选D.【答案】 D3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2【解析】 设A (x 1,y 1),B (x 2,y 2),代入抛物线方程得⎩⎪⎨⎪⎧y 21=2px 1, ①y 22=2px 2, ②①-②得,(y 1+y 2)(y 1-y 2)=2p (x 1-x 2).又∵y 1+y 2=4,∴y 1-y 2x 1-x 2=2p 4=p 2=k =1,∴p =2.∴所求抛物线的准线方程为x =-1. 【答案】 B4.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303 B .6 C .12D .7 3【解析】 焦点F 的坐标为⎝ ⎛⎭⎪⎫34,0,直线AB 的斜率为33,所以直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即y =33x -34,代入y 2=3x , 得13x 2-72x +316=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=212,所以|AB |=x 1+x 2+32=212+32=12,故选C. 【答案】 C5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4【解析】 由题意知p =2,|AB |=x 1+x 2+p =8.故选B. 【答案】 B 二、填空题6.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________.【解析】 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18,∴y =±24,∴此点坐标为⎝ ⎛⎭⎪⎫18,±24.【答案】 ⎝ ⎛⎭⎪⎫18,±247.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________.【解析】 当k =0时,直线与抛物线有唯一交点,当k ≠0时,联立方程消去y 得k 2x 2+4(k -2)x +4=0,由题意Δ=16(k -2)2-16k 2=0,∴k =1.【答案】 0或18.平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________. 【导学号:18490074】【解析】 设机器人为A (x ,y ),依题意得点A 在以F (1,0)为焦点,x =-1为准线的抛物线上,该抛物线的标准方程为y 2=4x .过点P (-1,0),斜率为k 的直线为y =k (x +1).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k , 得ky 2-4y +4k =0.当k =0时,显然不符合题意;当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞).【答案】 (-∞,-1)∪(1,+∞)三、解答题9.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.【解】 设所求抛物线的标准方程为x 2=2py (p >0), 设A (x 0,y 0),由题知M ⎝ ⎛⎭⎪⎫0,-p 2.∵|AF |=3,∴y 0+p2=3, ∵|AM |=17, ∴x 20+⎝⎛⎭⎪⎫y 0+p 22=17,∴x 20=8,代入方程x 20=2py 0,得8=2p ⎝ ⎛⎭⎪⎫3-p 2,解得p =2或p =4.∴所求抛物线的标准方程为x 2=4y 或x 2=8y .10.已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点.(1)若直线l 的倾斜角为60°,求|AB |的值; (2)若|AB |=9,求线段AB 的中点M 到准线的距离.【解】 (1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°= 3.又F ⎝ ⎛⎭⎪⎫32,0,所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎨⎧y 2=6x ,y =3⎝ ⎛⎭⎪⎫x -32,消去y 得x 2-5x +94=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5, 而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p , 所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+x 2+p =x 1+x 2+3,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3.又准线方程是x =-32,所以M 到准线的距离为3+32=92.[能力提升]1.(2016·菏泽期末)已知抛物线x 2=2py (p >0)的焦点为F ,过F 作倾斜角为30°的直线与抛物线交于A ,B 两点,若|AF ||BF |∈(0,1),则|AF ||BF |=( )A.15B.14C.13D.12【解析】 因为抛物线的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,故过点F 且倾斜角为30°的直线的方程为y =33x +p 2,与抛物线方程联立得x 2-233px -p 2=0,解方程得x A =-33p ,x B =3p ,所以|AF ||BF |=|x A ||x B|=13,故选C.【答案】 C2.已知抛物线C :y 2=8x 与点M (-2,2),过抛物线C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA→·MB →=0,则k =( ) A.12 B.22 C. 2D .2【解析】 由题意可知抛物线的焦点坐标为(2,0),则过焦点且斜率为k 的直线的方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0,设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k 2,x 1x 2=4,所以y 1+y 2=k (x 1+x 2)-4k =8k ,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16,因为MA →·MB →=0,所以(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0(*),将上面各个量代入(*),化简得k 2-4k +4=0,所以k =2,故选D.【答案】 D3.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.【解析】由于x 2=2py (p >0)的准线为y =-p 2,由⎩⎨⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎪⎫-3+14p 2,-p 2,B ⎝ ⎛⎭⎪⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF 为等边三角形,得32AB =p ,解得p =6. 【答案】 64.已知抛物线x =-y 2与过点(-1,0)且斜率为k 的直线相交于A ,B 两点,O 为坐标原点,当△OAB 的面积等于10时,求k 的值. 【导学号:18490075】【解】 过点(-1,0)且斜率为k 的直线方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧x =-y 2,y =k (x +1),消去x ,整理得ky 2+y -k =0,设A (x 1,y 1),B (x 2,y 2),由根与系数之间的关系得y 1+y 2=-1k ,y 1y 2=-1.设直线与x 轴交于点N ,显然N 点的坐标为(-1,0). ∵S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|, ∴S △OAB =12(y 1+y 2)2-4y 1y 2=121k 2+4=10,解得k =-16或16.。
高二数学 人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案

第二章 2.4 2.4.1一、选择题1.在平面直角坐标系内,到点(1,1)和直线x +2y =3的距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线[答案] A[解析] ∵点(1,1)在直线x +2y =3上,故所求点的轨迹是过点(1,1)且与直线x +2y =3垂直的直线.2.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为( )A .圆B .椭圆C .直线D .抛物线[答案] D[解析] 如图,设点P 为满足条件的一点,不难得出结论:点P 到点A 的距离等于点P 到y 轴的距离,故点P 在以点A 为焦点,y 轴为准线的抛物线上,故点P 的轨迹为抛物线,因此选D.3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .5[答案] D[解析] 解法一:∵y =4,∴x 2=4·y =16,∴x =±4, ∴A (±4,4),焦点坐标为(0,1), ∴所求距离为42+(4-1)2=25=5.解法二:抛物线的准线为y =-1,∴A 到准线的距离为5,又∵A 到准线的距离与A 到焦点的距离相等.∴距离为5.4.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为( )A .1B .32 C .2D .52[答案] D[解析] ∵点P (2,22)在抛物线上,∴(22)2=2m ,∴m =4,P 到抛物线准线的距离为2-(-1)=3,F 到准线距离为2, ∴M 到抛物线准线的距离为d =3+22=52.5.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .4[答案] C[解析] 抛物线的准线为x =-p2,将圆方程化简得到(x -3)2+y 2=16,准线与圆相切,则-p2=-1,∴p =2,故选C.6.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为( )A .12B .8C .6D .4[答案] B[解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 二、填空题7.抛物线y =ax 2的准线方程是y =2,则a 的值为________.[答案] -18[解析] 抛物线方程化为标准形式为x 2=1a y ,由题意得a <0,∴2p =-1a ,∴p =-12a ,∴准线方程为y =p 2=-14a =2,∴a =-18.8.沿直线y =-2发出的光线经抛物线y 2=ax 反射后,与x 轴相交于点A (2,0),则抛物线的准线方程为________(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行).[答案] x =-2[解析] 由直线y =-2平行于抛物线的轴知A (2,0)为焦点,故准线方程为x =-2. 三、解答题9.若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.[解析] ∵点M 到对称轴的距离为6, ∴设点M 的坐标为(x,6). 又∵点M 到准线的距离为10,∴⎩⎪⎨⎪⎧62=2px ,x +p 2=10.解得⎩⎪⎨⎪⎧ x =9,p =2,或⎩⎪⎨⎪⎧x =1,p =18.故当点M 的横坐标为9时,抛物线方程为y 2=4x . 当点M 的横坐标为1时,抛物线方程为y 2=36x .10.求顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线的标准方程.[解析] ∵点(-2,3)在第二象限,∴设抛物线方程为y 2=-2px (p >0)或x 2=2p ′y (p ′>0), 又点(-2,3)在抛物线上,∴p =94,p ′=23,∴抛物线方程为y 2=-92x 或x 2=43y .一、选择题1.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则点M 的轨迹方程是( ) A .x +4=0 B .x -4=0 C .y 2=8xD .y 2=16x[答案] D[解析] 依题意可知M 点到点F 的距离等于M 点到直线x =-4的距离,因此其轨迹是抛物线,且p =8,顶点在原点,焦点在x 轴正半轴上,∴其方程为y 2=16x ,故答案是D.2.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4[答案] C[解析] 抛物线C 的准线方程为x =-2,焦点F (2,0),由|PF |=42及抛物线的定义知,P 点的横坐标x P =32,从而y P =±26,∴S △POF =12|OF |·|y P |=12×2×26=2 3.3.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|P 1F |+|P 2F |=|FP 3|B .|P 1F |2+|P 2F |2=|P 3F |2C .2|P 2F |=|P 1F |+|P 3F |D .|P 2F |2=|P 1F |·|P 3F |[答案] C[解析] ∵点P 1、P 2、P 3在抛物线上,且2x 2=x 1+x 3,两边同时加上p , 得2(x 2+p 2)=x 1+p 2+x 3+p2,即2|P 2F |=|P 1F |+|P 3F |,故选C.4.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A.522 B .522+1 C.522-2D .522-1[答案] D[解析] 设抛物线焦点为F ,过P 作P A 与准线垂直,垂足为A ,作PB 与l 垂直,垂足为B ,则d 1+d 2=|P A |+|PB |-1=|PF |+|PB |-1,显然当P 、F 、B 三点共线(即P 点在由F 向l 作垂线的垂线段上)时,d 1+d 2取到最小值,最小值为522-1.二、填空题5.已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段F A 交抛物于点B ,过B 点作l 的垂线,垂足为M ,若AM ⊥MF ,则p =________.[答案]2[解析] 由抛物线的定义可得BM =BF ,F (P2,0),又AM ⊥MF ,故点B 为线段F A 中点,即B (p 4,1),所以1=2p ×p4⇒p = 2.6.在平面直角坐标系xOy 中,点B 与点A (-1,0)关于原点O 对称.点P (x 0,y 0)在抛物线y 2=4x 上,且直线AP 与BP 的斜率之积等于2,则x 0=________.[答案] 1+ 2[解析] ∵点B 与点A (-1,0)关于原点O 对称,∴B (1,0),根据题意,得y 20x 20-1=2,又y 20=4x 0,∴2x 0=x 20-1,即x 20-2x 0-1=0,解得x 0=2±82=1±2,舍去负值,得x 0=1+ 2. 三、解答题7.求适合下列条件的抛物线的标准方程:(1)过抛物线y 2=2mx 的焦点F 作x 轴的垂线交抛物线于A 、B 两点,且|AB |=6; (2)抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6.[解析] (1)设抛物线的准线为l ,交x 轴于K 点,l 的方程为x =-m2,如图,作AA ′⊥l于A ′,BB ′⊥l 于B ′,则|AF |=|AA ′|=|FK |=|m |,同理|BF |=|m |.又|AB |=6,则2|m |=6. ∴m =±3,故所求抛物线方程为y 2=±6x .(2)设焦点F (a,0),|PF |=(a +5)2+20=6,即a 2+10a +9=0,解得a =-1或a =-9.当焦点为F (-1,0)时,p =2,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,p =18,抛物线开口方向向左,其方程为y 2=-36x .8.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[解析] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则B 点的坐标为(a2,-a 4),如图所示,设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a 4),∴m =-a ,即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得 0.82=-ay , 即y =-0.82a.欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a >3,由于a >0,得上述不等式的解为a >12.21,∴a 应取13.。
人教A版选修2--1第二章圆锥曲线与方程《重点与难点》

第二章 圆锥曲线与方程《重点与难点》圆锥曲线(圆、椭圆、双曲线、抛物线)的知识结构具有相似性,因此要把它们作为一个有机整体,学习时对于知识和解题方法要相互联系和类比,彼此借鉴,综合起来分析问题。
一、曲线与方程1、曲线与方程的实质:曲线与方程的实质是曲线的点集与方程的解集之间的一一对应关系,即曲线上所有点的坐标都满足方程,以方程解为坐标的点全部在曲线上,这是解决点、曲线、方程问题的根本依据。
解题时,要根据图形几何意义,检验特殊点或特殊值是否满足一一对应关系,由此判断曲线与方程的关系。
2、辨析“曲线与方程”和“曲线与函数”的区别与联系3、辨析点、线、面、体与方程(元)的关系4、求曲线的方程的一般步骤:建系、设点、列式、化简、检验;5、求曲线的方程(轨迹方程)的常用方法 ⑴直接法;⑵定义法;⑶代换法(或相关点法); 特别要注意变量取值范围的验证和取舍。
二、圆锥曲线的方程及几何性质1、定义及方程中的限制条件:主要包括各参数的数量关系、位置关系,焦半径的取值范围,焦半径与a (或)之间数量关系及相互代换(距离关系及代换),变量的取值范围(图形区域)。
⑴标准方程,根据焦点的位置确定标准方程的具体形式,椭圆焦点在分母较大变量的坐标轴上,双曲线焦点在系数为正的变量的坐标轴上,抛物线焦点在一次项的变量的坐标轴上。
⑵一般形式,椭圆221Ax By +=(其中0,0,A B A B >>≠),双曲线221(0)Ax By AB +=<,抛物线22(0)y mx m =≠或22(0)x my m =≠3、方程的求解:先定位(确定焦点位置),后定量(确定有关参数)。
⑴定义法。
⑵待定系数法,①设标准方程,有时需要讨论焦点位置;②设一般方程,能避免讨论焦点位置。
4、焦点三角形:椭圆、双曲线的1212,,PF PF F F 围成焦点三角形。
除利用12,,2PF PF a 之间的数量关系外,还要注意勾股定理、正弦定理、余弦定理等的应用。
高中数学人教A版选修2-1第2章章末总结.docx

章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四圆锥曲线中的定点、定值问题圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略: (1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解. (2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5已知A(4,0),B(2,2)是椭圆x225+y29=1内的两定点,点M是椭圆上的动点,求MA+MB的最值.例6 已知F 1、F 2为椭圆x 2+y22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结重点解读例1 解如图所示,设双曲线方程为x 2a2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a .由双曲线的定义,得|PF 1-PF 2|=2a =c ,在△PF 1F 2中,由余弦定理,得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°=(PF 1-PF 2)2+2PF 1·PF 2(1-cos 60°),即4c 2=c 2+PF 1·PF 2.① 又S △PF 1F 2=123, ∴12PF 1·PF 2sin 60°=123, 即PF 1·PF 2=48.②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12, ∴所求的双曲线方程为x 24-y 212=1.例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0, 由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上, ∴y 21·y 22=4x 1·x 2=16, 而y 1·y 2<0,∴y 1y 2=-4.(2)证明∵ OM →=(x 1,y 1), ON →=(x 2,y 2), ∴OM →·ON →=x 1·x 2+y 1·y 2=4-4=0. ∴OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k,进而可求A ⎝⎛⎭⎪⎫4p k 2,4p k、 B (4pk 2,-4pk ).于是直线AB 的斜率为k AB =k1-k2,从而k OM =k 2-1k,∴直线OM 的方程为y =k 2-1k x ,①直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2).②将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ),③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k =±1时,易求得直线AB 的方程为x =4p .故此时点M的坐标为(4p,0),也在(x-2p)2+y2=4p2 (x≠0)上.∴点M的轨迹方程为(x-2p)2+y2=4p2 (x≠0),∴其轨迹是以(2p,0)为圆心,半径为2p的圆,去掉坐标原点.例4证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1, 得(3+4k 2)x 2+8mkx +4(m 2-3)=0, 则⎩⎪⎨⎪⎧ Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.即⎩⎪⎨⎪⎧ 3+4k 2-m 2>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2,∴(x 1-2)(x 2-2)+y 1y 2=0.∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0.∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0. ∴7m 2+16km +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且均满足3+4k 2-m 2>0. 当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0,∴直线l 过定点.例5解因为A(4,0)是椭圆的右焦点,设A′为椭圆的左焦点,则A′(-4,0),由椭圆定义知MA+MA′=10.如图所示,则MA+MB=MA+MA′+MB-MA′=10+MB-MA′≤10+A′B.当点M在BA′的延长线上时取等号.所以当M为射线BA′与椭圆的交点时,(MA+MB)max=10+A′B=10+210.又如图所示,MA+MB=MA+MA′-MA′+MB=10-(MA′-MB)≥10-A′B,当M在A′B的延长线上时取等号.所以当M为射线A′B与椭圆的交点时,(MA+MB)min=10-A′B=10-210.例6解 由题意,F 1F 2=2. 设直线AB 方程为y =kx +1, 代入椭圆方程2x 2+y 2=2, 得(k 2+2)x 2+2kx -1=0, 则x A +x B =-2k k 2+2,x A ·x B =-1k 2+2,∴|x A -x B |=8(k 2+1)k 2+2.S △ABF 2=12F 1F 2·|x A -x B |=22×k 2+1k 2+2 =22×1k 2+1+1k 2+1≤22×12= 2.当k 2+1=1k 2+1,即k =0时,S △ABF 2有最大面积为 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
− − − − − − − − − − − |AB| = √(x − 2)2 + y 2 − − − − − − − − − − = √(x − 2)2 + x − − − −− − −− − = √x2 − 3x + 4 − − − − −− − −− − − 3 7 = √(x − )2 + . 2 4
17 A. 16 0
解:B
15 B. 16
7 C. 8
) D.
1 1 1 ,由抛物线 y ,则焦点为 F (0, ) ,准线为 y = − 4 16 16 1 定义可知,点 M (x, y) 到焦点的距离与其到准线的距离相等,即 1 = y 0 + , 可得 16 15 15 ,即 M 点的纵坐标为 . y0 = 16 16
)
D.y 2 = 4x
B.y 2 = −4x
C.y 2 = 8x
x = −2 得 −
y 2 = 2px = 8x .
p = −2 ,且抛物线的开口向右(或焦点在 x 轴的正半轴),所以 2
4. 已知 F 是抛物线 y 2 = x 的焦点,A ,B 是该抛物线上的两点,|AF | + |BF | = 3 ,则线段 AB 的中 点到 y 轴的距离为 ( A.
选择不同的坐标系,就得到不同形式的标准方程,抛物线的标准方程有 4 种形式,如下: ①标准方程为 y 2 = 2px,焦点坐标为 (
p p , 0) ,准线方程为 x = − . 2 2
②标准方程为 y 2 = −2px ,焦点坐标为 (−
p p , 0) ,准线方程为 x = . 2 2
③标准方程为 x 2 = 2py ,焦点坐标为 (0,
答案: C
3 4
)
B.1 C.
5 4
D.
7 4
高考不提分,赔付1万元,关注快乐学了解详情。
p p , 0) ,准线 l 的方程为 x = − .设点 2 2 M (x, y) 是抛物线上任意一点,点 M 到 l 的距离为 d .由抛物线的定义得 − − − − − − − − − − − − − − − − − − − − − − − − p p p p |MF | = √(x − )2 + y 2 ,d = |x + |,所以 √(x − )2 + y 2 = |x + |.将式子化简得 2 2 2 2 2 y = 2px(p > 0) ①. 抛物线上任意一点的坐标都满足方程 ①;以方程 ① 的解 (x, y) 为坐标的点到抛物线的焦点 p p 的距离相等,即以方程 ① 的解为坐标的点都在抛物线上, F ( , 0) 的距离与到准线 x = − 2 2 p 这样,我们把方程 ① 叫做抛物线的标准方程.它所表示的抛物线的焦点坐标是 ( , 0) ,准线方 2 p 程是 x = − . 2
所以当 x =
3 √7 时,|AB| min = . 2 2
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 抛物线 y = 4x 2 上的一点 M 到焦点的距离为 1 ,则点 M 的纵坐标是 ( A.
17 16
B.
15 16
C.
7 8
)
D.0
答案: B 解析:
1 1 1 ,由抛物线上的点 y ,则焦点为 F (0, ) ,准线为 y = − 4 16 16 15 15 ,即 M 点的纵坐标为 . M (x, y) 到焦点的距离与到准线的距离相等,得:y 0 = 16 16
因此这条抛物线的顶点就是坐标原点. ④开口大小 在 y 2 = 2px(p > 0)中,对于 x 一个确定的值,p 越大,则 |y| 也越大,就 是对应的点离对称轴越远,也可以说开口越大,反之,p 越小,开口也越小.
例题: 已知动圆经过点 M (3, 2) 且与直线 x = 1 相切,则动圆圆心 T 的轨迹为( ) A.圆 B.椭圆 C.直线 D.抛物线 解:D 由题意可知,T 到点 M 的距离等于其到直线 x = 1 的距离.所以 T 的轨迹是以 (3, 2) 为焦 点, x = 1 为准线的抛物线. 已知抛物线的焦点在 x 轴的正半轴上,焦点到准线的距离是 3 ,求抛物线的标准方程,焦点坐 标和准线方程. 解:由已知焦点到准线的距离是 3 ,可得 p = 3,所以抛物线的标准方程是 y 2 = 6x.焦点坐标 为 (
3 3 , 0) ,准线方程为 x = − . 2 2
点 P 到 (1, 0) 的距离比其到直线 x + 2 = 0 的距离少 1 ,则点 P 的轨迹方程为______. 解: y 2 = 4x 由已知可得点 P 到 (1, 0) 的距离与其到 x + 1 = 0 的距离相等,故点 P 的轨迹是以 (1, 0) 为焦点,x + 1 = 0 为准线的抛物线,故其方程为 y 2 = 4x. 抛物线 y = 4x 2 上的一点 M 到焦点的距离为 1 ,则点 M 的纵坐标是(
由题意得抛物线方程为 x 2 =
Hale Waihona Puke 2. 若点 P 到直线 x = −1 的距离比它到点 (2, 0) 的距离小 1 ,则点 P 的轨迹为 ( A.圆
答案: D
)
B.椭圆
C.双曲线
D.抛物线
3. 设抛物线的顶点在原点,准线方程为 x = −2 ,则抛物线的方程是 ( A.y 2 = −8x
答案: C 解析: 由准线方程
高中数学选修2-1(人教A版)知识点总结含同步练习题及答案
第二章 圆锥曲线与方程 2.4 抛物线
一、学习任务 1. 掌握抛物线的定义和几何图形;掌握抛物线的标准方程,会求抛物线的标准方程. 2. 掌握抛物线的简单性质,会用抛物线的标准方程和几何性质处理一些简单的实际问题.
二、知识清单
抛物线的基本量与方程
三、知识讲解
1.抛物线的基本量与方程 描述: 抛物线的定义 平面内与一个定点 F 和一条定直线 l (l 不经过点F )距离相等的点的轨迹叫做抛物 线(parabola).点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线.
取经过点 F 且垂直于直线 l 的直线为 x 轴,垂足为 K ,并使原点与线段 KF 的中点重合, 建立直角坐标系 xOy . 设 |KF | = p (p > 0),那么焦点 F 的坐标为 (
p p ) ,准线方程为 y = − . 2 2
④标准方程为 x 2 = −2py,焦点坐标为 (0, −
p p ),准线方程为 y = . 2 2
抛物线的几何意义 若抛物线的标准方程为 y 2 = 2px(p > 0),则它的几何性质如下: ①范围 因为 p > 0,由方程可知 x ≥ 0,所以抛物线在 y 轴的右侧,当 x 的值增大 时,|y| 也增大,抛物线向右方和右下方无限延伸,开口向右. ②对称性 以 −y 代替 y ,方程不变,因此这条抛物线是以 x 轴为对称轴的轴对称图形. 抛物线的对称轴叫做抛物线的轴. ③顶点 抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当 y = 0 时,x = 0,