高中物理选修3-2第四章电磁感应中“滑轨”问题(含双杆)归类
高中物理选修3-2第四章电磁感应中发电式导轨的基本特点和规律

一、发电式导轨的基本特点和规律如图1所示,间距为l 的平行导轨与电阻R 相连,整个装置处在大小为B 、垂直导轨平面向上的匀强磁场中,质量为m 、电阻为r 的导体从静止开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。
1、 电路特点 导体为发电边,与电源等效,当导体的速度为v 时,其中的电动势为E =Blv2、 安培力的特点 安培力为运动阻力,并随速度按正比规律增大。
F B =BIl =v rR v l B l r R Blv B ∝+=+22 3、 加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动mr R v l B m g m g a )/(cos sin 22+--=θμθ 4、 两个极值的规律当v =0时,F B =0,加速度最大为a m =g (sinθ-μcosθ)当a=0时,ΣF =0,速度最大,根据平衡条件有 mgsinθ=μmgcosθ+)(22r R v l B m + 所以,最大速度为 :22m l B )r R )(cos (sin mg v +θμ-θ= 5、 匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。
P G =P F +P f ⎪⎪⎩⎪⎪⎨⎧θμ=+=+===θ=cos mgv P )r R (I r R E E I v F P sin mgv P m f2m 2m m m m m F m G 当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这是发电导轨在匀速运动过程中,最基本的能量转化和守恒规律。
mgv m sinθ=F m v m =I m E m )(22r R I r R E m m +=+=(列动能定理的过程方程或能量守恒的方程) 二、电动式导轨的基本特点和规律如图2所示,间距为l 的平行导轨水平放置,与电动势为E 、内阻为r 的电源连接,处在大小为B 、方向竖直向上的匀强磁场中。
高三物理总复习:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧归类例析

电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】: 【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv回路中的感应电流I =E R +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
【内化模型】题型一(v 0≠0) 题型二(v 0=0) 题型三(v 0=0) 题型四(v 0=0) 说明 杆cd 以一定初速度v 0在光滑水平轨道上滑动,质量为m ,电阻不计,两导轨间距为L 轨道水平光滑,杆cd质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定倾斜轨道光滑,倾角为α,杆cd 质量为m ,两导轨间距为L 竖直轨道光滑,杆cd质量为m ,两导轨间距为L示意图力学观点 杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLvR ,安培力F =BIL =B 2L 2v R 。
高中物理人教版选修3-2第四章第4节法拉第电磁感应定律方法及题型总结

高中物理选修3-2第3讲法拉第电磁感应定律题型1(感应电动势的产生条件)1、1823年,科拉顿做了这样一个实验,他将一个磁铁插入连有灵敏电流计的螺旋线圈,来观察在线圈中是否有电流产生。
在实验时,科拉顿为了排除磁铁移动时对灵敏电流计的影响,他通过很长的导线把连在螺旋线圈上的灵敏电流计放到另一间房里。
他想,反正产生的电流应该是“稳定”的(当时科学界都认为利用磁场产生的电流应该是“稳定”的),插入磁铁后,如果有电流,跑到另一间房里观察也来得及。
就这样,科拉顿开始了实验,然而,无论他跑得多快,他看到的电流计指针都是指在“0”刻度的位置,科拉顿失败了,以下关于科拉顿实验的说法中正确的是(D)A.螺旋线圈中磁通量没有改变B.实验中没有感应电流C.科拉顿的实验装置是错误的D.科拉顿实验没有观察到感应电流是因为跑到另一间房观察时,电磁感应过程已结束2.在匀强磁场中,a、b是两条平行金属导轨,而c、d为串有电流表、电压表的两金属棒,如图所示,两棒以相同的速度向右匀速运动,则以下结论正确的是(D)A.电压表有读数,电流表没有读数B.电压表有读数,电流表也有读数C.电压表无读数,电流表有读数D.电压表无读数,电流表也无读数3.将线圈置于范围足够大、方向竖直向下的匀强磁场B中,各线圈的运动方式如下列图所示,则能够在线圈中产生感应电动势的是(C)A.B.C.D.4.环形线圈放在均匀磁场中,设在第1秒内磁感线垂直于线圈平面向内,若磁感应强度随时间变化关系如图,那么在第2秒内线圈中感应电流的大小和方向是(B)A.感应电流大小恒定,顺时针方向B.感应电流大小恒定,逆时针方向C.感应电流逐渐增大,逆时针方向D.感应电流逐渐减小,顺时针方向5.如图所示,4匝矩形线圈abcd,ab=1m,bc=0.5m,其总电阻R=2Ω,线圈绕OO′轴在匀强磁场中匀速转动,磁感应强度B=1T,角速度ω=20rad/s,当线圈由图示位置开始转过30°时,线圈中的电流强度为(B)A.20A B.0A C.10A D.17.3A6.处在匀强磁场中的闭合金属环从曲面上h高处滚下,又沿曲面的另一侧上升到最大高度,设环的初速度为零,摩擦不计,曲面处在如图所示的磁场中,则此过程中(B)A.环滚上的高度小于hB.环滚上的高度等于hC.由于环在作切割磁感线运动,故环中有感应电流产生D.环损失的机械能等于环产生的焦耳热7.下列说法正确的是(CD)A.一个正电荷与一个负电荷中和后,总电荷量减少了,电荷守恒定律并不成立B.在感应起电的过程中,金属中的正、负电荷向相反的方向移动C.在感应起电的过程中,金属中的负电荷受电场力的作用发生移动D.在感应起电的过程中,金属中正电的原子核不发生定向移动8.用如图所示的实验装置,研究电磁感应现象.当条形磁铁按图示方向插入闭合线圈的过程中,穿过线圈的磁通量的变化情况是(“增加”、“不变”或“减小”).如果条形磁铁在线圈中保持静止不动,灵敏电流表G的示数(“为零”或“不为零”).答案:增大;为零题型2(法拉第电磁感应定律的概念理解)1、将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中缠身的感应电动势和感应电流,下列表述正确的是(C)A. 感应电动势的大小与线圈的匝数无关B. 穿过线圈的磁通量越大,感应电动势越大C. 穿过线圈的磁通量变化越快,感应电动势越大D. 感应电力会产生的磁场方向与原磁场方向始终相同2、自然界中某个量D的变化量∆D,与发生这个变化所用的时间∆t的比值∆D∆t,叫做这个量D的变化率。
高中物理选修3-2教案 4.5《电磁感应现象的两类情况》

电磁感应现象的两种情况教学目标1. 知识与技能(1)了解感生电场,会解释感生电动势的产生原因. (2)了解动生电动势的产生条件和洛伦兹力的关系.(3)掌握两种感应电动势的区别与联系,会应用分析实际问题. (4)了解电磁感应规律的一般应用,会分析科技实例. 2. 过程与方法通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣. 3. 情感、态度与价值观通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德. 教学重点难点感生电动势与动生电动势的概念。
对感生电动势与动生电动势实质的理解。
教学方法与手段以类比为先导,引领学生在复习干电池电动势中非静电力作用的基础上,说明感应电场和洛伦兹力在产生感应电动势中的作用,并能应用感生电动势和动生电动势解答相关问题。
类比讨论学习为主,发动学生对电子感应加速器的讨论从而加深理解。
课前准备多媒体课件、实物投影仪、视频片断。
导入新课[事件1]教学任务:复习提问,导入新课。
师生活动:情景导入,放映PPT 课件展示提问的问题。
一、复习提问:1.法拉第电磁感应定律的内容是什么?数学表达式是什么? 答:感应电动势的大小与磁通量的变化率成正比,即E =n ΔΦΔt。
2.导体在磁场中切割磁感线产生的电动势与什么因素有关,表达式是什么,它成立的条件又是什么?答:导体在磁场中切割磁感线产生的电动势的大小与导体棒的有效长度、磁场强弱、导体棒的运动速度有关,表达式是E=BLvsinθ,该表达式只能适用于匀强磁场中。
3.干电池中电动势是怎样产生的?参照相关图片,回顾所学电池电动势中有关非静电力做功的知识,其他学生补充。
二、引入新课:在电磁感应现象中,由于引起磁通量的变化的原因不同,感应电动势产生的机理也不同,本节课我们就一起来学习感应电动势产生的机理。
讲授新课[事件2]教学任务:感生电场和感生电动势。
师生活动:学生阅读教材19页“电磁感应现象中的感生电场”部分,分析讨论闭合电路中产生感应电流的原因。
人教版物理选修3-2 第4章第5节 电磁感应现象的两类情况

高中物理选修3-2课件
则金属棒 ab 接入回路的 bc 部分切割磁感线产生的 感应电动势为: E=Bv0 bc =Bv20ttan30° 在回路 bOc 中,回路总感应电动势具体由导体 bc 部分产生,因此,回路内总的感应电动势为:E 总 =E= 3Bv20t/3.
高中物理选修3-2课件
核心要点突破
一、感生电动势 1.产生机理 如图4-5-1所示,当磁场变化时,产生的感生电 场的电场线是与磁场方向垂直的曲线.如果空间存 在闭合导体,导体中的自由电荷就会在电场力的作 用下定向移动,而产生感应电流,或者说导体中产 生了感应电动势.
高中物理选修3-2课件
图4-5-1
高中物理选修3-2课件
【答案】 E= 33Bv20t
【规律总结】 由 E=Blv 计算导体切割磁感线产 生的动生电动势问题,若 l 不变,当 v 是瞬时速度 时,可求 E 的瞬时值,当 v 是平均速度时,可求平 均感应电动势.若 l 变化,求瞬时值时,需用该时 刻的 l 及 v 代入;而求平均值通常由 E=nΔΔΦt 求得.
图4-5-2
高中物理选修3-2课件
2.特点 (1)感生电场是一种涡旋电场,电场线是闭合的. (2)感生电场的产生跟空间中是否存在闭合电路无 关. 3.方向判定 感生电场的方向根据闭合电路(或假想的闭合电路) 中感应电流的方向确定,即利用楞次定律判断.
高中物理选修3-2课件
即时应用 (即时突破,小试牛刀) 1.某空间出现了如图4-5-3所示的磁场,当磁感 应强度变化时,在垂直于磁场的方向上会产生感生 电场,有关磁感应强度的变化与感生电场的方向关 系描述正确的是( )
【思路点拨】 回路中原磁场方向向下,且磁通 量增加,由楞次定律可以判知,感应电流的磁场 方向向上,根据安培定则可以判知,ab中的感应 电流的方向是a→b,由左手定则可知,ab所受安 培力的方向水平向左,从而向上拉起重物.
人教版选修3-2第4章电磁感应同步复习 第5节电磁感应中线框类问题(同步习题11题)含解析

第4节 电磁感应中的动力学与能量线框类问题(精选习题)1、在如图所示的两平行虚线之间存在着垂直纸面向里、宽度为d 、磁感应强度为B 的匀强磁场,正方形线框abcd 的边长为L (L <d )、质量为m 、电阻为R ,将线框从距离磁场的上边界为h 高处由静止释放后,线框的ab 边刚进入磁场时的速度为v 0,ab 边刚离开磁场时的速度也为v 0,在线框开始进入到ab 边刚离开磁场的过程中( )A .电路中产生的焦耳热为mgdB .电路中产生的焦耳热为2mgdC .线框的最小动能一定为mg (h -d +L )D .线框的最小动能一定为322442m g R B L【答案】AC【解析】由于线框进、出磁场时的速度相等,所以合外力做功为零,即线框克服安培力所做的功与重力对线框做的功mgd 相等,所以感应电流做的功为mgd ;当线框全部处在磁场中时,没有电磁感应现象,线框在重力作用下做加速运动,所以当线框cd 边刚进入磁场时,线框速度最小。
从起点到这一位置应用动能定理有 k ()=0mg h L W E 安+-- 又由于W 安=mgd所以线框的最小动能为k ()E mg h L d =+- 故选AC 正确。
2、如图所示,一水平方向的匀强磁场,磁场区域的高度为h ,磁感应强度为B 。
质量为m 、电阻为R 、粗细均匀的矩形线圈,ab= L ,bc=h ,该线圈从cd 边离磁场上边界高度244()2mgR H gB L =处自由落下,不计空气阻力,重力加速度为g ,设cd 边始终保持水平,则( )A .cd 边刚进入磁场时速度大小222mgRv B L =B .cd 边刚进人磁场时其两端电压2()cd mgRU B L h =+C .线圈穿过磁场的时间22()h BL t mgR=D .线圈穿过磁场过程中,回路中产生的热量2Q mgh = 【答案】CD 【解析】A .由题意可知,线圈从开始运动到cd 边进入磁场时做自由落体运动,故cd 边刚进入磁场时速度大小满足22v gH =,解得22mgRv B L=。
选修3-2电磁感应杆问题归类详解

(七)电容*单杆*初速度
2.动量能量分析
BILt mv0 mv
C
V0
BLq mv0 mv
BLCU mv0 mv
1.运动情况分析
BLC BLv mv0 mv
杆做加速度逐渐减小的减速运动, 最后做匀速运动,且V<V0
v
mv0 B2L2C
m
能量守恒:
1 2
mv
2 0
ห้องสมุดไป่ตู้
1 2
mv 2
E电
(2)ab的速度达到最大时,电容器的带电量,并在图中标出 两板带电的正负;
(3)若ab的速度达到最大之后,突然使它停止,则电容器放 电瞬间ab受到的安培力的大小和方向.
(1)BF2RL2
(2)
FRC BL
, 上负下正(3)
FR,水平向右 r
4.如图所示,a、b是同种材料的等长导体棒,静止于水平 面内的足够长的光滑平行导轨上.a棒的质量是b棒的两倍。 匀强磁场竖直向下.若给a棒以4.5 J的初动能,使之向左运 动,不计导轨的电阻,则整个过程b棒产生的最大热量是 A
(八)电容*单杆*拉力
C
F
杆做匀加速运动
能量守恒:
WF
1 2
mv 2
E电
U BLV
Q CU CBLV 所以电容器上的充电电流
I Q CBL V CBLa
t
t
根据牛顿第二定律
F fA ma F B2L2Ca ma
F a B2L2C m
(九)电源*单杆*
C
(十)电源*单杆*拉力
F
RF
(三)等长双杆*初速度
maV0=(ma+mb)V
R
b
(完整word版)人教版高中物理选修3-2全册教案(完整)

2、如右图,匀强磁场垂直于圆形线圈指向纸里,a、b、c、d为圆形线圈上等距离的四点,现用外力作用在上述四点,将线圈拉成正方形,设线圈导线不可伸长,且线圈仍处于原先所在的平面内,则在线圈发生形变的过程中
明确:对电流表而言,电流从哪个接线柱流入,指针向哪边偏转.
(2)闭合电路的一部分导体做切割磁感线的情况.
a.磁场方向不变,两次改变导体运动方向,如导体向右和向左运动.
b.导体切割磁感线的运动方向不变,改变磁场方向.
根据电流表指针偏转情况,分别确定出闭合电路的一部分导体在磁场中做切割磁感线运动时,产生的感应电流方向.
二、例题分析
例1、在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图,导轨上放一根导线ab,磁感线垂直于导轨所在平面。欲使M所包围的小闭合线圈N产生顺时针方向的感应电流,则导线的运动情况可能是
A、匀速向右运动B、加速向右运动
C、减速向右运动D、加速向左运动
例2、如图,水平地面上方有正交的匀强磁场和匀强电场,电场竖直向下,磁场垂直纸面向里,半圆形铝框从直径出于水平位置时开始下落,不计阻力,a、b两端落到地面的次序是
(3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释?
(4)电流磁效应的发现有何意义?谈谈自己的感受。
学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。
二、法拉第心系“磁生电”-—————电磁感应现象
教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容.提出以下问题,引导学生思考并回答:
第四章电磁感应
4.1划时代的发现
教学目标
(一)知识与技能
1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应双导轨问题
1、两根足够长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。
导轨间的距离L=0.2m 。
磁感强度B=0.50T 的匀强磁场与导轨所在平面垂直。
两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。
现有一与导轨平行,大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。
经过t=5.0s ,金属杆甲的加速度为1.37m/s 2,问此时甲、乙两金属杆速度v 1、v 2及它们之间的距离是多少?
R v
v l B F 2)(2122-=安 ① ma F F =-安 ② 21mv mv
Ft += ③ 由①②③三式解得:s m v s m v /85.1,/15.821==
对乙:2mv t HB =⋅ ④ 得C Q mv QIB 85.12
== 又R
BlS R Q 22相对=∆=φ ⑤ 得m S 5.18=相对
2、如图,水平平面内固定两平行的光滑导轨,左边两导轨间的距离为2L ,右边两导轨间的距离为L ,左右部分用导轨材料连接,两导轨间都存在磁感强度为B 、方向竖直向下的匀强磁场。
ab 、cd 两均匀的导体棒分别垂直放在左边和右边导轨间,ab 棒的质量为2m ,电阻为2r ,cd 棒的质量为m ,电阻为r ,其它部分电阻不计。
原来两棒均处于静止状态,cd 棒在沿导轨向右的水平恒力F 作用下开始运动,设两导轨足够长,两棒都不会滑出各自的轨道。
⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大?
⑵在达到稳定状态时ab 棒产生的热功率多大?
解:⑴cd 棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I ,cd 和ab 棒分别受到的安培力为F 1、F 2,速度分别为v 1、v 2,加速度分别为a 1、a 2,则
r
v v BL r BLv BLv r E I 3)2(3232121-=-== ① F 1=BIL F 2=2BIL ②
m BIL F a -=1 m BIL m BIL a ==222 ③
开始阶段安培力小,有a 1>>a 2,cd 棒比ab 棒加速快得多,随着(v 1-2v 2)的增大,F 1、F 2增大,a 1减小、a 2增大。
当 a 1=2a 2时,(v 1-2v 2)不变,F 1、F 2也不变,两棒以不同的加速度匀加速运动。
将③式代入可得两棒最终作匀加速运动加速度:
m F a 321= m F a 32= ④
⑵两棒最终处于匀加速运动状态时a 1=2a 2,代入③式得:BL
F I 3= ⑤ 此时ab 棒产生的热功率为:2222922L B r F r I P =⋅=
⑥
3、两根水平平行固定的光滑金属导轨宽为L ,足够长,在其上放置两根长也为L 且与导轨垂直的金属棒ab 和cd ,它们的质量分别为2m 、m ,电阻阻值均为R (金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中。
(1)现把金属棒ab 锁定在导轨的左端,如图甲,对cd 施加与导轨平行的水平向右的恒力F ,使金属棒
cd 向右沿导轨运动,当金属棒cd 的运动状态稳定时,金属棒cd 的运动速度是多大?
(2)若对金属棒ab 解除锁定,如图乙,使金属棒cd 获得瞬时水平向右的初速度v 0,当它们的运动状态
达到稳定的过程中,流过金属棒ab 的电量是多少?整个过程中ab 和cd 相对运动的位移是多大?
⑴当cd 棒稳定时,恒力F 和安培力大小相等,方向相反,以速度v 匀速度运动,有:
F =BIL ……………………………………………………………………………………①
又R
BLv I 2=…………………………………………………………………………………②
联立得: 222L
B FR v = ………………………………………………………………………③ ⑵ab 棒在安培力作用下加速运动,而cd 在安培力作用下减速运动,当它们的速度相同,达到稳定状态时,回路中的电流消失,ab ,cd 棒开始匀速运动。
设:这一过程经历的时间为t ,最终ab 、cd 的速度为v ′,通过ab 棒的电量为Q 。
则对于ab 棒由动量守恒:BILt =2mv ′
甲
O 乙。