多因素分析(统计学)
心理与教育统计学第13章多因素方差分析

或者说将其他变量的变化效应平均掉)。
交互作用
a1 a2
b1
4
10
b2
7
13
无交互作用
a1
a2
b1
4
10
b2
7
5
有交互作用
多因素方差分析的统计原理
方差分析的基本思想仍是总变异的分解: 完全随机:SST = SSA + SSB + SSAB + SSe 自由度: n-1 a-1 b-1 (a-1) (b-1) n-ab 随机区组:SST = SSR +SSA + SSB + SSAB + SSe 自由度: n-1 r-1 a-1 b-1 (a-1) (b-1)
平方和与自由度的分解
1、平方和的分解
总平方和SST被分解为A因素所引起的平方和SSA、 B因素所引起的平方和SSB、AB交互作用所引 起的平方和SSAB、误差平方和SSe
平方和的分解
与平方和相应的自由度分别为: 总自由度:dfT=N-1 ❖ A因素处理间自由度:dfA=a-1 ❖ B因素处理间自由度:dfB=b-1 ❖ 交互作用自由度:dfAB=(a-1)(b-1) ❖ 处理内自由度:dfe=ab(n-1) ❖ dfT=dfA+dfB+dfAB+dfe
一、多因素方差分析基本概念
(一)交互作用与主效应
当一个因素的水平在另一个因素的不同水平上变化趋势不 一致时,称为两个因素之间存在交互作用(反映两个或两个以 上自变量相互依赖、相互制约,共同对因变量的变化发生影响)。
主效应指实验中由一个因素的不同水平引起的变异,所以 有几个自变量就有几个主效应(主效应就是在考察一个变量是否
多因素分析

多因素分析多因素分析是统计学中一种主要的数据分析方法,用于研究多个因素对一些变量的影响程度和相互关系。
它可以帮助我们了解变量之间的关系,从而进一步预测和解释现象。
在实际应用中,多因素分析广泛应用于市场调查、社会调查、生物医学研究等领域。
多因素分析的基本概念是通过测量一系列自变量(也称为因素)对因变量(也称为响应变量)的影响。
自变量可以是定性或定量的,而因变量通常是定量的。
多因素分析可以帮助我们确定哪些因素对因变量有显著的影响,并且可以揭示这些自变量之间的相互作用。
例如,我们可以通过多因素分析来确定销售额受到产品价格、广告费用和季节因素的影响程度,并且是否存在这些因素之间的相互作用。
多因素分析可以分为两类:方差分析和回归分析。
方差分析主要用于分析分类自变量对因变量的影响,而回归分析则主要用于分析连续自变量对因变量的影响。
不论是方差分析还是回归分析,多因素分析都需要进行假设检验来确定是否存在显著的因素影响。
在进行多因素分析之前,我们需要做一些前提要求。
首先,我们需要一个样本数据集,其中包含了自变量和因变量的观测值。
其次,我们需要对每个因素的水平进行定义和测量。
这些水平可以是定性的,例如不同产品类型、不同市场区域;也可以是定量的,例如价格、广告费用等。
最后,我们需要选择适当的统计方法来进行多因素分析,包括方差分析和回归分析等。
在进行多因素分析时,我们需要注意一些常见的假设检验方法。
例如,在方差分析中,我们通常会使用F检验来检验不同因素对因变量的影响是否显著。
如果p值小于设定的显著性水平(通常是0.05),则可以拒绝原假设,即认为不同因素之间存在显著的差异。
在回归分析中,我们通常会使用t检验来检验各个自变量的回归系数是否显著。
除了假设检验,多因素分析还可以进行模型诊断和解释结果。
在模型诊断中,我们可以检查残差是否满足模型假设,例如正态性、同方差性和线性关系等。
在解释结果中,我们可以利用回归系数的大小和方向来解释不同因素对因变量的影响程度和方向。
统计学5 多因素试验资料的方差分析课件

且因素间可能存在交互作用时。
正交设计与析因设计的区别:
• 析因设计:是各因素各水平全面组合的设计。 • 正交设计:是各因素各水平部分组合的设计。
正交设计能成倍减少试验次数,但是以牺牲 部分因素间的交互作用为代价。
正交设计表
• 每张正交表的表头都有一个表头符号,一般写法 为 LN(mk) 。
对于交互作用AB H0:因素A与因素B无交互效应 H1:因素A与因素B存在交互效应
(2)选择检验方法,计算检验统计量
析因设计方差分析计算表
(3)确定P值,做出推断结论
F < Fα(ν 1,ν 2)
P > 0.05
不拒绝H0,差异无统计学意义,尚不能 认为多个总体均数不等或不全相等。
F ≥ Fα(ν 1,ν 2)
20
Corrected Total
17.339
19
a. R Squared = .991 (Adjusted R Squared = .990)
Sig. .000 .000 .000 .332 .236
正交设计资料的方差分析
• 正交设计 • 正交设计表 • 分析步骤
正交设计
• 正交设计是利用一套规格化的正交表,将各个试 验因素、各水平之间的组合进行均匀搭配,合理 安排,是一种高效的、多因素试验设计方法。
• N 代表实验次数; • m 代表各因素水平; • k代表最高容许安排的试验因素及其效应数。
• 例如,L8(27), L16(215)
正交设计表
L8(27)正交表
列
号
试验号 1 2 3 4 5 6 7
1
1111111
医学统计学课件:第十四讲 多因素分析(二)

温州医科大学公共19 卫生与管理学院
2. 优势比估计 可反映某一因素两个不 同水平(c1,c0)的优势比。
ORˆ j exp[bj (c1 c0 )]
若自变量X j 只有暴露和非暴露两个水 平,则优势比OR j 的1 可信区间估计公式为
exp(bj u / 2Sbj )
温州医科大学公共21 卫生与管理学院
例16-1 表16-1是一个研究吸烟、饮酒与食道癌关系的病 例-对照资料,试作logistic回归分析。
确
X1
1
0
吸烟 不吸烟
定
各 变 量
X2
1
0
饮酒 不饮酒
编 码
Y
1
0
病例 对照
温州医科大学公共22 卫生与管理学院
表16-1 吸烟与食道癌关系的病例-对照调查资料
多元Logistic回归
温州医科大学公共1 卫生与管理学院
知识回顾与问题引入 Logistic回归模型 非条件Logistic回归 Logistic回归的应用及注意事项 其它
温州医科大学公共卫生与管理学院
教学目标
➢ 掌握
非条件Logistic回归的用途,模型基本结构 回归系数的流行病学意义
➢ 熟悉
P 1 P
=0
1
X1
2
X
2
m Xm log itP
取值范围 概率P:0~1,logitP:-∞~∞。
温州医科大学公共13 卫生与管理学院
1P
00..55
Z : , 0,
P : 0, 0.5, 1
0
Z
-4 -3 -2 -1 0 1 2 3 4
图16-1 logistic函数的图形
统计学第九章 双因素和多因素方差分析

2、平方和的分解
与平方和相应的自由度分别为: 总自由度:df =abn-1
T
A因素处理间自由度:df =a-1
A
B因素处理间自由度:df =b-1
B
交互作用自由度:df =(a-1)(b-1)
AB
处理内自由度:dfe=ab(n-1) df =df +df +df +dfe
a b i=1 j =1
n
2
SSe= ∑∑∑yijk
i=1 j =1 k =1
a
b
2
1 a b 2 − ∑∑yij• = SST − SSA − SSB − SSAB n i=1 j=1
(五)各项均方的计算
MS
T
SS T SS T = = df T abn − 1
MS
A
SS A SS A = = a -1 df A
x9
x1 x2 x3 x4 x5 x6 x7 x8 33.5** 30.5** 29.75** 22** 19** 11.5 2.75 2.5
x8
31** 28** 27.25** 19.5** 16.5** 9 0.25
x7
30.75** 27.75** 27** 19.25** 16.25** 8.75
A因素误差平方和
SSA = bn∑(yi•• − y••• )
i=1
a
2
B因素误差平方和 SSB = an∑(y• j• − y••• )
b j=1
2
AB交互作用误差平方和
SSAB = n∑∑(yij• − yi•• − y• j• + y••• )
多因素分析

它们的计算公式为:
FA MS A MS AB
MS B FB
FAB MS AB
MS AB
MS e
Tes ts of Betwe en-Su bjects Effe cts Dependent Variable: Y Type III Sum of Squares df Mean Square F Sig. Hypothesis 145548.375 1 . . . Error . .a . A Hypothesis 12.250 2 6.125 .055 .947 b Error 666.750 6 111.125 B Hypothesis 100.125 3 33.375 .300 .824 b Error 666.750 6 111.125 A * B Hypothesis 666.750 6 111.125 .491 .803 c Error 2715.500 12 226.292 a. Cannot compute the error degrees of freedom using Satterthwaite's method. b. MS(A * B) c. MS(Error) Source Intercept
变异来源
处理间模型 因子A 因子B A与B的交互作用 误差
SS
2.9625 1.6875 0.9075 0.3675 0.0800
df
3 1 1 1 8
MS
0.9875 1.6875 0.9075 0.3675 0.0100
F
98.75 168.75 90.75 36.75
P
0.0000 0.0000 0.0000 0.0000
总体均数
111 112 121 122 211 212 221 222
单因素方差分析和多因素方差分析简单实例

单因素方差分析和多因素方差分析简单实例
单因素方差分析与多因素方差分析(即分析方差分析,简称 ANOVA)是统计学中常用
的一种方法。
它可以用来评估相关变量之间的差异程度,以确定这些变量对数据集的影响
程度。
本文将对两种方法进行简单介绍,并通过一个实例来帮助大家更好地理解。
1、单因素方差分析
单因素方差分析是统计学中最常见的研究方法之一,可以用来评估一个单独变量的影响。
在这种情况下,我们分别将多个样本分为两组或以上,每组有不同的自变量。
然后使
用单因素处方差分析检验来检验这些样本组之间的均值的差异,从而得出该自变量对样本
组之间的均值的影响大小。
举个例子,假设我们有一个取自不同地区的样本,想要测试该样本收入水平是否受某
个城市所在地区影响,那么我们可以把这些样本分为两组:一组是属于某个城市所在地区,另一组是其他地区,然后使用单因素方法分析测试这两组样本收入水平是否显著不同。
拿前面的例子来说,我们在检验受某个城市影响的收入水平的时候如果只用单因素分
析可能不太准确,因为受某个城市影响的收入水平还可能受到一些其他因素的影响,比如
年龄、阶层等,这时就可以使用多因素方差分析来进行检验和确定不同因素的影响程度。
所以,单因素方差分析和多因素方差分析都是用来评估变量之间差异程度的统计方法,但并不能确定变量之间的关联性和互动作用。
至于哪一个方法更适合于某种特定情况,需
要结合实际情况,根据具体分析需求而定。
医学统计学 多元线性回归 多因素统计分析方法

药物
治疗例数
有效例数
有效率/%
A药
100
95
95.0
B药
100
80
86.0
X2=10.286, P=0.001
同病型不同药物比较:
每张表都 只比较一
个因素
药物 A药 B药
轻型两种药物治疗高血压的疗效比较
治疗例数
有效例数
有效率/%
50
48
96.0
50
36
72.0
X2=10.714, P=0.001
药物 A药 B药
(降维,指标化多为少)
5、多个Y与多个X的相关关系:典型相关分析
多因素分析的定义:
①是研究多个相依因素(变量)之间的 关系的统计分析方法(黄正南《医用多因素 分析》)。
②是一种用于制定不同原因对某一事件 或结果相对作用大小的统计学工具(姚晨译 《多变量分析—临床使用指南》)。
与单因素、双因素分析比较 多因素分析的优点
X称自变量(independent variable) Y称因变量(dependent variable)
直线回归复习
由X推算Y的直线回归方程一般表达式
yˆ a bx 或 yˆ b0 b1x
a(或b0)称为截距,
pronounced ‘Y hat’
1、取得原始资料容易:
单因素分析必须要有严格的实验设计来 排除非实验因素对结果的影响(控制干扰因 素),达到组间均衡可比。(累,伤财)
多因素分析可同时分析几个或几十个因 素,把干扰因素当作研究因素。(化敌为友)
2、可从整体分析结果:既可以分析单独作 用,又可以分析各因素的交互作用。
X因素
A因素
X因素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y ˆ 5 .9 0 4 .1X 3 1 4 0 .3 2 X 2 5 0 .2 1 X 3 7 0 .6 1 X 4 38
.
12
2、回归方程的假设检验——F检验
结果无显著性 1)表明所观察的自变量与应变量不存在线性回归关系; 2)也可能由于样本例数过少;
结果有显著性 表明至少有一个自变量与应变量之间存在线性回归关系。
H0:β1=β2=…=βm= 0 H1:β1、β2、…βm不等于0或不全等于0
.
13
ANOVbA
Model
Sum of SquaresdfMean SquareF Sig.
1
R eg re ssion1 33 .71 1
4 33.428 8.278 .000a
Residual 88.841 22
4 .03 8
.
7
.
8
多元线性回归除具有直线回归的基本性质外,还具有 以下特点(用途):
(1)因素筛选:(因素分析) 例如影响高血压的诸多因素中:
1)哪些是主要因素? 2)各因素的作用大小?
(2)提高回归方程的估计精度
多元回归比只有一个自变量的简单直线回归更 能缩小应变量Y对其估计值的离差,在预测和统计 控制方面应用的效果更好。
11.2 8.8 12.3 … 13.3 10.4
.
11
1、建立回归方程
Coefficienats
Unstandardized Standardized Coefficients Coefficients
Model
B Std. Error
1
(Constant)
5.943 2.829
总胆固醇x1
.142
2
X21
X22
…
X2p
Y2
┆
┆
┆
…
┆
┆
n
Xn1
Xn2
…
Xnp
Yn
Y为定量变量——Linear Regression Y为二项分类变量——Binary Logistic Regression Y为多项分类变量——Multinomial Logistic Regression Y为有序分类变量——Ordinal Logistic Regression Y为生存时间与生存结局——Cox Regression
Y 0 1 X 1 2 X 2 m X m e
β0为回归方程的常数项(constant),表示各自变量均为0时y的平 均值;
m为自变量的个数; β1、β2、βm为偏回归系数(Partial regression coefficient)
意义:如β1 表示在X2、X3 …… Xm固定条件下,X1 每增减 一个单位对Y 的效应(Y 增减β个单位)。 e为去除m个自变量对Y影响后的随机误差,称残差(residual)。
.
10
例15-1(P.262) 27名糖尿病人的血清总胆固醇、甘油三脂、 空腹胰岛素、糖化血红蛋白、空腹血糖的测量值列于表15-2中 ,试建立血糖与其它几项指标关系的多元线性回归方程。
序号i
1 2 3 … 26 27
表15-2 27名糖尿病人的血糖及有关变量的测量结果
总胆固醇 甘油三脂 胰岛素
糖化血
(3)控制混杂因素
.
9
二、多元回归分析步骤 (1)用各变量的数据建立回归方程
(2)对总的方程进行假设检验
(3)当总的方程有显著性意义时,应对每个自变量的 偏回归系数再进行假设检验,若某个自变量的偏回归 系数无显著性,则应把该变量剔除,重新建立不包含 该变量的多元回归方程。
对新建立的多元回归方程及偏回归系数按上述程 序进行检验,直到余下的偏回归系数都具有统计意义 为止。最后得到最优方程。
多因素分析
温州医学院环境与公共卫生学院 叶晓蕾
.
1
概念 多因素分析是同时对观察对象的两个或两个以上
的变量进行分析。 常用的统计分析方法有:
多元线性回归、Logistic回归、COX比例风险回归 模型、因子分析、主成分分析,等。
.
2
多变量资料数据格式
例号 X1
X2
…
Xp
Y
1
X11
X12
…
X1p
Y1
减一个单位对Y 的效应(Y 增减 b 个单位)。
.
6
适用条件:
线性(linear)、独立性(independent)、正态性(normal) 、等方差(equal variance)——“LINE”。 线性——自变量与应变量的关系是线性的。用散点图判断。 独立性——任意两个观察值互相独立。常利用专业知识判断。 正态性——就自变量的任何一个线性组合,应变量y均服从正 态分布。即要求残差服从正态分布。常用残差图分析。 等方差——就自变量的任何一个线性组合,应变量y的方差均 相同。即要求残差的方差齐性。用散点图或残差图判断。
ห้องสมุดไป่ตู้
.
5
由样本估计而得的多元回归方程:
Y ˆ b 0 b 1 X 1 b 2 X 2 b m X m
Yˆ 为y的估计值或预测值(predicted value); b0为回归方程的常数项(constant),表示各自变量均为0时y 的估计值;
b1、b2、bm为偏回归系数(Partial regression coefficient) 意义:如 b1 表示在X2、X3 …… Xm固定条件下,X1 每增
.
3
第十五章 多元线性回归
(multiple linear regressoin) P.261
Y,X——直线回归 Y,X1,X2,…Xm——多元回归(多重回归)
例:欲研究血压受年龄、性别、体重、性格、 职业(体力劳动或脑力劳动)、饮食、吸烟、 血脂水平等因素的影响。
.
4
一、多元回归模型
多元回归方程的一般形式
血糖
(mmol/L) X1 5.68 3.79 6.02 … 5.84 3.84
(mmol/L) X2 1.90 1.64 3.56 … 0.92 1.20
(μU/ml)
X3 4.53 7.32 6.95 … 8.61 6.45
红蛋白(%) X4 8.2 6.9 10.8 … 6.4 9.6
(mmol/L) Y
.366
甘油三脂x2
.351
.204
胰岛素x3
-.271
.121
糖化血红蛋白x4 .638
.243
Beta
.078 .309 -.339 .398
a.Dependent Variable: 血糖y
t 2.101
.390 1.721 -2.229 2.623
由上表得到如下多元线性回归方程:
Sig. .047 .701 .099 .036 .016